New Physics at SuperKEKB/Belle II

M.Tanaka (Osaka U)
@Nagoya U, Dec 16, 2014

Introduction

B factory experiments: BaBar and Belle

Asymmetric electron-positron colliders

$$
e^{+} e^{-} \rightarrow \Upsilon(4 \mathrm{~S}) \rightarrow B \bar{B} \quad \text { boosted B pairs }
$$

$B^{0} \bar{B}^{0}$ mixing
mixing-induced CP violation time-dependent CP asymmetry decay time \longleftrightarrow decay position

$$
\tau \simeq 1.6 \mathrm{ps} \quad c \tau \sim 500 \mu \mathrm{~m}
$$

PEP-II

KEKB

B Factory	e^{-}beam energy			
$E_{-}(\mathrm{GeV})$	e^{+}beam energy $E_{+}(\mathrm{GeV})$	Lorentz factor $\beta \gamma$	crossing angle $\varphi(\mathrm{mrad})$	
PEP-II	9.0	3.1	0.56	0
KEKB	8.0	3.5	0.425	22

Integrated luminosity of B factories

Unitarity triangle

$$
\begin{gathered}
\mathcal{L}_{C C}=\frac{g}{\sqrt{2}} W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} V_{\mathrm{CKM}} d_{L}+\text { h.c. } \\
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{c b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \\
V_{u b}^{*} V_{u d}+V_{c b}^{*} V_{c d}+V_{t b}^{*} V_{t d}=0
\end{gathered}
$$

Two decades of CKM

[LEP, KTeV, NA48, Babar, Belle, CDF, DØ, LHCb, CMS...]

1995

2006
S. Descotes-Genon (LPT-Orsay)

2001

2009
CKMfitter

2004

2014 CKM14-11/09/14 6

Too consistent.

SuperKEKB/Belle II

	KEKB Achieved	SuperKEKB
Energy $(\mathrm{GeV})(\mathrm{LER} / \mathrm{HER})$	$3.5 / 8.0$	$4.0 / 7.0$
ξ_{y}	$0.129 / 0.090$	$0.090 / 0.088$
$\beta_{y}^{*}(\mathrm{~mm})$	$5.9 / 5.9$	$0.27 / 0.41$
$I(\mathrm{~A})$	$1.64 / 1.19$	$3.60 / 2.62$
Luminosity $\left(10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	2.11	80

x40

Minoru TANAKA

Overture: CKM matrix at 1\%

Generalized UT fits: today CKM at 1% in the $\bar{\rho} 0.159 \pm 0.045 \pm 0.008$ presence of NP! $\bar{\eta} 0.363 \pm 0.049 \pm 0.010$

- crucial for many NP searches

Semitauonic B decays

Present status

$$
\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}
$$

Experiments

 BABAR 2012 arxiv: 1205.5422, PRL.109.101802(2012)$$
\begin{aligned}
& R(D) \equiv \frac{\mathcal{B}\left(\bar{B} \rightarrow D \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D \ell \bar{\nu}_{\ell}\right)}=0.440 \pm 0.058 \pm 0.042 \\
& R\left(D^{*}\right) \equiv \frac{\mathcal{B}\left(\bar{B} \rightarrow D^{*} \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}\right)}=0.332 \pm 0.024 \pm 0.018
\end{aligned}
$$

Belle 2007, 2009, 2010

$$
R(D)=0.390 \pm 0.100 \quad R\left(D^{*}\right)=0.347 \pm 0.050
$$

Combined: $R(D)=0.421 \pm 0.058$

$$
(\rho=-0.19)
$$

Standard model

$$
\begin{aligned}
R(D)= & 0.297 \pm 0.017 \text { (BaBar, Fajfer et al.) } \\
& 0.302 \pm 0.015 \text { (MT,Watanabe) } \\
& 0.316 \pm 0.012 \pm 0.007 \text { (Bailey et al., lattice) } \\
& 0.31 \pm 0.02 \text { (Becirevic et al.) } \\
R\left(D^{*}\right)= & 0.252 \pm 0.003 \text { (BaBar, Fajfer et al.) } \\
& 0.251 \pm 0.004 \text { (MT,Watanabe) }
\end{aligned}
$$

Theoretical uncertainty
Form factors

$$
\begin{aligned}
& \text { data from } \bar{B} \rightarrow D^{(*)} \ell \bar{\nu}(\ell=e, \mu) \\
& \text { + heavy quark effective theory (HQET) } \\
& \text { + lattice QCD }
\end{aligned}
$$

	$R(D)$	$R\left(D^{*}\right)$
Exp.	$0.42 I \pm 0.058$	0.337 ± 0.025
SM	$0.305 \pm 0.0 \mathrm{I} 2$	0.252 ± 0.004
SD	1.9σ	2.9σ

Charged Higgs boson

W.S. Hou and B. Grzadkowski (1992), M.T. (I995),

Type-II 2HDM (SUSY)

Sensitive to the charged Higgs if $\tan \beta$ is large.

But, negative interference.

predictions of 2HDM II

Charged Higgs excluded at 99.8\% CL

Model-independent approach

MT, R.Watanabe,arXiv I2 I2.I878, PRD87.034028(20I3).
Effective Lagrangian for $b \rightarrow c \tau \bar{\nu}$
all possible $4 f$ operators with LH neutrinos

$$
\begin{array}{rlrl}
-\mathcal{L}_{\text {eff }}=2 \sqrt{2} G_{F} V_{c b}^{L} & \sum_{l=e, \mu, \tau}\left[\left(\delta_{l l}+C_{V_{1},}^{l}\right) \mathcal{O}_{V_{1}}^{l}+C_{V_{2}}^{l} \mathcal{O}_{V_{2}}^{l}+C_{S_{1}}^{l} \mathcal{O}_{S_{1}}^{l}+C_{S_{2}}^{l} \mathcal{O}_{S_{2}}^{l}+C_{T}^{l} \mathcal{O}_{T}^{l}\right] \\
\mathcal{O}_{V_{1}}^{l} & =\bar{c}_{L} \gamma^{\mu} b_{L} \bar{\tau}_{L} \gamma_{\mu} \nu_{L l}, & & \text { SM-like, RPV, LQ } \\
\mathcal{O}_{V_{2}}^{l} & =\bar{c}_{R} \gamma^{\mu} b_{R} \bar{\tau}_{L} \gamma_{\mu} \nu_{L l}, & & \text { RH current } \\
\mathcal{O}_{S_{1}}^{l} & =\bar{c}_{L} b_{R} \bar{\tau}_{R} \nu_{L l}, & & \text { charged Higgs II, RPV, LQ } \\
\mathcal{O}_{S_{2}}^{l} & =\bar{c}_{R} b_{L} \bar{\tau}_{R} \nu_{L l}, & & \text { charged Higgs III, LQ } \\
\mathcal{O}_{T}^{l} & =\bar{c}_{R} \sigma^{\mu \nu^{\prime}} b_{L} \bar{\tau}_{R} \sigma_{\mu \nu} \nu_{L l} & & \text { LQ, GUT }
\end{array}
$$

Constraints on Wilson coefficients

Y. Sakaki, MT,A.Tayduganov,R.Watanabe, I4I2.376I

S_{1} (charged Higgs in type-II 2HDM) disfavored.

Leptoquark models

 arXiv:I 309.030I, PRD88.0940I2(20I3)
Six types of LQ possible Buchmueller, Ruckl,Wyler (1987)

	S_{1}	S_{3}	V_{2}	R_{2}	U_{1}	U_{3}
spin	0	0	1	0	1	1
$F=3 B+L$	-2	-2	-2	0	0	0
$S U(3)_{c}$	3^{*}	3^{*}	3^{*}	3	3	3
$S U(2)_{L}$	1	3	2	2	1	3
$U(1)_{Y=Q-T_{3}}$	$1 / 3$	$1 / 3$	$5 / 6$	$7 / 6$	$2 / 3$	$2 / 3$

$$
C_{V_{1}}^{l}=\frac{1}{2 \sqrt{2} G_{F} V_{c b}} \sum_{k=1}^{3} V_{k 3}\left[\frac{g_{L L}^{k l} g_{1 L}^{23 *}}{2 M_{S_{1}^{1 / 3}}^{2 L}}-\frac{g_{3 L}^{k l} g_{3 L}^{23 *}}{2 M_{S_{3}^{1 / 3}}^{2 l}}+\frac{h_{1 L}^{2 l} l_{1 L}^{k 3 *}}{M_{U_{1}^{2 / 3}}^{2}}-\frac{h_{L L}^{2 l} h_{3 L}^{k 3^{k}}}{M_{U_{3}^{2 / 3}}^{2}}\right], \begin{aligned}
& \text { constrained by } \\
& \bar{B} \rightarrow X_{\mathrm{c}} \nu \bar{\nu}
\end{aligned}
$$

$$
C_{V_{2}}^{l}=0,
$$

$$
C_{S_{1}}^{l}=\frac{1}{2 \sqrt{2} G_{F} V_{c b}} \sum_{k=1}^{3} V_{k 3}\left[-\frac{2 g_{2 L}^{k l} g_{2 R}^{23 *}}{M_{V_{2}^{1 / 3}}^{2 / 3}}-\frac{2 h_{1 L}^{2 l} h_{1 R}^{k 3 *}}{M_{U_{1}^{2 / 3}}^{23 *}}\right] \text { disfavored }
$$

$$
C_{S_{2}}^{l}=\frac{1}{2 \sqrt{2} G_{F} V_{c b}} \sum_{k=1}^{3} V_{k 3}\left[-\frac{g_{1 L}^{k l} g_{1 R}^{23 *}}{2 M_{S_{1}^{1 / 3}}^{2}}-\frac{h_{2 L}^{2 l} h_{2 R}^{k 3 *}}{2 M_{R_{2}^{2 / 3}}^{23 *}}\right],
$$

$$
C_{T}^{l}=\frac{1}{2 \sqrt{2} G_{F} V_{c b}} \sum_{k=1}^{3} V_{k 3}\left[\frac{g_{1 L}^{k l} g_{1 R}^{23 *}}{8 M_{S_{1}^{1 / 3}}^{2}}-\frac{h_{2 L}^{2 l} h_{2 R}^{k 3 *}}{8 M_{R_{2}^{2 / 3}}^{2 / 3}}\right],
$$

$$
\begin{gathered}
C_{S_{2}}\left(m_{\mathrm{LQ}}\right)= \pm 4 C_{T}\left(m_{\mathrm{LQ}}\right) \\
\\
C_{S_{2}}\left(m_{b}\right)= \pm 7.8 C_{T}\left(m_{b}\right)
\end{gathered}
$$

Discrimination with the $q 2$ distributions

Y. Sakaki, MT,A.Tayduganov,R.Watanabe, I4I2.376I

Several possible NP scenarios

- $V_{1}: C_{V_{1}}=0.16, C_{X \neq V_{1}}=0$,
- $V_{2}: C_{V_{2}}=0.01 \pm 0.60 i, C_{X \neq V_{2}}=0$,
- $S_{2}: C_{S_{2}}=-1.75, C_{X \neq S_{2}}=0$,
- $T: C_{T}=0.33 \pm 0.09 i, C_{X \neq T}=0$,
- LQ_{1} scenario: $C_{S_{2}}=7.8 C_{T}=-0.17 \pm 0.80 i, C_{X \neq S_{2}, T}=0$,
- LQ_{2} scenario: $C_{S_{2}}=-7.8 C_{T}=0.34, C_{X \neq S_{2}, T}=0$.

How to discriminate: other observables $A_{F B}, P_{\tau}, P_{D^{*}}$ rather hard to measure $q^{2}=\left(p_{B}-p_{D^{(*)}}\right)^{2} \quad$ easier

Implication of the present q2 data

p value

model	$\bar{B} \rightarrow D \tau \bar{\nu}$	$\bar{B} \rightarrow D^{*} \tau \bar{\nu}$	$\bar{B} \rightarrow\left(D+D^{*}\right) \tau \bar{\nu}$
SM	54%	65%	67%
V_{1}	54%	65%	67%
V_{2}	54%	65%	67%
S_{2}	0.02%	37%	0.1%
T	58%	0.1%	1.0%
LQ $_{1}$	13%	58%	25%
LQ $_{2}$	21%	72%	42%

S_{2}, T disfavored
$\mathrm{LQ}_{1,2}$ (combinations of S_{2}, T) allowed

Ratio of the q2 distributions

$$
\begin{aligned}
R_{D}\left(q^{2}\right) \equiv & \frac{d \mathcal{B}(\bar{B} \rightarrow D \tau \bar{\nu}) / d q^{2}}{d \mathcal{B}(\bar{B} \rightarrow D \ell \bar{\nu}) / d q^{2}} \frac{\lambda_{D}\left(q^{2}\right)}{\left(m_{B}^{2}-m_{D}^{2}\right)^{2}}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{-2} \\
R_{D^{*}}\left(q^{2}\right) \equiv & \frac{d \mathcal{B}\left(\bar{B} \rightarrow D^{*} \tau \bar{\nu}\right) / d q^{2}}{d \mathcal{B}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}\right) / d q^{2}}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{-2} \\
& \lambda_{D^{(*)}}\left(q^{2}\right)=\left(\left(m_{B}-m_{D^{(*)}}\right)^{2}-q^{2}\right)\left(\left(m_{B}+m_{D^{(*)}}\right)^{2}-q^{2}\right)
\end{aligned}
$$

No Vcb dependence, less form factor uncertainties

Simulated data vs tested models

χ^{2} of the binned $R_{D^{(*)}}\left(q^{2}\right)$
Required luminosity to exclude the tested model

$\mathcal{L}\left[\mathrm{fb}^{-1}\right]$		model						
		SM	V_{1}	V_{2}	S_{2}	T	LQ1	LQ2
	V_{1}	$\begin{aligned} & 1170 \\ & (270) \\ & \hline \end{aligned}$		$\begin{aligned} & 10^{6} \\ & (X) \end{aligned}$	$\begin{aligned} & 500 \\ & (\times) \end{aligned}$	$\begin{aligned} & 900 \\ & (\times) \end{aligned}$	$\begin{gathered} 4140 \\ (\times) \end{gathered}$	$\begin{gathered} \hline 2860 \\ (1390) \end{gathered}$
	V_{2}	$\begin{aligned} & 1140 \\ & (270) \end{aligned}$	$\begin{aligned} & 10^{6} \\ & (\times) \end{aligned}$		$\begin{aligned} & \hline 510 \\ & (\times) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 910 \\ & (\times) \\ & \hline \end{aligned}$	$\begin{gathered} 4210 \\ (\times) \end{gathered}$	$\begin{gathered} \hline 3370 \\ (1960) \end{gathered}$
	S_{2}	$\begin{gathered} 560 \\ (290) \end{gathered}$	$\begin{gathered} 560 \\ (13750) \end{gathered}$	$\begin{gathered} 540 \\ (36450) \end{gathered}$		$\begin{aligned} & 380 \\ & (\times) \end{aligned}$	$\begin{gathered} 1310 \\ (35720) \end{gathered}$	$\begin{gathered} 730 \\ (4720) \end{gathered}$
	T	$\begin{gathered} 600 \\ (270) \end{gathered}$	$\begin{aligned} & \hline 680 \\ & (\times) \end{aligned}$	$\begin{aligned} & \hline 700 \\ & (\times) \end{aligned}$	$\begin{aligned} & \hline 320 \\ & (\times) \end{aligned}$		$\begin{aligned} & 620 \\ & (\times) \end{aligned}$	$\begin{gathered} 550 \\ (1980) \end{gathered}$
	LQ1	$\begin{aligned} & 1010 \\ & (270) \end{aligned}$	$\begin{gathered} 4820 \\ (X) \end{gathered}$	$\begin{gathered} 4650 \\ (\times) \end{gathered}$	$\begin{gathered} 1510 \\ (\times) \end{gathered}$	$\begin{aligned} & 800 \\ & (X) \end{aligned}$		$\begin{gathered} \hline 5920 \\ (1940) \end{gathered}$
	LQ2	$\begin{aligned} & 1020 \\ & (250) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3420 \\ (1320) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3990 \\ (1820) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1040 \\ (20560) \\ \hline \end{gathered}$	$\begin{gathered} 650 \\ (4110) \end{gathered}$	$\begin{gathered} 5930 \\ (1860) \end{gathered}$	

(...): integrated quantities
$L \lesssim 6 \mathrm{ab}^{-1}$ in most cases
A good target at an earlier stage of Belle II

Ultimate Belle II sensitivity

Assuming exp. $=\mathbf{S M}$ for $R(D), R\left(D^{*}\right)$

 blue $R_{D^{(*)}\left(q^{2}\right)}$ red $R\left(D^{(*)}\right)$

$$
\begin{array}{ccccc}
M_{\mathrm{NP}} \gtrsim 5(7), & 5(6), & 7(10), & 5(7), & 5(6) \\
V_{1,2} & S_{1,2} & T & \mathrm{LQ}_{1} & \mathrm{LQ}_{2}
\end{array}
$$

Right-handed b to u current

Flavor structure in the quark sector

Standard Model:
Yukawa couplings \Rightarrow charged current

$$
\begin{gathered}
\mathcal{L}_{C C}=\frac{g}{\sqrt{2}} W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} V_{\mathrm{CKM}} d_{L}+\mathrm{h.c.} \\
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \\
\text { ew Phvsics. }
\end{gathered}
$$

New Physics:
Minimal FlavorViolation
No other flavor violation
Non-MFV
New source(s) of flavor violation

Hierarchy

$$
\begin{aligned}
& V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & \lambda^{3} A(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & \lambda^{2} A \\
\lambda^{3} A(1-\rho-i \eta) & -\lambda^{2} A & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
0.97428 \pm 0.00015 & 0.2253 \pm 0.0007 \\
0.2252 \pm 0.0007 & 0.97345_{-0}^{+0.00015} \\
0.00862_{-0.00020}^{+0.00026} & 0.0403_{-0.0007}^{+0.016}
\end{array}\right.
\end{aligned}
$$

$V_{u b}$ the smallest element

 may be affected by Non-MFV new physics
Right-handed current in $\mathrm{b} \rightarrow \mathrm{u}$

Model-indep. effective Lagrangian of dim. 6

$$
\mathcal{L}_{6}=\frac{C}{\Lambda^{2}} \bar{u}_{R} \gamma^{\mu} b_{R} \tilde{\Phi}^{\dagger} i D_{\mu} \Phi+\text { h.c. }
$$

Effective charged current interaction

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{cc}}^{\text {eff }}=-\frac{g}{\sqrt{2}}\left[V_{u b}^{L} \bar{u}_{L} \gamma^{\mu} b_{L}+V_{u b}^{R} \bar{u}_{R} \gamma^{\mu} b_{R}\right] W_{\mu}^{+}+\text {h.c. } \\
& V_{u b}^{R}=C \frac{v^{2}}{2 \Lambda^{2}} \sim 3 \times 10^{-2} C\left(\frac{1 \mathrm{TeV}}{\Lambda}\right)^{2} \\
& \quad \sim \lambda^{3} \text { possible }
\end{aligned}
$$

Present status of |Vub| determination

Effects of the right-handed current

 $B \rightarrow \tau \nu \quad$ axial vector current only$$
\left|V_{u b}^{\exp }\right|^{2}=\left|V_{u b}^{L}-V_{u b}^{R}\right|^{2}=\left|V_{u b}^{L}\right|^{2}\left[1-2 \operatorname{Re}\left(\frac{V_{u b}^{R}}{V_{u b}^{L}}\right)+\left|\frac{V_{u b}^{R}}{V_{u b}^{L}}\right|^{2}\right]
$$

$B \rightarrow \pi \ell \nu$ vector current only

$$
\left|V_{u b}^{\exp }\right|^{2}=\left|V_{u b}^{L}+V_{u b}^{R}\right|^{2}=\left|V_{u b}^{L}\right|^{[}\left[1+2 \operatorname{Re}\left(\frac{V_{u b}^{R}}{V_{u b}^{L}}\right)+\left|\frac{V_{u b}^{R}}{V_{u b}^{L}}\right|^{2}\right]
$$

$B \rightarrow X_{u} \ell \nu$ no interference $m_{u} \simeq 0$

$$
\left|V_{u b}^{\exp }\right|^{2}=\left|V_{u b}^{L}\right|^{2}+\left|V_{u b}^{R}\right|^{2}=\left|V_{u b}^{L}\right|^{2}\left[1+\left|\frac{V_{u b}^{R}}{V_{u b}^{L}}\right|^{2}\right]
$$

$B \rightarrow \rho(\omega) \ell \nu$ vector and axial vector

$$
\left|V_{u b}^{\exp }\right|^{2}=\left|V_{u b}^{L}\right|^{2}\left[1-1.18(1.25) \operatorname{Re}\left(\frac{V_{u b}^{R}}{V_{u b}^{L}}\right)+\left|\frac{V_{u b}^{R}}{V_{u b}^{L}}\right|^{2}\right]
$$

LCSR Ball, Zwicky

Best fit

$\left|V_{u b}^{L}\right|=3.43 \times 10^{-3}$
$\operatorname{Re}\left(\frac{V_{u b}^{R}}{V_{u b}^{L}}\right)=-4.21 \times 10^{-3}$
$\left|\operatorname{Im}\left(\frac{V_{u b}^{R}}{V_{u b}^{L}}\right)\right|=0.551$
$\chi^{2} / \operatorname{dof}=2.27 \quad(p=0.078)$

Yellow: B->tv Blue: B->Xulv Red: $B->\pi / v$ LightBlue: indirect LightGreen: B->plv Gray: B->wlv

CP violation in $B \rightarrow \pi \pi$

$$
I=0,2
$$

$I=0$

Isospin analysis for ϕ_{2}

$$
\begin{aligned}
& A_{I}=\left\langle(\pi \pi)_{I} \mid B^{0}\right\rangle \quad \bar{A}_{I}=\left\langle(\pi \pi)_{I} \mid \bar{B}^{0}\right\rangle \\
& \qquad A\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)=A\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right) / \sqrt{2}+A\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right) \\
& \quad z=\sqrt{2} A_{0} / A_{2}, \bar{z}=\sqrt{2} \bar{A}_{0} / \bar{A}_{2} \\
& \\
& \text { determined from BR's }
\end{aligned}
$$

Observables

Branching ratios

$$
\operatorname{BR}\left(B \rightarrow \pi^{+} \pi^{-}\right), \operatorname{BR}\left(B \rightarrow \pi^{0} \pi^{0}\right), \operatorname{BR}\left(B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}\right)
$$

Time-dependent CP asymmetry

$$
\begin{aligned}
& \frac{\Gamma\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)-\Gamma\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)+\Gamma\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)}=C_{\pi^{+} \pi^{-}} \cos \left(\Delta M_{B_{d}} t\right)-S_{\pi^{+} \pi^{-}} \sin \left(\Delta M_{B_{d}} t\right) \\
& C_{\pi^{+}} \pi^{-}, \\
& S_{\pi^{+}} \pi^{-}
\end{aligned}
$$

Time-integrated CP asymmetry
$C_{\pi^{0} \pi^{0}}$
Direct CP asymmetry in charged B decays $A_{C P}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)$

Experimental values

$$
\begin{array}{ll}
C_{\pi^{+} \pi^{-}} & -0.31 \pm 0.05 \\
S_{\pi^{+} \pi^{-}} & -0.66 \pm 0.06 \\
C_{\pi^{0} \pi^{0}} & -0.43 \pm 0.24 \\
A_{C P}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right) & -0.026 \pm 0.039 \\
\operatorname{BR}\left(B \rightarrow \pi^{+} \pi^{-}\right) & (5.10 \pm 0.19) \times 10^{-6} \\
\operatorname{BR}\left(B \rightarrow \pi^{0} \pi^{0}\right) & (1.91 \pm 0.225) \times 10^{-6} \\
\operatorname{BR}\left(B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}\right) & (5.48 \pm 0.345) \times 10^{-6}
\end{array}
$$

Effect of the right-handed current

$$
\begin{aligned}
& A_{2}=A_{2 L}+A_{2 R}, \bar{A}_{2}=\bar{A}_{2 L}+\bar{A}_{2 R} \\
& R_{\pi \pi} \equiv \frac{1+\bar{A}_{2 R} / \bar{A}_{2 L}}{1+A_{2 R} / A_{2 L}} \quad \frac{A_{2 R}}{A_{2 L}} \simeq 1.56 \frac{V_{u b}^{R *}}{V_{u b}^{L *}} e^{i \delta_{\pi \pi}} \quad \begin{array}{l}
\text { RGE } \\
\text { factorization }
\end{array} \\
& C_{\pi^{+} \pi^{-}}=\left(1-\left|R_{\pi \pi}\right|^{2}\left|\frac{1+\bar{z}}{1+z}\right|^{2}\right) /\left(1+\left|R_{\pi \pi}\right|^{2}\left|\frac{1+\bar{z}}{1+z}\right|^{2}\right) \\
& S_{\pi^{+} \pi^{-}}=\sqrt{1-C_{\pi^{+} \pi^{-}}^{2}} \sin \left(2 \phi_{2}^{L}+\arg \left(R_{\pi \pi}\right)+\arg \left(\frac{1+\bar{z}}{1+z}\right)\right) \\
& C_{\pi^{0} \pi^{0}}=\left(1-\left|R_{\pi \pi}\right|^{2}\left|\frac{2-\bar{z}}{2-z}\right|^{2}\right) /\left(1+\left|R_{\pi \pi}\right|^{2}\left|\frac{2-\bar{z}}{2-z}\right|^{2}\right) \\
& A_{C P}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)=\frac{1-\left|R_{\pi \pi}\right|^{2}}{1+\left|R_{\pi \pi}\right|^{2}} \quad \phi_{2}^{L}=84.7^{\circ} \pm 7.5^{\circ}
\end{aligned}
$$

CP violation in $B \rightarrow \rho \rho$

$$
\rho_{L} \rho_{L} \quad \mathrm{CP} \text { even, } I=0,2
$$

Isospin analysis as the two-pion mode

$$
\frac{A_{2 R}}{A_{2 L}} \simeq-0.91 \frac{V_{u t}^{R *}}{V_{u b}^{L *}}{ }^{i \delta_{\rho_{L} \rho_{L}}}
$$

CP violation in $B \rightarrow D K$

Dalitz plot method $\quad D \rightarrow K_{s} \pi^{+} \pi^{-}$

Effect of the right-handed current $\quad \phi_{3}^{L(R)}=\arg \left(V_{u b}^{L(R) *}\right)$

$$
\begin{aligned}
& A\left(B^{+} \rightarrow D^{0} K^{+}\right)=\left|A_{L}\right| e^{i\left(\phi_{3}^{L}+\delta_{L}\right)}+\left|A_{R}\right| e^{i\left(\phi_{3}^{R}+\delta_{R}\right)} \\
& R_{D K}=e^{2 i \phi_{3}^{L}} \frac{A\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right)}{A\left(B^{+} \rightarrow D^{0} K^{+}\right)}=\frac{1+\left|A_{R} / A_{L}\right| e^{i\left(-\phi_{3}^{R}+\phi_{3}^{L}+\delta\right)}}{1+\left|A_{R} / A_{L}\right| e^{i\left(\phi_{3}^{R}-\phi_{3}^{L}+\delta\right)}} \\
& \left|A_{R} / A_{L}\right|=4.99\left|V_{u b}^{R} / V_{u b}^{L}\right|
\end{aligned}
$$

Belle II

$\delta \phi_{3} \sim 1.7^{\circ}$

Tau lepton flavor violation

I4I2.2530,T. Goto, Y. Okada,T. Shindou, MT, R.Watanabe

Lepton flavor violation

Neutrino oscillation $\quad \nu_{i} \rightarrow \nu_{j}$
\rightarrow Lepton flavors are NOT conserved.
Charged lepton sector $\quad \mu \rightarrow e \gamma, \tau \rightarrow \mu \gamma, \cdots$
suppressed by the small neutrino masses

$$
\mathrm{BR} \sim\left(m_{\nu} / m_{W}\right)^{4} \lesssim 10^{-54}
$$

Supersymmetric models
flavor mixing among scalar leptons
\rightarrow new source of LFV at SUSY mass scale

LFV experiments

$$
\mu \rightarrow e \gamma
$$

MEG $\quad \operatorname{BR}(\mu \rightarrow e \gamma)<5.7 \times 10^{-13}$
MEG II (expectation) $\sim 5 \times 10^{-14}$
$\tau \rightarrow \mu \gamma$
BaBar $\quad \operatorname{BR}(\tau \rightarrow \mu \gamma)<4.4 \times 10^{-8}$
Belle II (expectation) $\sim 10^{-9}$

Supersymmetric seesaw model

MSSM + type-I seesaw + minimal SUGRA

$$
\begin{array}{r}
W_{\text {lepton }}=Y_{E}^{i j} E_{i}^{c} L_{j} H_{1}+Y_{N}^{i j} N_{i}^{c} L_{j} H_{2}+\frac{1}{2} M_{N}^{i j} N_{i}^{c} N_{j}^{c} \\
-\mathcal{L}_{\text {soft }}^{\text {lepton }}=\left(m_{L}^{2}\right)^{i j} \tilde{\tilde{i}}_{i} \tilde{\ell}_{j}+\left(m_{E}^{2}\right)^{i j} \tilde{e}_{i}^{\dagger} \tilde{e}_{j}+\left(m_{N}^{2}\right)^{i j} \tilde{\nu}_{i}^{\dagger} \tilde{\nu}_{j}+\left(T_{E}^{i j} \tilde{e}_{i}^{\dagger} \tilde{\ell}_{j} h_{1}+T_{N}^{i j} \tilde{\nu}_{i} \tilde{\ell}_{j} h_{2}+\text { h.c. }\right) \\
\left(m_{L}^{2}\right)^{i j}=\left(m_{E}^{2}\right)^{i j}=\left(m_{N}^{2}\right)^{i j}=M_{0}^{2} \delta^{i j}, \quad T_{N}^{i j}=M_{0} A_{0} Y_{N}^{i j}, \quad T_{E}^{i j}=M_{0} A_{0} Y_{E}^{i j} \\
\text { at GUT scale }
\end{array}
$$

Source of LFV

I8 parameters in Y_{N}, M_{N}
9 in the light neutrino masses and PMNS
18-9=9 left for cLFV

Degenerate case w/o CPV

Minoru TANAKA

47

Degenerate case with CPV

$$
\begin{aligned}
Y_{N}= & \frac{\sqrt{\tilde{M}_{N}}}{v \sin \beta} e^{i A_{N}}\left(\begin{array}{cc}
\sqrt{m_{\nu_{1}}} & \\
& \sqrt{m_{\nu_{2}}} \\
& \\
& \\
& \\
& \\
& \\
& \\
m_{\nu_{\nu_{3}}}
\end{array}\right) U_{\nu}^{\dagger}(\tau \rightarrow \mu \gamma) / \mathrm{BR}(\mu \rightarrow e \gamma)>1800(100)
\end{aligned}
$$

Nondegenerate case $\quad Y_{N}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ y_{z} \\ y_{z}\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \text { cos } \sin \theta \\ 0-\sin \theta & \cos \theta\end{array}\right)$

$\tau \rightarrow \mu \gamma$
$\mu \rightarrow e \gamma$

Minoru TANAKA

49

Summary

* Belle II

40 times (or more) larger statistics
A few \% error in UT
Indirect search for new physics

* LHCb

Competition and complementarity
Excess of semitauonic B decays
Testing NP with the q2 distribution
A good target of an earlier stage of Belle II

$$
5-10 / a b
$$

LHCb can do $B \rightarrow D^{*} \tau \nu$.

* Right-handed b to u current Shifts in UT phases ϕ_{2}, ϕ_{3}
New direct CP asymmetries
* LFV

Both MEG II and Belle II have possibilities to observe LFV.

Large A term?

Many other issues to be discussed

Belle II Theory Interface Platform https://belle2.cc.kek.jp/~twiki/bin/view/Public/B2TIP

WG 1: Semileptonic \& leptonic decays
WG 2: Radiative \& EW penguins
WG 3: phi1 \& phi2
WG 4: phi3
WG 5: Charmless hadronic B decays
WG 6: Charm
WG 7: Quarkonium
WG 8: Tau, low multiplicity \& EW
WG 9: New Physics

Table of golden modes

Lots to do. Please join us.

Future External Workshops

North America 2016 (~April/May). USA colleagues are looking into funding options and locations.
P. Urquijo, B2TiP, Closing Remarks

