

New Physics at SuperKEKB/Belle II

M.Tanaka (Osaka U)

@Nagoya U, Dec 16, 2014

Introduction

B factory experiments: BaBar and Belle EPJC74(2014)3026

Asymmetric electron-positron colliders

 $e^+e^- \to \Upsilon(4S) \to B\bar{B}$ boosted B pairs

 $B^0 \overline{B}^0$ mixing mixing-induced CP violation time-dependent CP asymmetry decay time \longleftarrow decay position $\tau \simeq 1.6 \text{ ps}$ $c\tau \sim 500 \ \mu \text{m}$

B Factory	e^- beam energy	e^+ beam energy	Lorentz factor	crossing angle
	E_{-} (GeV)	$E_+ (\text{GeV})$	$eta\gamma$	$\varphi ~({ m mrad})$
PEP-II	9.0	3.1	0.56	0
KEKB	8.0	3.5	0.425	22

Integrated luminosity of B factories

Unitarity triangle $\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} W^+_{\mu} \bar{u}_L \gamma^{\mu} V_{\text{CKM}} d_L + \text{h.c.}$ $V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$ $V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$ $\bar{\rho} = \rho(1 - \lambda^2/2 + \cdots)$ $\bar{\eta} = \eta(1 - \lambda^2/2 + \cdots)$ $V_{ub}^* V_{ud} \qquad \phi_2 \qquad V_{tb}^* V_{td}$ ϕ_1 $V_{cb}^*V_{cd}$

Two decades of CKM

1995

2001

[LEP, KTeV, NA48, Babar, Belle, CDF, DØ, LHCb, CMS...]

0.5

 $\overline{\rho}$

2006

1.0

1.5

2.0

2014 CKM14 - 11/09/14

2.0

6

S. Descotes-Genon (LPT-Orsay)

0.0

-0.5

2009

CKMfitter

SuperKEKB/Belle II

	KEKB Achieved	SuperKEKB	
Energy (GeV) (LER/HER)	3.5/8.0	4.0/7.0	
ξ_y	0.129/0.090	0.090/0.088	
$\beta_y^* (\text{mm})$	5.9/5.9	0.27/0.41	
I(A)	1.64/1.19	3.60/2.62	
Luminosity $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	2.11	80	X

Minoru TANAKA

10

Semitauonic B decays

Present status W $\bar{B} \to D^{(*)} \tau \bar{\nu}$ Experiments BABAR 2012 arXiv: 1205.5442, PRL.109.101802(2012) $R(D) \equiv \frac{\mathcal{B}(B \to D\tau \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D\ell \bar{\nu}_{\ell})} = 0.440 \pm 0.058 \pm 0.042$ $R(D^*) \equiv \frac{\mathcal{B}(B \to D^* \tau \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^* \ell \bar{\nu}_{\ell})} = 0.332 \pm 0.024 \pm 0.018$ Belle 2007, 2009, 2010 $R(D) = 0.390 \pm 0.100$ $R(D^*) = 0.347 \pm 0.050$ **Combined:** $R(D) = 0.421 \pm 0.058$ $(\rho = -0.19)$ $R(D^*) = 0.337 \pm 0.025$

Standard model

$$\begin{split} R(D) &= 0.297 \pm 0.017 \text{ (BaBar, Fajfer et al.)} \\ &\quad 0.302 \pm 0.015 \text{ (MT, Watanabe)} \\ &\quad 0.316 \pm 0.012 \pm 0.007 \text{ (Bailey et al., lattice)} \\ &\quad 0.31 \pm 0.02 \text{ (Becirevic et al.)} \end{split}$$

 $R(D^*) = 0.252 \pm 0.003$ (BaBar, Fajfer et al.) 0.251 ± 0.004 (MT, Watanabe)

Theoretical uncertainty

Form factors

data from $\bar{B} \to D^{(*)} \ell \bar{\nu} \ (\ell = e, \mu)$

+ heavy quark effective theory (HQET)+ lattice QCD

	R(D)	$R(D^*)$	
Exp.	0.421±0.058	0.337±0.025	
SM	0.305±0.012	0.252±0.004	
SD	Ι.9σ	2.9σ	

Sensitive to the charged Higgs if tanβ is large.

Model-independent approach MT, R.Watanabe, arXiv1212.1878, PRD87.034028(2013). Effective Lagrangian for $b \rightarrow c \tau \bar{\nu}$ all possible 4f operators with LH neutrinos $-\mathcal{L}_{\text{eff}} = 2\sqrt{2}G_F V_{cb} \sum \left[(\delta_{l\tau} + C_{V_1}^l)\mathcal{O}_{V_1}^l + C_{V_2}^l \mathcal{O}_{V_2}^l + C_{S_1}^l \mathcal{O}_{S_1}^l + C_{S_2}^l \mathcal{O}_{S_2}^l + C_T^l \mathcal{O}_T^l \right]$ $l=e,\mu,\tau$ $\mathcal{O}_{V_1}^l = \bar{c}_L \gamma^\mu b_L \, \bar{\tau}_L \gamma_\mu \nu_{Ll} \,,$ SM-like, RPV, LQ $\mathcal{O}_{V_2}^l = \bar{c}_R \gamma^\mu b_R \, \bar{\tau}_L \gamma_\mu \nu_{Ll} \,,$ **RH** current $\mathcal{O}_{S_1}^l = \bar{c}_L b_R \, \bar{\tau}_R \nu_{Ll} \,,$ charged Higgs II, RPV, LQ $\mathcal{O}_{S_2}^l = \bar{c}_R b_L \, \bar{\tau}_R \nu_{Ll} \,,$ charged Higgs III, LQ $\mathcal{O}_{\tau}^{l} = \bar{c}_{R} \sigma^{\mu\nu} b_{L} \bar{\tau}_{R} \sigma_{\mu\nu} \nu_{Ll}$ LO. GUT

Constraints on Wilson coefficients

Y. Sakaki, MT, A. Tayduganov, R. Watanabe, 1412.3761

 S_1 (charged Higgs in type-II 2HDM) disfavored.

Leptoquark models

Y. Sakaki, MT, A. Tayduganov, R. Watanabe arXiv: 1309.0301, PRD88.094012(2013)

Six types of LQ possible Buchmueller, Ruckl, Wyler (1987)

	S_1	<i>S</i> ₃	V_2	R_2	U_1	U_3
spin	0	0	1	0	1	1
F = 3B + L	-2	-2	-2	0	0	0
$SU(3)_c$	3*	3*	3*	3	3	3
$SU(2)_L$	1	3	2	2	1	3
$U(1)_{Y=Q-T_3}$	1/3	1/3	5/6	7/6	2/3	2/3

$$C_{V_{1}}^{l} = \frac{1}{2\sqrt{2}G_{F}V_{cb}} \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl}g_{1L}^{23*}}{2M_{S_{1}^{1/3}}^{2}} - \frac{g_{3L}^{kl}g_{3L}^{23*}}{2M_{S_{3}^{1/3}}^{2}} + \frac{h_{1L}^{2l}h_{1L}^{k3*}}{M_{U_{1}^{2/3}}^{2}} - \frac{h_{3L}^{2l}h_{3L}^{k3*}}{M_{U_{3}^{2/3}}^{2}} \right], \quad \text{constrained by}$$

$$C_{V_{2}}^{l} = 0,$$

$$C_{S_{1}}^{l} = \frac{1}{2\sqrt{2}G_{F}V_{cb}} \sum_{k=1}^{3} V_{k3} \left[-\frac{2g_{2L}^{kl}g_{2R}^{23*}}{M_{V_{2}^{1/3}}^{2}} - \frac{2h_{1L}^{2l}h_{1R}^{k3*}}{M_{U_{1}^{2/3}}^{2}} \right], \quad \text{disfavored}$$

$$C_{S_{2}}^{l} = \frac{1}{2\sqrt{2}G_{F}V_{cb}} \sum_{k=1}^{3} V_{k3} \left[-\frac{g_{1L}^{kl}g_{1R}^{23*}}{2M_{S_{1}^{1/3}}^{2}} - \frac{h_{2L}^{2l}h_{2R}^{23*}}{2M_{S_{1}^{2}}^{2}} \right], \quad C_{S_{2}}(m_{LQ}) = \pm 4C_{T}(m_{LQ})$$

$$C_{T}^{l} = \frac{1}{2\sqrt{2}G_{F}V_{cb}} \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl}g_{1R}^{23*}}{2M_{S_{1}^{1/3}}^{2}} - \frac{h_{2L}^{2l}h_{2R}^{23*}}{2M_{S_{1}^{2}}^{2}} \right], \quad C_{S_{2}}(m_{LQ}) = \pm 4C_{T}(m_{LQ})$$

- V_2 : $C_{V_2} = 0.01 \pm 0.60i$, $C_{X \neq V_2} = 0$,
- S_2 : $C_{S_2} = -1.75, C_{X \neq S_2} = 0$,

•
$$T: C_T = 0.33 \pm 0.09i, C_{X \neq T} = 0$$
,

- LQ₁ scenario: $C_{S_2} = 7.8C_T = -0.17 \pm 0.80i, C_{X \neq S_2,T} = 0$,
- LQ₂ scenario: $C_{S_2} = -7.8C_T = 0.34, C_{X \neq S_2,T} = 0$.

How to discriminate: other observables $A_{FB}, P_{\tau}, P_{D^*}$ rather hard to measure $q^2 = (p_B - p_{D^{(*)}})^2$ easier

Implication of the present q2 data

p value

model	$\overline{B} \to D\tau\overline{\nu}$	$\overline{B} \to D^* \tau \overline{\nu}$	$\overline{B} \to (D+D^*)\tau\overline{\nu}$
SM	54%	65%	67%
V_1	54%	65%	67%
V_2	54%	65%	67%
S_2	0.02%	37%	0.1%
T	58%	0.1%	1.0%
LQ_1	13%	58%	25%
LQ_2	21%	72%	42%

S_2, T disfavored

 $LQ_{1,2}$ (combinations of S_2, T) allowed

Ratio of the q2 distributions

$$R_D(q^2) \equiv \frac{d\mathcal{B}(\overline{B} \to D\tau\overline{\nu})/dq^2}{d\mathcal{B}(\overline{B} \to D\ell\overline{\nu})/dq^2} \frac{\lambda_D(q^2)}{(m_B^2 - m_D^2)^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^{-2}$$
$$R_{D^*}(q^2) \equiv \frac{d\mathcal{B}(\overline{B} \to D^*\tau\overline{\nu})/dq^2}{d\mathcal{B}(\overline{B} \to D^*\ell\overline{\nu})/dq^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^{-2}.$$
$$\lambda_{D^{(*)}}(q^2) = ((m_B - m_{D^{(*)}})^2 - q^2)((m_B + m_{D^{(*)}})^2 - q^2)$$

No Vcb dependence, less form factor uncertainties

 (q^2)

Simulated data vs tested models χ^2 of the binned $R_{D^{(*)}}(q^2)$

Required luminosity to exclude the tested model

$\mathcal{L} [\mathrm{fb}^{-1}]$		model							
		SM	V_1	V_2	S_2	Т	LQ_1	LQ_2	
	V.	1170		10^{6}	500	900	4140	2860	
	<i>v</i> ₁	(270)		(X)	(X)	(X)	(X)	(1390)	
	Va	1140	10^{6}		510	910	4210	3370	
	V2	(270)	(X)		(X)	(X)	(X)	(1960)	
	Sa	560	560	540		380	1310	730	
ata	52	(290)	(13750)	(36450)		(X)	(35720)	(4720)	
٩e,	T	600	680	700	320		620	550	
	1	(270)	(X)	(X)	(X)		(X)	(1980)	
	LQ ₁	1010	4820	4650	1510	800		5920	
		(270)	(X)	(X)	(X)	(X)		(1940)	
	ΙOa	1020	3420	3990	1040	650	5930		
	LQ_2	(250)	(1320)	(1820)	(20560)	(4110)	(1860)		

(...): integrated quantities

99.9 % CL

 $L \lesssim 6 \ {\rm ab}^{-1}$ in most cases

A good target at an earlier stage of Belle II

Right-handed b to u current

1411.1177, T. Enomoto, MT

Flavor structure in the quark sector

Standard Model:

Yukawa couplings \Rightarrow charged current

$$\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} W^+_{\mu} \, \bar{u}_L \gamma^{\mu} V_{\text{CKM}} d_L + \text{h.c.}$$
$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

New Physics:

Minimal Flavor Violation No other flavor violation Non-MFV New source(s) of flavor violation

 V_{ub} the smallest element

may be affected by Non-MFV new physics

Right-handed current in $b \rightarrow u$

Model-indep. effective Lagrangian of dim. 6

$$\mathcal{L}_{6} = \frac{C}{\Lambda^{2}} \bar{u}_{R} \gamma^{\mu} b_{R} \,\tilde{\Phi}^{\dagger} i D_{\mu} \Phi + \text{h. c.}$$
Effective charged current interaction
$$\mathcal{L}_{cc}^{\text{eff}} = -\frac{g}{\sqrt{2}} \left[V_{ub}^{L} \bar{u}_{L} \gamma^{\mu} b_{L} + V_{ub}^{R} \bar{u}_{R} \gamma^{\mu} b_{R} \right] W_{\mu}^{+} + \text{h. c.}$$

$$V_{ub}^{R} = C \frac{v^{2}}{2\Lambda^{2}} \sim 3 \times 10^{-2} C \left(\frac{1 \text{TeV}}{\Lambda} \right)^{2}$$

$$\sim \lambda^{3} \text{ possible}$$

Present status of |Vub| determination

Effects of the right-handed current $B \rightarrow \tau \nu$ axial vector current only $|V_{ub}^{\exp}|^2 = |V_{ub}^L - V_{ub}^R|^2 = |V_{ub}^L|^2 \left| 1 - 2\operatorname{Re}\left(\frac{V_{ub}^R}{V_{ub}^L}\right) + \left|\frac{V_{ub}^R}{V_{ub}^L}\right|^2 \right|$ $B \to \pi \ell \nu$ vector current only $|V_{ub}^{\exp}|^2 = |V_{ub}^L + V_{ub}^R|^2 = |V_{ub}^L|^2 \left| 1 + 2\operatorname{Re}\left(\frac{V_{ub}^R}{V_{ub}^L}\right) + \left|\frac{V_{ub}^R}{V_{ub}^L}\right|^2 \right|$ $B \to X_u \ell \nu$ no interference $m_u \simeq 0$ $|V_{ub}^{\exp}|^2 = |V_{ub}^L|^2 + |V_{ub}^R|^2 = |V_{ub}^L|^2 \left|1 + \left|\frac{V_{ub}^R}{V_{ub}^L}\right|^2\right|$ $B \to \rho(\omega) \ell \nu$ vector and axial vector $|V_{ub}^{\exp}|^2 = |V_{ub}^L|^2 \left| 1 - 1.18(1.25) \operatorname{Re}\left(\frac{V_{ub}^R}{V_{ub}^L}\right) + \left|\frac{V_{ub}^R}{V_{ub}^L}\right|^2 \right|$

LCSR Ball, Zwicky

Best fit

$$|V_{ub}^{L}| = 3.43 \times 10^{-3}$$

 $Re\left(\frac{V_{ub}^{R}}{V_{ub}^{L}}\right) = -4.21 \times 10^{-3}$
 $\left|Im\left(\frac{V_{ub}^{R}}{V_{ub}^{L}}\right)\right| = 0.551$
 $\chi^{2}/dof = 2.27$ $(p = 0.078)$

Yellow: B->τν Blue: B->Xulv Red: B->πlv LightBlue: indirect LightGreen: B->plv Gray: B->ωlv

 $A(B^+ \to \pi^+ \pi^0) = A(B^0 \to \pi^+ \pi^-) / \sqrt{2} + A(B^0 \to \pi^0 \pi^0)$

 $z = \sqrt{2}A_0/A_2, \ \bar{z} = \sqrt{2}\bar{A}_0/\bar{A}_2$ determined from BR's

Observables

Branching ratios

 $BR(B \to \pi^+\pi^-), BR(B \to \pi^0\pi^0), BR(B^\pm \to \pi^\pm\pi^0)$

Time-dependent CP asymmetry

$$\frac{\Gamma(B^0 \to \pi^+ \pi^-) - \Gamma(\bar{B}^0 \to \pi^+ \pi^-)}{\Gamma(B^0 \to \pi^+ \pi^-) + \Gamma(\bar{B}^0 \to \pi^+ \pi^-)} = C_{\pi^+ \pi^-} \cos\left(\Delta M_{B_d} t\right) - S_{\pi^+ \pi^-} \sin\left(\Delta M_{B_d} t\right)$$

$$C_{\pi^+\pi^-}, S_{\pi^+\pi^-}$$

Time-integrated CP asymmetry

$$C_{\pi^0\pi^0}$$

Direct CP asymmetry in charged B decays $A_{CP}(B^+ \to \pi^+ \pi^0)$

Experimental values

$C_{\pi^+\pi^-}$	-0.31 ± 0.05
$S_{\pi^+\pi^-}$	-0.66 ± 0.06
$C_{\pi^0\pi^0}$	-0.43 ± 0.24
$A_{CP}(B^+ \to \pi^+ \pi^0)$	-0.026 ± 0.039
$BR(B \to \pi^+\pi^-)$	$(5.10 \pm 0.19) \times 10^{-6}$
${\rm BR}(B\to\pi^0\pi^0)$	$(1.91 \pm 0.225) \times 10^{-6}$
${\rm BR}(B^{\pm} \to \pi^{\pm} \pi^0)$	$(5.48 \pm 0.345) \times 10^{-6}$

Effect of the right-handed current $A_2 = A_{2L} + A_{2R}, A_2 = A_{2L} + A_{2R}$ $R_{\pi\pi} \equiv \frac{1 + \bar{A}_{2R} / \bar{A}_{2L}}{1 + A_{2R} / A_{2L}} \qquad \frac{A_{2R}}{A_{2L}} \simeq 1.56 \frac{V_{ub}^{R*}}{V_{ub}^{L*}} e^{i\delta_{\pi\pi}} \quad \text{RGE}$ factorization $C_{\pi^{+}\pi^{-}} = \left(1 - |R_{\pi\pi}|^{2} \left|\frac{1+\bar{z}}{1+z}\right|^{2}\right) / \left(1 + |R_{\pi\pi}|^{2} \left|\frac{1+\bar{z}}{1+z}\right|^{2}\right)$ $S_{\pi^{+}\pi^{-}} = \sqrt{1 - C_{\pi^{+}\pi^{-}}^{2}} \sin\left(2\phi_{2}^{L} + \arg\left(R_{\pi\pi}\right) + \arg\left(\frac{1 + \bar{z}}{1 + z}\right)\right)$ $C_{\pi^{0}\pi^{0}} = \left(1 - |R_{\pi\pi}|^{2} \left|\frac{2-\bar{z}}{2-z}\right|^{2}\right) / \left(1 + |R_{\pi\pi}|^{2} \left|\frac{2-\bar{z}}{2-z}\right|^{2}\right)$ $A_{CP}(B^+ \to \pi^+ \pi^0) = \frac{1 - |R_{\pi\pi}|^2}{1 + |R_{--}|^2}$ $\phi_2^L = 84.7^\circ \pm 7.5^\circ$

Minoru TANAKA

CP violation in $B \rightarrow DK$

Dalitz plot method $D \to K_s \pi^+ \pi^-$

 $\phi_3^{L(R)} = \arg(V_{ab}^{L(R)*})$ Effect of the right-handed current $A(B^+ \to D^0 K^+) = |A_L| e^{i(\phi_3^L + \delta_L)} + |A_R| e^{i(\phi_3^R + \delta_R)}$ $R_{DK} = e^{2i\phi_3^L} \frac{A(B^- \to \bar{D}^0 K^-)}{A(B^+ \to D^0 K^+)} = \frac{1 + |A_R/A_L| e^{i(-\phi_3^R + \phi_3^L + \delta)}}{1 + |A_R/A_L| e^{i(\phi_3^R - \phi_3^L + \delta)}}$ $|A_R/A_L| = 4.99 |V_{ub}^R/V_{ub}^L|$

Tau lepton flavor violation

1412.2530, T. Goto, Y. Okada, T. Shindou, MT, R. Watanabe

Lepton flavor violation Neutrino oscillation $\nu_i \rightarrow \nu_j$ Lepton flavors are NOT conserved. Charged lepton sector $\mu \to e\gamma, \ \tau \to \mu\gamma, \cdots$ suppressed by the small neutrino masses $BR \sim (m_{\nu}/m_W)^4 \leq 10^{-54}$

Supersymmetric models

flavor mixing among scalar leptons

new source of LFV at SUSY mass scale

LFV experiments $\mu \to e\gamma$ MEG $BR(\mu \to e\gamma) < 5.7 \times 10^{-13}$ MEG II (expectation) $\sim 5 \times 10^{-14}$ $\tau ightarrow \mu \gamma$ **BaBar** $BR(\tau \to \mu \gamma) < 4.4 \times 10^{-8}$ Belle II (expectation) $\sim 10^{-9}$

Supersymmetric seesaw model MSSM + type-l seesaw + minimal SUGRA $W_{\text{lepton}} = Y_E^{ij} E_i^c L_j H_1 + Y_N^{ij} N_i^c L_j H_2 + \frac{1}{2} M_N^{ij} N_i^c N_j^c$ $- \mathcal{L}_{\text{soft}}^{\text{lepton}} = (m_L^2)^{ij} \tilde{\ell}_i^{\dagger} \tilde{\ell}_j + (m_E^2)^{ij} \tilde{e}_i^{\dagger} \tilde{e}_j + (m_N^2)^{ij} \tilde{\nu}_i^{\dagger} \tilde{\nu}_j + (T_E^{ij} \tilde{e}_i^{\dagger} \tilde{\ell}_j h_1 + T_N^{ij} \tilde{\nu}_i \tilde{\ell}_j h_2 + \text{h.c.})$ $(m_L^2)^{ij} = (m_E^2)^{ij} = (m_N^2)^{ij} = M_0^2 \delta^{ij}, \quad T_N^{ij} = M_0 A_0 Y_N^{ij}, \quad T_E^{ij} = M_0 A_0 Y_E^{ij}$ at GUT scale

Source of LFV

18 parameters in Y_N , M_N 9 in the light neutrino masses and PMNS 18-9=9 left for cLFV

Degenerate case with CPV

Minoru TANAKA

Summary

40 times (or more) larger statistics A few % error in UT Indirect search for new physics **×** LHCb Competition and complementarity ***** Excess of semitauonic B decays Testing NP with the q2 distribution A good target of an earlier stage of Belle II 5-10/ab LHCb can do $B \to D^* \tau \nu$.

Right-handed b to u current Shifts in UT phases ϕ_2 , ϕ_3 New direct CP asymmetries

Both MEG II and Belle II have possibilities to observe LFV.

Large A term?

Many other issues to be discussed

B2TIP

Belle II Theory Interface Platform https://belle2.cc.kek.jp/~twiki/bin/view/Public/B2TIP

- WG 1: Semileptonic & leptonic decays
- WG 2: Radiative & EW penguins
- WG 3: phi1 & phi2
- WG 4: phi3
- WG 5: Charmless hadronic B decays
- WG 6: Charm
- WG 7: Quarkonium
- WG 8: Tau, low multiplicity & EW
- WG 9: New Physics

Table of golden modes

Lots to do. Please join us.

