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Hiroshima, 1990~

• Tetsuya joined the particle theory lab of  Hiroshima 
University, as the youngest faculty member. 

• The head of  the lab was Taizo Muta, who had an 
intention to study non-perturbative dynamics of  
the EW symmetry breaking:  techni-color, top-
condensation, NJL model, … 

• Tetsuya was willing to learn new subjects (for him) 
with us students. In fact, it was an ideal learning 
experiences… Memories with (always) lost mugs.

Nov 1991, Hiroshima



Lattice gauge theory

• Muta gave me a theme: simulations of  
Lattice Gauge Theory (LGT). For me, LGT 
was a kind of  toy to play with using 
numerical simulations. I learned how to 
program. 

• Tetsuya was again willing to study together, 
and gave me a homework: plaquette → 
cube.  I didn’t even know what the model 
was representing.  Memory remains with 
Tetsuya’s herpes.
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The compact lattice gauge theory of the second-rank antisymmetric tensor field in four dimensions is studied. We calculate the 
hypersurface tension by Monte Carlo simulation on a 104 lattice, It is found that the tension does not go to zero for a finite value 
of the coupling constant. This suggests that the theory has the confinement phase only. This result is consistent with the result 
obtained from the dilute gas approximation of the instanton. Some phenomenological implications on the string model are dis- 
cussed also. 

I. Introduction 

It is well known that the compactifications on the 
Calabi-Yau manifolds in superstring theories lead to 
an enormous number  of  four-dimensional models 
which possess N =  1 space-t ime supersymmetry. Un- 
fortunately, due to the lack of  understanding the non- 
perturbative aspects o f  string theory we have not yet 
succeeded in making low energy predictions from 
those models. So far one is only able to treat low en- 
ergy effective field theories to do some phenomeno-  
logical analyses. Although such analyses might give 
new predictions for a certain class o f  models, they 
would not clarify the novel model-independent fea- 
tures which are low energy remnants peculiar to string 
theory. 

On the other hand one of  the model independent 
features in string theory is the appearance of  the sec- 
ond rank antisymmetric tensor field which is ex- 
pected to behave as an almost massless scalar boson 
at low energy. Moreover, owing to the anomaly can- 
ceiling counterterm this scalar boson has the same low 
energy lagrangian as that of  the invisible axion. 
Therefore it would be of  extreme importance to study 
what the fate of  this would-be invisible axion is. 

The cosmological observations impose severe con- 
straints on the value of  the coupling constants of  the 
invisible axion to matter fields. The coupling con- 
stant has the dimension of  (mass)  -1, where the scale 
o f  this mass is restricted to be 109-1012 GeV [ 1-3 ]. 

The tree-level mass scale o f  the coupling of  the super- 
string axion is the Planck scale. I f  the tree-level la- 
grangian for the superstring axion remains to be cor- 
rect down to the low energy scale, there will be a 
serious contradiction to the cosmological constraints. 

Since the model independent axion comes from the 
second-rank antisymmetric tensor gauge field, the 
gauge invariance guarantees the axion to be massless 
at least in the perturbative sense. One would then 
imagine that some non-perturbative effect may 
change the low energy behavior of  the antisymmetric 
tensor field drastically. In fact this possibility is the 
point we consider in this paper. In 1982, Orland [ 4] 
studied compact antisymmetric tensor gauge theory 
using the instanton approximation and found that the 
system is in a confinement phase for any value of  the 
coupling constant. To go beyond the instanton ap- 
proximation, one has to study the model in the lattice 
approach. 

In this paper we study the compact  lattice model 
by calculating the expectation value of  the Wilson 
surface. In section 2 we formulate the lattice theory. 
In section 3 the results of  the numerical simulations 
are presented. Section 4 is devoted to the physical 
implications of  the results to string theory. Conclu- 
sions and discussions are given in section five. 
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2. Compact lattice gauge theory of the antisymmetric 
tensor field 

We formulate the lattice gauge theory of the anti- 
symmetric tensor field. The partition function is given 
by the following path integral: 

Z =  ~ ~ d 0 ( p ) e x p ( - S g ) ,  ( l )  

where 

Sg= ~ p[l -cos(o~ O(p) ) ] . (2 ,  

Here c and p denote unit cubes and plaquettes. The 
lattice action has the invariance under the following 
gauge transformation: 

O..( i )--,Ou.( i) +A~(i+/~) 

- d . ( i )  - A . ( i +  v) +A.(i) . (3) 

If  we take a naive continuum limit by taking 
O,,.(i) =a2Bu~(x), where a is the lattice spacing, the 
action takes the following form in the continuum: 

S= 3fla 2 ~ d4x Hu.xHU":' . (4) 

The tensor Hu.a is the gauge invariant field strength 
defined as Hu.~=OtuB.a~ which is invariant under 

The gauge invariant observables are the Wilson 
surfaces given below 

W ( S ) =  1-I e x p [ i 0 ( p ) ] .  (5) 
peS 

We can calculate the vacuum expectation value of the 
Wilson surface analytically in the strong coupling 
limit and the weak coupling limit 

< w ( s ) >  ~ (1B)~, 

( ,  ~ exp - <w(s)> p ~  6 ~  

× <Bu~(x)Bp.(x')>), (6) 

f dS~(x) f dS~*( x' ) 
s s 

respectively. Here V is the minimum volume sur- 
rounded by the surface S. 

When the surface S is that of  the unit cube c, the 

vacuum expectation value of W(S)(  = < W ( c ) )  ) is 
related to the vacuum expectation value of the energy 
per unit cube in the following way: 

( E )  = 1 -  ( W ( c ) )  . (7) 

Now since in the strong and the weak coupling limit 
the partition function behaves as 

Z ~ exp(-flNe)(l+~flZNc), 
fl~O 

Z ~ ~--(Np--N~--Ns)/2,  ( 8 )  
fl~oo 

respectively, the energy per unit cube is 

1 ; l n Z  ( E )  - N~ 

(E> ~ 1 -  ½fl, 
B~0 

3 (E> ~ - -  (9) ~ 8/~" 

Here Nc, Np, N~ and Ns are the number of  cubes, pla- 
quettes, links and sites respectively. We have used the 
fact that for the N 4 lattice, Nc=4N 4, N p = 6 N  4, 
N ~ = 4 N  4 and N s = N  4. 

Another important physical observable is the cor- 
relation function of the field strength 

(Hm,,~(X)Hp~,c(x') > . (10) 

In the lattice theory it can be obtained by calculating 
the correlation function of the small Wilson surfaces: 

( W(S)W(S' ) >-< W(S) >.< W(S' ) > 
= < W ( S ) > . < W ( S ' ) >  

× {exp [ -  (H~,~(x)np~,~(x')> 1 -1}  

( Hl,.~(x)Hp.,c(x' ) > . ( 1 1 ) 
where S and S' are the surfaces of unit cubes located 
at the points x and x'. In the strong coupling limit the 
correlation function behaves as 

(Hu.~(X)Hp~(x') > ~ ] ~  61"r -x ' [  , (12) 

which suggests a massive particle mediating inter- 
string interactions. 

The intuitive picture of the result obtained in the 
strong coupling expansion is that the antisymmetric 
tensor field works as an intra-string binding force 
which is proportional to the area of  the region sur- 
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Strong coupling constant

• Tetsuya joined a group of  LQCD, later called 
JLQCD.  The first subject was a determination of  
αs.  It was the first attempt to do it including the 
effect of  dynamical fermion.
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We demonstrate that sea quark effects of a magnitude expected from renormalization group

considerations are clearly visible in the strong coupling constant measured in current full QCD
simulations. Building on this result an estimate of nMs(Mz) (MS denotes the modified minimal(~)

subtraction scheme) is made employing the charmonium IS 1P ma-ss splitting calculated on full QCD
configurations generated with two flavors of dynamical Kogut-Susskind quarks to fix the scale.

PACS numbers: 12.38.Gc

A distinctive feature of QCD that differentiates it
from phenomenological quark models of hadrons is the
existence of sea quarks built into the theory. Nonetheless,
finding a physical manifestation of sea quark effects has
been an elusive subject in full lattice QCD simulations.
In hadron mass spectrum calculations, for example, full
QCD results for liavor nonsinglet hadron masses agree
with those of quenched QCD within statistical errors of
5%—10% if the bare coupling constant for the latter is
shifted by an appropriate amount [1]. A similar situation
holds for the critical coupling of the chiral transition at
finite temperatures in full QCD; its value, though largely
dependent on the sea quark mass, is reproduced quite well
from that of the pure gauge theory by correcting for quark
one-loop vacuum polarization effects [2].
A possible interpretation of the matching of full and

quenched QCD by a shift of the bare coupling is that
the shift represents an adjustment of the renormalized
coupling constant at the low energy scale that dominates
the behavior of quantities being simulated [3,4]. If
this interpretation is valid, one expects that sea quark
effects will become manifest in the renormalized coupling
constant estimated for a scale sufficiently large compared
to the dominant scale, since the full QCD coupling
constant decreases more slowly than that of the pure
gauge theory. In this Letter we present evidence that this
in fact is the case: We find that the full QCD coupling
constant extracted from two-liavor full QCD simulations
is consistently larger than that of quenched QCD at large
momenta ranging over p, = 3—7 GeV when the scale is
determined from the p meson mass; the difference in the
magnitude of the full and quenched coupling constants is
consistent with the picture that the two couplings merge
when evolved down to the low energy scale p, ~ l GeV
via the two-loop renormalization group. We also estimate
the physical strong coupling constant for five flavors
of nMs (MS denotes the modified minimal subtraction(5)

scheme) at the Mz scale following the work of Refs. [3,4],

employing the 15-1P mass splitting of charmonium states
estimated for two-flavor full QCD.
Calculation of the renormalized value of the coupling

for a bare value no taken in a simulation is facilitated by
the recent study [5] which has shown that lattice pertur-
bative series is well convergent after lattice gluon tadpole
effects are properly taken into account. A proposal for
including tadpole effects in the relation between the bare
and renormalized coupling is given by [3]

(&f)n (n/a) = Pn& + c& + NIcI + O(no), (1)
where P is the plaquette expectation value, cg = 0.30928
is the gluon one-loop contribution [6], and the last term
represents the contribution of Nf flavors of quarks with
cf = —0.088 48 for the Kogut-Susskind quark action [7]
and cI = —0.03491 for the Wilson action [8]. Alterna-
tively one may use the n v coupling defined from the static
qq potential, which can be estimated from P via [5]
—ln P = nv (3.41/a)[1 + (ds + NIdI)o. v + O(nv)],3

(2)
with dg = —1.1855 and df = —0.0703 for the Kogut-
Susskind quark action and df = —0.0249 for the Wilson
action. The relation between the two couplings is given
by [5,9]

~ s'(I ) ' = ~v'(I ) ' + c—', + O(~v'(p)'),
c—= (93 —10NI) .MS (3)

Equivalently the A parameters are related by
V

(~f) ( cMs l (tvf)A—= expl — AvMs ( 8~b (4)

with bo = (11 —2NI/3)/(4 tr)
The renormalized coupling constant in the MS scheme

extracted from (1) for quenched and two-flavor full QCD
is compared in Fig. 1 for Kogut-Susskind and Wilson
quark actions as a function of scale IL, = 7r/a determined
from the p meson mass. In full QCD the plaquette data
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(Xf)FIG. 1. Comparison of n—(m/a) estimated via (1) for two-
flavor full QCD (filled symbols) and quenched QCD (open
symbols) with the scale fixed by the p meson mass.

are extrapolated linearly in the sea quark mass to VEq = 0.
In quenched QCD we made a ninth order polynomial fit
in p of plaquette values published in the literature [14]
in order to calculate the values at p where data are not
available. The trend is apparent in Fig. 1 that the full
QCD coupling constant is systematically larger than that
of the pure gauge theory when compared at the same
scale p, .
The solid lines in Fig. 1 illustrate the two-loop renor-

malization group evolution of the coupling constant. De-
viation of nMs (7r/a) from the solid lines toward smaller(&f)

values of cutoff is in part ascribed to scaling violation
effects due to a finite lattice spacing and in part to uncer-
tainties of O(n~) in the relation (1). One can estimate the
magnitude of the latter through a comparison of the cou-
pling constant extracted from (1) and (2). This analysis

tWf)shows that the latter estimate yields values for nMs (vr/a)
larger by about 3%—5% at p, = 7 GeV, and by about
5%—10% at p, = 3 GeV. These are taken as uncertain-
ties of our analyses.
In Fig. 2 we compare the two-loop renormalization

group evolution of the full and quenched coupling con-
stants toward small momenta p, ( 0.5—1 GeV. The up-

0
0.1 ']

q (Gev)
'l0

per and lower edges of the bands in this figure corre-
spond to n (vr/a) estimated from the relation (1) and(+f)

that from (2) including scale errors in order to take into
consideration the two-loop uncertainty. For full QCD we
employ the data taken at the highest p for the starting
value, and for quenched QCD the one carried out at a
value of p with a nearby value of p = vr/a. We observe
that the evolution of the two coupling constants overlaps
below p, = 0.4 GeV, which is the dominant scale relevant
for the p meson that is employed for fixing the scale.
The results described above are fully consistent with

the view that matching full and quenched results means
adjusting the coupling constant at the relevant low energy
scale, and that the full QCD couplings estimated for larger
momenta should exhibit a slower decrease than the pure
gauge coupling with a rate dictated by the renormalization
group p function.
Let us note that these findings provide support for the

procedure of Refs. [3,4] for estimating the physical strong
coupling constant from va1ues measured in simulations
with an incomplete spectrum of sea quarks. Namely,

(N/)FIG. 2. Evolution of n—(p, ) for quenched and two-flavor
QCD. Bands correspond to uncertainties in the estimate of
(&f)n—(p, ). Arrows indicate the starting value taken from

(a) Fukugita et al (N& = 2, p. = 5.7) [10] and Sharpe et
al. (Nf ——0, p = 6.2) [11],and (b) Gupta et al. (Nt = 2, p =
5.6) [12] and Butler et al. (Nf = 0, P = 6.17) [13].
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αs runs differently, indeed! 



heavy quarks on the lattice

• Tetsuya left us for a visit at Fermilab in 1993-94 (?). 
His study there was about applications of  LQCD 
to pheno. 

• My Ph.D thesis was also about heavy quark 
effective theory (or called NRQCD) on the lattice.  

• A lot of  “chat” on UNIX between US and Japan 
about perturbative matching calculation. Through 
such discussions, I learned that “lattice” is indeed a 
kind of  (lovely!) QFT.



Semileptonic!

• After a bunch of  works with younger students in 
Hiroshima (I was already at KEK), Tetsuya joined 
the JLQCD collaboration for a calculation of  
B→πlν form factors.

Differential decay rate of B\!l" semileptonic decay with lattice nonrelativistic QCD
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We present a lattice QCD calculation of B→#l$ semileptonic decay form factors in the small pion recoil
momentum region. The calculation is performed on a quenched 163!48 lattice at %"5.9 with the nonrelativ-
istic QCD action including the full 1/M terms. The form factors f 1(v•k#) and f 2(v•k#) defined in the heavy
quark effective theory for which the heavy quark scaling is manifest are adopted, and we find that the 1/M
correction to the scaling is small for the B meson. The dependence of the form factors on the light quark mass
and on the recoil energy is found to be mild, and we use a global fit of the form factors at various quark masses
and recoil energies to obtain model independent results for the physical differential decay rate. We find that the
B* pole contribution dominates the form factor f#(q2) for small pion recoil energy, and obtain the differential
decay rate integrated over the kinematic region q2$18 GeV2 to be !Vub!2!(1.18%0.37%0.08
%0.31) psec&1, where the first error is statistical, the second is that from perturbative calculation, and the third
is the systematic error from the finite lattice spacing and the chiral extrapolation. We also discuss the system-
atic errors in the soft pion limit for f 0(qmax

2 ) in the present simulation.

DOI: 10.1103/PhysRevD.64.114505 PACS number!s": 12.38.Gc, 12.39.Hg, 13.20.He, 14.40.Nd

I. INTRODUCTION
The exclusive decay modes B0→#&l#$ l and B0

→&&l#$ l may provide us with the best experimental input
to determine the Cabibbo-Kobayashi-Maskawa !CKM" ma-
trix element !Vub!. At present these decays are measured by
CLEO '1,2( with an error of order 20%. A prerequisite for
the determination of !Vub! is an accurate calculation of the
form factors involved in these semileptonic decays, but the
theoretical prediction of the form factors for the entire kine-
matical range is still difficult. However, with the advent of
the B factories BaBar, BELLE, and CLEO III, we expect that
the differential decay rate will be measured precisely as a
function of the momentum transfer q2 in the near future. This
means that to determine !Vub! we do not necessarily need the
form factor for the entire kinematic region of q2, but calcu-
lations in a certain limited range of q2 will suffice in prac-
tice.
Lattice QCD provides a promising framework to compute

the form factors without resorting to specific phenomeno-
logical models. Exploratory studies have already been made
by a few groups '3–5(, but more extensive studies are clearly
needed to provide realistic predictions. In this work we at-
tempt to compute the form factors and differential decay
rates of B→#l$ for the momentum range q2$18 GeV2,
which is set by the condition that the spatial momenta of the
initial and final hadrons be much smaller than the lattice
cutoff 1/a , !k!'1/a"2 GeV/c , to avoid discretization error.
An important point in the calculation of the B meson ma-

trix elements is to reduce the systematic error arising from a
heavy quark mass M that is larger than 1/a . One approach
adopted in the literature is to calculate the matrix elements
with a relativistic action for heavy quarks around the charm
quark mass and to extrapolate them to the bottom quark
mass. Although this approach seems to work reasonably well
in the recent studies of B→#l$ form factors '6,7(, the sys-
tematic error is magnified in the extrapolation and the heavy
quark mass dependence would not be correctly predicted.
This problem can be avoided by using a variant of the heavy
quark effective theory !HQET" in which the the heavy quark
is treated nonrelativistically.
A natural implementation of the idea of the HQET on the

lattice is nonrelativistic QCD !NRQCD" '8(, which we em-
ploy in this work. With the NRQCD action the heavy quark
mass dependence of the form factors can be reliably calcu-
lated '9(, since the action is written as an expansion in terms
of inverse heavy quark mass and higher order terms can op-
tionally be included to achieve the desired accuracy. In the
B→#l$ decay near zero recoil of the pion, we find that the
heavy quark expansion converges well at the next-to-leading
order in 1/M .
An alternative implementation of the HQET is the Fermi-

lab formalism '10(, in which results from the conventional
relativistic lattice action are reinterpreted in terms of a non-
relativistic effective Hamiltonian. This formalism shares an
advantage similar to that of NRQCD, and has recently been
applied to a B→#l$ decay calculation '11(.
In the application of the HQET to the B→#l$ decay, it is

more natural to work with the form factors f 1(v•k#) and
f 2(v•k#) '12(, where v) is the heavy quark velocity and k#

)

is the four-momentum of the pion, rather than the conven-
*Previous address.
†Present address.
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and light quark masses so that the extrapolation in v•k!
toward the soft pion limit becomes more stable, which is still
beyond the scope of this paper.

G. Pole dominance

In the soft pion limit, the heavy meson effective Lagrang-
ian predicts the B* pole dominance "2.11#, that is,

lim
v•k!→0

f 2"v•k!#!g
f B*!mB*
2 f!

v•k!

v•k!"$B
. "6.15#

Since the hyperfine splitting $B%MB*#MB is much smaller
than the momentum transfer v•k! we measure, we can ap-
proximate its functional form by a constant in our data re-
gion. Our data support the constant behavior and give
g( f B*!amB*/2f!)!0.35(18), which reduces to g
!0.30(16). This agrees with the phenomenological value
extracted from D*→D! decay 0.27"6# &29', and also with
the recent lattice calculation g!0.42(4)(8) &30', which is
obtained for the static heavy quark. The agreement suggests
that the 1/M correction is small for the form factors.

H. Systematic errors

We now discuss possible sources of systematic errors and
their estimates. Since the statistical error, the discretization
error of O(a2), the perturbative error of O((s

2), and the
chiral extrapolation error are large, we consider only these
dominant sources of errors and neglect other subleading er-
rors such as O„(s

2/(aM )…, O((s
2a)QCD), O((s)QCD /M ),

and so on.
The size of the two-loop order correction is known only

by explicit computation, which is beyond the scope of this
paper. Instead, we estimate the size of the perturbative error
of O((s

2) as half of the difference of the values for q*
!!/a and 1/a . The typical sizes are 1.5% for f 1(v•k!)
" f 2(v•k!) and 3.5% for f 2(v•k!). The reason for the error
in f 2(v•k!) being larger is that the one-loop renormalization
coefficient for heavy-light vector current is larger for the
spatial component than for the temporal one and the matrix
element of the spatial component gives larger contributions
to f 2(v•k!) in the small recoil region.
The discretization errors of O(a2)QCD

2 ) and of O(a2k!
2 )

are also important. The former error is common to most lat-
tice simulations using O(a)-improved actions, and through
an order counting we estimate it to be 3% at *!5.9, assum-
ing that the typical momentum scale )QCD is around 300
MeV. The latter is specific to the present work since the error
due to nonzero recoil momenta appears only in the study of
form factors. As the pion momentum treated in our calcula-
tion is at most 2!/L (L!16) in lattice units, we estimate
this error to be about 16% using order estimation.
The error in the chiral extrapolation is another major

source of systematic error. Since we have data at only three
+ values except for the zero recoil point, it is not practical to
test different functional forms of mq for the chiral extrapola-
tion. We instead estimate the corresponding error in the form
factors by taking the square of the difference between the

result of the chiral limit and that of the lightest + . This gives
10% for f 1(v•k!)" f 2(v•k!) and 1% for f 2(v•k!).
The total error is estimated by adding these errors in

quadrature together with the statistical error. In Fig. 9 the
form factors f 1(v•k!)" f 2(v•k!) and f 2(v•k!) are plotted
with the estimated systematic uncertainties. Numerical re-
sults are listed in Table XIII.

VII. COMPARISON WITH OTHER CALCULATIONS

A. f1„v"k!… and f2„v"k!…
El-Khadra et al. calculated the form factors at the b quark

mass using a nonrelativistic interpretation of the relativistic
lattice action &11'. A comparison is made with our results for
the HQET form factors f 1(v•k!)" f 2(v•k!) and f 2(v•k!)
at the same * value employed, *!5.9, in Fig. 10. We find a
reasonable agreement for f 2(v•k!), but for f 1(v•k!)
" f 2(v•k!) our data seem substantially lower.
Since both the NRQCD and Fermilab actions are two

variants of the nonrelativistic effective action, there should
be no fundamental difference in the result. There are, how-
ever, two possible reasons for the disagreement. One is the
difference in the renormalization factor. The other is the dif-
ference in various systematic errors which arise from the
choice of parameters such as the lattice size, smearing meth-
ods, fitting procedures, and so on.
In order to see the reason for the disagreement, we plot

the form factors at a fixed momentum configuration apB
!(0,0,0) and ak!!(1,0,0) as a function of the light quark
mass in Fig. 11. While we find a good agreement for f 2(v•k!), our result for f 1(v•k!)" f 2(v•k!) is significantly
lower than the Fermilab data &11'. Furthermore, in the fit of
the form "6.12# the chiral limit of our data is lower than the
data at finite amq as shown in the plot, in contrast to the
Fermilab data, for which the chiral limit becomes even
higher due to a positive curvature.
We note that the renormalization of the vector current is

made using nonperturbative Z factors of heavy-heavy and
light-light currents in the Fermilab analysis &11'. A correction
is then made perturbatively for the heavy-light current. Since
our results are obtained with an entirely perturbative match-
ing, systematic errors may enter differently. The effect of
such a ‘‘partial’’ nonperturbative renormalization for the

FIG. 9. Same as Fig. 7, but with estimated systematic errors.
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different heavy quark masses: mQ ¼ mc; 1.56 ×mc; and
2.44 ×mc. We find that both form factors increase toward
the physical b quark mass. As represented in Eqs. (20) and
(21), we extrapolate assuming dependence of the form
1=mQ, and the results at the physical point are represented
by the solid curves. The systematic error due to the
effect of neglecting a 1=m2

Q term is estimated in the next
subsection.
The continuum extrapolation is shown in Fig. 10 for a

typical parameter choice (p2π ¼ ð2π=LaÞ2, Mπ ≃ 300 MeV
and mQ ¼ 1.56 ×mc). Since the physical volumes of the
three lattices are similar, so too are the values of the
physical momenta of the three points shown. We find that
the continuum extrapolation in a2 is also mild, even though
a potentially significant discretization effect due to the
heavy quark mass of the form ðamQÞ2 is expected. This is
partly because the renormalization factor discussed in the
previous section absorbs the bulk of the discretization
effects. The global fit forms of Eqs. (20) and (21) assume
that the discretization effect applies as an overall factor
ð1þ Ca2ðΛQCDaÞ2 þ CðamQÞ2ðamQÞ2Þ, independent of light
quark masses and energies v · pπ ¼ Eπ . This choice is
justified because the dependence on each such parameter is
small as we saw above. In principle this allows the global fit
to discriminate between the ðamQÞ2 and ðΛQCDaÞ2 effects;
in practice, both terms in our fits return coefficients
consistent with zero.
The final results for f1ðv ·pπÞþf2ðv ·pπÞ and f2ðv · pπÞ

at the physical quark masses and in the continuum limit are
shown in Fig. 11 as a function of v · pπ ¼ Eπ . The bands
represent the one standard deviation regions with only the
statistical uncertainties included. The region that our lattice
data cover is from 0.225 GeV to 0.975 GeV. The results
outside of this region are obtained from the fit functions in
Eqs. (20) and (21). In the soft pion limit, the form factor
f2ðv · pπÞ rapidly goes to zero as a result of the pole term

included in Eq. (21), and is not directly confirmed by the
lattice data.

B. Estimation of systematic errors

We now turn to the analysis of systematic uncertainties.
To make an assessment of their impact we perform addi-
tional fits with particular terms added or amended. We
attempt the following variations of the fits:
(1) The original fit using the form of Eqs. (20) and (21).
(2) Adding a 1=m2

Q term such that the heavy quark
dependence of f1ðv · pπÞ þ f2ðv · pπÞ is parame-
trized by a factor ð1þCmQ

NmQ
=mQþCm2

Q
N2

mQ
=m2

QÞ
instead of ð1þCmQ

NmQ
=mQÞ. Similarly for f2ðv·pπÞ.

(3) Adding M4
π terms such that the pion mass depend-

ence of f1ðv · pπÞ þ f2ðv · pπÞ is parametrized by a
factor ð1þ Cχ logδfB→π=ð4πfπÞ2 þ CM2

π
NM2

π
M2

π þ
CM4

π
N2

M2
π
M4

πÞ instead of ð1þCχ logδfB→π=ð4πfπÞ2 þ
CM2

π
NM2

π
M2

πÞ. Similarly for f2ðv · pπÞ.
(4) Adding the next order term inEπ , so that f1ðv · pπÞ þ

f2ðv · pπÞ is parametrized by ð1þ
P

4
n¼1 CEnNn

EE
n
πÞ

and f2ðv · pπÞ by ð1þ
P

2
n¼1DEnNn

EE
n
πÞ.

(5) Adding a4 terms such that the discretization effects of
f1ðv · pπÞ þ f2ðv · pπÞ are parametrized by a factor
ð1þCa2ðΛQCDaÞ2þCa4ðΛQCDaÞ4þCðamQÞ2ðamQÞ2Þ
instead of ð1þ Ca2ðΛQCDaÞ2 þ CðamQÞ2ðamQÞ2Þ.
Similarly for f2ðv · pπÞ.

(6) Adding ðamQÞ4 terms such that the discretization
effects of f1ðv · pπÞ þ f2ðv · pπÞ are parametrized
by a factor ð1þ Ca2ðΛQCDaÞ2 þ CðamQÞ2ðamQÞ2 þ
CðamQÞ4ðamQÞ4Þ instead of ð1þ Ca2ðΛQCDaÞ2 þ
CðamQÞ2ðamQÞ2Þ. Similarly for f2ðv · pπÞ.

(7) Allowing the fit to determine the coefficient in front
of the chiral log, i.e., letting Cχ log and Dχ log be free
fit parameters instead of fixing them to 1.

We plot the result of these alternative fits in Fig. 12 at three
representative q2 values (19.15 GeV2, 23.65 GeV2 and
26.40 GeV2) after converting to f0ðq2Þ and fþðq2Þ. The
results are very stable across the alternative fits. The inner,
lighter gray band shows our statistical uncertainty only,
which is exactly the result from fit 1. The outer, darker gray
band displays our total error, which includes systematic
effects that come from the deviation from fit 1 of each of fits
2–7 added in quadrature.
We also plot the systematic uncertainty coming from each

of the listed sources as a function of pion energy in Fig. 13 for
both form factors f0 and fþ, covering the q2 rangewherewe
have data. They are estimated using the fits as described
above, i.e., the deviation from themain fit “1” is plotted. They
can therefore be either positive or negative. The estimated
total systematic errors (red dash-dot lines), calculated from
all sources of systematic uncertainty added in quadrature, are
comparable in size to the statistical errors (blue solid lines).

FIG. 11. Results of the global fit of the data for f1ðv · pπÞ þ
f2ðv · pπÞ (upper curve) to Eq. (20) and f2ðv · pπÞ (lower curve)
to Eq. (21). The data from which these are obtained exist in the
region 0.225 GeV < Eπ < 0.975 GeV.
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New direction: chiral, topology

• Development of  “chiral” lattice fermions (domain-
wall, overlap, etc., 1998~) opened new directions. 

• Connection to χPT, simpler renormalization, 
and of  course, topology. 

• Yet, its simulation was impractical, due to the cost 
and the topology change. 

• Tetsuya (then at YITP) together with his student 
Hidenori Fukaya, started looking at the problem 
from the viewpoint of  theorist, not a lattice 
practitioner.

Topology conserving gauge action and the overlap-Dirac operator
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We apply the topology conserving gauge action proposed by Lüscher to the four-dimensional lattice
QCD simulation in the quenched approximation. With this gauge action the topological charge is
stabilized along the hybrid Monte Carlo updates compared to the standard Wilson gauge action. The
quark potential and renormalized coupling constant are in good agreement with the results obtained with
the Wilson gauge action. We also investigate the low-lying eigenvalue distribution of the Hermitian
Wilson-Dirac operator, which is relevant for the construction of the overlap-Dirac operator.
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I. INTRODUCTION

Chiral symmetry and topology are tightly related with
each other in the gauge field theory through the quantum
correction. Namely, the axial anomaly appears at the one-
loop level, and its integral over space-time leads to the
topological charge of the background gauge field. In prin-
ciple, one should be able to analyze the implication of this
relation for physical observables, such as the neutron elec-
tric dipole moment, using the lattice gauge theory, which
provides a rigorous formulation of the non-Abelian gauge
theories even in the nonperturbative regime. Such study is
very difficult with the Wilson-type Dirac operator, since
the chiral symmetry is explicitly violated on the lattice.

The overlap-Dirac operator [1,2]

D ! 1
!a
"1# !5sgn$aHW%&; !a ! a

1# s ; (1)

realizes the exact chiral symmetry at finite lattice spacing a
[3] satisfying the Ginsparg-Wilson relation [4]

!5D#D!5 ! aD!5D: (2)

It is constructed from the Wilson-Dirac operator aDW with
the Wilson parameter r ! 1; the Hermitian Wilson-Dirac
operator aHW ! !5$aDW ' 1' s% enters as an argument
of the sign function sgn$x%. The parameter s in (1) is a fixed
number in the region jsj< 1.

Since the definition (1) contains a nonsmooth function,
the locality of the Dirac operator could be lost when there
are near-zero eigenvalues of jaHW j. This is consistent with
the index theorem, because the index of the Dirac operator,
which may be considered as a definition of the topological
charge, is a nonsmooth function of the background gauge
field. When the topological charge changes the value, the
Dirac operator must become ill defined, and this is exactly
the point where aHW has a zero eigenvalue.

The locality of the overlap-Dirac operator (1) is guaran-
teed for the gauge fields on which the minimum eigenvalue

of jaHW j is bounded from below by a positive (nonzero)
constant [5]. This condition is proved to be satisfied if the
gauge field configuration is smooth and each plaquette is
close enough to one;

k1' P"#$x%k< $ for all x; $";#%: (3)

Here, P"#$x% is the plaquette variable at x on the "-#
plane, and k ( ( ( k denotes the norm of the operator. In
the four-dimensional case, the parameter $ ’ 1=20:49 is
a sufficient (but not a necessary) condition [6]. This is
called the ‘‘admissibility’’ bound.

One can construct a gauge action, which generates
gauge configurations respecting the condition (3). For in-
stance, Lüscher proposed the action [7]

SG!
!
%
P
P

1'ReTrP"#$x%=3
1'$1'ReTrP"#$x%=3%=$;

1
when 1'ReTrP"#$x%=3<$;
otherwise

;

(4)

which has the same continuum limit as the standard Wilson
gauge action does. In fact, the limit $ ! 1 corresponds to
the standard Wilson gauge action. Unfortunately, the
bound $ ’ 1=20:49 is too tight to produce gauge field
ensembles corresponding to the lattice spacing around
0.1 fm; for practical purposes, one must choose much
larger values of $. An interesting question is, then, whether
the action can keep the good properties for $ significantly
larger than 1=20:49. To be explicit, one expects that (i) the
topology change during the molecular-dynamics-type
simulation is suppressed, and (ii) the appearance of the
near-zero eigenvalue of jaHW j is suppressed, compared to
the standard Wilson gauge action. The point (i) is impor-
tant in order to efficiently generate gauge configurations
with large topological charge, which is necessary for the
study of the $-regime or the &-vacuum. With the point (ii),
the locality of the overlap-Dirac operator is improved, and
the numerical cost to apply the overlap-Dirac operator is
reduced. In the numerical application to the massive
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Suppress or even prohibit the topology change

fermion. In the following numerical analysis, we use for the gauge part SG the plaquette gauge action SPl, with and without
a modification to suppress dislocations, and the renormalization group (RG) improved (or Iwasaki) action SRG. The
plaquette action is written as

 SPl !
8<
:
!

P
x;"<#

1"Re TrP"##x$=3
1"#1"Re TrP"##x$=3$=$ ; when 1" Re TrP"##x$=3< $;

1 otherwise
; (3)

where P"##x$ is the plaquette variable at x on the "-#
plane. The denominator is introduced to suppress the local
lump of the gauge field for which 1" Re TrP"##x$=3 takes
a large value [24–26]. When 1=$ ! 0, it reduces to the
standard Wilson gauge action. For this gauge action with a
finite 1=$, 1" Re TrP"##x$=3 cannot become larger than
the parameter $. If $ is chosen smaller than 1=20:49, then
the Hermitian Wilson-Dirac operator is proved to have a
gap [5], but we take a larger number 3=2 in the numerical
simulations, because otherwise the lattice spacing becomes
too small even at the strong coupling limit. Another choice
of the gauge action is that of Iwasaki [27], which includes
the rectangular term with the parameter c1 ! "0:331. The
denominator as in (3) is not introduced for this case, but it
is known that the rectangular term has an effect to suppress
the dislocations.

The extra fermion term SE is written as
 

SE !
X
x

! #x$DW#m0$ #x$

%
X
x
%y#x$&DW#m0$ % i"&5'3'%#x$; (4)

where  denotes two flavors of extra heavy Wilson fermion
with a negative mass m0. The second term is a pseudofer-
mion term introduced in order to cancel unwanted effects
of the Wilson fermion especially in the ultraviolet region,
which leads to a large shift of the ! value to be used in the
simulation as discussed later in Sec. VII. Because of an
additional mass term %yi"&5'3%, which is twisted in the
flavor space by '3, the extra Wilson fermion works to
suppress the near-zero modes of HW#m0$ as expected. In
fact, the action SE generates the suppression factor

 det
!

HW#m0$2
HW#m0$2 %"2

"
(5)

in the partition function. The twisted mass " controls the
range of the near-zero eigenvalues suppressed by the nu-
merator. The eigenvalues whose absolute value is lower
than " are strongly suppressed, while the other higher
modes are less affected. The limit of "! 1 corresponds
to the case where the pseudofermion term is switched off.
When " ! 0, the cancellation is exact, and there is no
extra fermions and pseudofermions.

Since the action (2) includes the fermion, some dynami-
cal fermion algorithm is needed to generate the gauge field
ensembles. Application of the HMC algorithm is straight-
forward except for the additional boson term. In order to

cancel the higher modes ofHW efficiently, we use only one
pseudofermion for both fields. Namely, the Hamiltonian
for the molecular dynamics evolution contains a term
 X
x
(y#x$f&DW#m0$ % i"&5'&DW#m0$'"1&DyW#m0$'"1

( &DyW#m0$ " i"&5'g(#x$ (6)

with the pseudofermion field (. Then, the fermion force
derived from (6) largely cancels in the combination
&DW#m0$ % i"&5'&DW#m0$'"1, when the twisted mass "
is small.

In the molecular dynamics evolution with (6), an inver-
sion of the Wilson-fermion matrix DyW#m0$DW#m0$ is nec-
essary, and therefore it costs much more than the usual
gauge action. The cost is, however, not substantial com-
pared with the inversion of the overlap-Dirac operator, for
instance, needed for the dynamical overlap fermion simu-
lation. The cost for the inversion of H2

W is proportional to
the inverse of lowest-lying eigenvalue )2

min, which is lifted
by the introduction of the suppression factor (5). It means
that the cost does not increase arbitrarily, even though there
is no explicit lower limit on the lowest-lying eigenvalue.

III. HMC SIMULATIONS

We performed Monte Carlo simulations including the
extra Wilson fermions. Although the fermions are in-
cluded, they are unphysical and irrelevant in the continuum
limit. The physical sea quarks are not included.

The numerical simulations have been done on a 163 (
32 lattice with three choices of the gauge actions.

(1) SPl with 1=$ ! 0, the standard Wilson gauge action.
(2) SPl with 1=$ ! 2=3. With this choice the plaquette

variable P"##x$ can take any value in the SU(3)
gauge group except for the two points e)i2*=3I
with I the 3( 3 unit matrix. At these isolated two
points, Re TrP"##x$=3 becomes minimum. The pos-
itivity violation as argued in [28] occurs for $
smaller than 3=2.

(3) SRG, the Iwasaki gauge action.

The simulation parameters are listed in Table I. For each of
the three choices of the gauge action we take three values
of", the twisted mass of the extra pseudofermions, to be 0,
0.2, and 0.4. The large negative mass m0 is always set
to "1:6. The gauge coupling ! is chosen such that
the lattice spacing determined through the Sommer scale
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one way:

and finally:

Formed the basis of  our next project: 
dynamical overlap fermion



Overlap fermion & topology

Lattice gauge action suppressing near-zero modes ofHW
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We propose a lattice action including unphysical Wilson fermions with a negative mass m0 of the order
of the inverse lattice spacing. With this action, the exact zero mode of the Hermitian Wilson-Dirac
operator HW!m0" cannot appear and near-zero modes are strongly suppressed. By measuring the spectral
density !!"W", we find a gap near "W # 0 on the configurations generated with the standard and improved
gauge actions. This gap provides a necessary condition for the proof of the exponential locality of the
overlap-Dirac operator by Hernandez, Jansen, and Lüscher. Since the number of near-zero modes is small,
the numerical cost to calculate the matrix sign function of HW!m0" is significantly reduced, and the
simulation including dynamical overlap fermions becomes feasible. We also introduce a pair of twisted
mass pseudofermions to cancel the unwanted higher mode effects of the Wilson fermions. The gauge
coupling renormalization due to the additional fields is then minimized. The topological charge measured
through the index of the overlap-Dirac operator is conserved during continuous evolutions of gauge field
variables.
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I. INTRODUCTION

In the construction of the lattice chiral fermions, the
conventional Wilson-Dirac operator DW still plays a cru-
cial role. In the domain-wall fermion [1–3] the lattice
Dirac operator is nothing but the Wilson-Dirac operator
in four dimensions, but the fermion field has interactions
also with its fifth dimensional neighbors. The overlap-
Dirac operator [4] D contains a matrix sign function of
the Hermitian Wilson-Dirac operator HW # #5DW as

 D # 1
!a
$1% #5 sgn!aHW"&; !a ' a

1% s : (1)

An important difference from the usual Wilson fermion is
that the mass term is given with a negative value m0 #
(!1% s"=a of the order of the inverse lattice spacing 1=a.
In the limit of vanishing gauge coupling, the parameter s
must be between (1 and 1 in order to obtain the single
flavor massless fermion; the sign function is well defined
since there is a lower bound in the eigenvalue spectrum of
jHW j. In the presence of the gauge interaction, HW could
develop zero or near-zero eigenvalues, which makes the
the matrix sign function singular. The near-zero mode does
not exist for sufficiently smooth background gauge fields
fU$!x"g satisfying a condition jj1( P$%!x"jj< & for all
plaquette variables P$%!x" with & a small number less than
)1=20:49 [5]. In the actual numerical simulations, how-
ever, jj1( P$%!x"jj is larger by an order of magnitude, and
the near-zero modes appear quite frequently.

The origin of the near-zero modes is understood as a
local lump of the background gauge field (or so-called the

dislocation). An analytic example of such a gauge configu-
ration and its associated exact zero mode is given in [6].
Because such a zero mode is localized in space-time, the
number of the near-zero modes increases as the lattice
volume V is increased. In other words, the spectral density
!!"W" of HW is nonzero at "W # 0, which is true at any
finite value of gauge coupling [7]. The localization prop-
erty of the near-zero modes has recently been studied
extensively [8–10], and it is found that they are exponen-
tially localized unless one enters the Aoki phase, where the
flavor-parity symmetry is spontaneously broken [11].
Since the radius of the exponential falloff is of the order
of lattice spacing a, the effect of the near-zero modes
disappears in the continuum limit, and therefore is a lattice
artifact.

The effect of the near-zero modes appears as a small
residual breaking of chiral symmetry in the domain-wall
formulation [12]. Namely, the four-dimensional fermion
mode receives additive mass renormalization mres when
the lattice extent in the fifth dimension L5 is finite [13,14].
The problem is not just that mres is finite, but the suppres-
sion is only by 1=L5 rather than by exp!(cL5" as expected
for the extended nonzero modes [10,15]. For the overlap
fermion, the residual mass can be made arbitrarily small by
projecting out the near-zero mode and treating them ex-
actly when one calculates the matrix sign function. The
problem however manifests itself in the locality of the
overlap-Dirac operator. The locality is proved only when
there exists a gap in the spectral density of HW near zero
[16]. Therefore, the existence of the near-zero mode per-
sisting in the infinite volume limit could potentially spoil
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Exact chiral symmetry realized by 

• It has a discontinuity, which poses a 
problem of  locality. 

• It occurs on the background gauge field 
for which the topological charge Q is not 
well-defined. Chiral symmetry is related to 
topology as index theorem dictates. 

• Can be avoided when Q doesn’t change. 
Any problem?

— “No,” it’s merely a finite volume effect.

Finite volume QCD at fixed topological charge
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In finite volume the partition function of QCD with a given ! is a sum of different topological sectors
with a weight primarily determined by the topological susceptibility. If a physical observable is evaluated
only in a fixed topological sector, the result deviates from the true expectation value by an amount
proportional to the inverse space-time volume 1=V. Using the saddle point expansion, we derive formulas
to express the correction due to the fixed topological charge in terms of a 1=V expansion. Applying this
formula, we propose a class of methods to determine the topological susceptibility in QCD from various
correlation functions calculated in a fixed topological sector.
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I. INTRODUCTION

Quantum chromodynamics (QCD) in four space-time
dimensions allows topologically nontrivial gauge configu-
rations labeled by a winding number or a topological
charge Q. The path integral to define the partition function
of QCD includes an integral over configurations with
arbitrary Q. In order to ensure the cluster decomposition
property of physical observables, the weight among differ-
ent topological sectors must be ei!Q, which defines the !
vacuum of QCD. If one considers a path integral restricted
in a fixed topological sector, the cluster decomposition
property—one of the necessary properties of quantum
field theory—is violated [1]. In this paper we address the
question of fixing topology in the context of nonperturba-
tive calculation of QCD on the lattice. But the analysis
does not depend on any particular regularization of the
theory.

In the lattice QCD simulations the inclusion of the
effects of dynamical quarks is computationally most de-
manding. Since the direct computation of the fermion
determinant det!D"m#2, with D the Dirac operator on
the lattice and m the quark mass, requires prohibitive
computational cost, one usually introduces a pseudofer-
mion field " to write the determinant in the form

R$d"%&
$d"y% exp!'"y!D"m#'2"#, so that the problem is re-
duced to an evaluation of the inverse fermion matrix !D"
m#'1. Since the effective lattice action becomes nonlocal,
the Monte Carlo updation is most efficiently done by
updating all the gauge links on the lattice at the same
time introducing a molecular dynamics evolution. The
most popular such algorithm to date is the hybrid
Monte Carlo algorithm [2] that combines the molecular
dynamics evolution with a Metropolis accept/reject step.

With the molecular dynamics evolution, the ergodicity
becomes a potential problem when there exist more than

one region of phase space that are separated by some
potential wall, because the ‘‘kinetic energy’’ of the mo-
lecular dynamics system may not be enough to go through
the potential wall. This situation happens for QCD in four
dimensions because of the nontrivial topological sectors. In
the continuum theory the potential barrier is infinite and
the gauge configurations in different topological sectors
cannot be reached by a single stream of the continuous
evolution. On the lattice, the potential barrier is finite
(order of inverse lattice spacing 1=a) and the probability
of tunneling among different topological sectors is non-
zero, but will exponentially drop (( e'U0=a with U0=a a
nominal potential height) as the continuum limit is ap-
proached. This means that the correct sampling of topo-
logical charge and thus the valid simulation of the !
vacuum of QCD will become increasingly more difficult
[3,4]. In fact, this problem already manifests itself in the
recent dynamical overlap fermion simulations by the
JLQCD Collaboration [5–8], since they explicitly intro-
duce a term that prevents topology change [9] in order to
avoid large numerical cost due to the discontinuity of the
overlap operator along the topology boundary.

One may then ask whether lattice QCD simulations with
a fixed topological charge are useful, in general, to extract
physics of real world, i.e. QCD at a given value of !. (If the
CP symmetry is preserved, ! ) 0. Small but nonzero !
implies an interesting physics case to give rise to the
neutron electric dipole moment.) The fixed topology simu-
lation is desirable in the study of the # regime of QCD,
since the physical quantities have striking dependence on
the topological charge, which is an important part of the
physics we are interested in. (For a recent unquenched
lattice simulation in the # regime, see [10,11].) But in the
p regime, the fixed topology simulation gives rise to a
systematic effect. In this paper we try to answer this ques-
tion theoretically without relying on any particular model
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 hhs2ii ! 1" E#4$V
2#E#2$V$2

% 5#E#3$V$2
4#E#2$V$3

%O#V"2$; (22)

 hhs4ii ! 3!!%O#V"1$; (23)

 hhsii ! " E#3$V
2#E#2$V$3=2

!
1" 4E#4$V

3#E#2$V$2
% 5#E#3$V$2

4#E#2$V$3
"
" E#5$V

8#E#2$V$5=2
%O#V"5=2$; (24)

 hhs3ii ! " 5E#3$V
2#E#2$V$3=2

%O#V"3=2$; (25)

we finally obtain
 

GQ ! G#!c$ %G#2$#!c$
1

2E#2$V

!
1" E#4$V

2#E#2$V$2
% 5#E#3$V$2

4#E#2$V$3
"
%G#4$#!c$

1

8#E#2$V$2

"G#1$#!c$
#

E#3$V
2#E#2$V$2

!
1" 4E#4$V

3#E#2$V$2
% 5#E#3$V$2

4#E#2$V$3
"
% E#5$V

8#E#2$V$3
$
"G#3$#!c$

5E#3$V
12#E#2$V$3

%O#V"3$: (26)

The above expansion is valid for any !c as long as G#n$#!c$=G#!c$ ! O#1$ as V ! 1.
Depending on the size of !c, we can further expand the above formula. If we take !c ! O#V"1$ [equivalently, Q !

O#1$], we have

 

GQ ! G#0$ %G#1$#0$!c %G#2$#0$
!2
c

2
%G#2$#0$ 1

2E#2$V

!
1" E#4$V

2#E#2$V$2
"
%G#3$ !c

2E#2$V
%G#4$#0$ 1

8#E#2$V$2

"G#1$#0$
#

E#3$V
2#E#2$V$2

!
1" 4E#4$V

3#E#2$V$2
"
% E#5$V

8#E#2$V$3
$
"G#2$#0$!c

E#3$V
2#E#2$V$2

%O#V"3$

! G#0$ %G#2$#0$ 1

2"tV

#
1" Q2

"tV
" c4

2"2
t V

$
%G#4$#0$ 1

8"2
t V2 %G#1$#0$

iQ
"tV

!
1" c4

2"2
t V

"
%G#3$#0$ iQ

2"2
t V2 %O#V"3$:

(27)

If G is CP even, G is an even function of !, so that

 Geven
Q ! G#0$ %G#2$#0$ 1

2"tV

#
1" Q2

"tV
" c4

2"2
t V

$

%G#4$#0$ 1

8"2
t V2 %O#V"3$; (28)

while, if G is CP odd, we have

 Godd
Q ! G#1$#0$ iQ

"tV

!
1" c4

2"2
t V

"
%G#3$#0$ iQ

2"2
t V2

%O#V"3$: (29)

In order to claim that the above expansion is convergent,
G#n$#0$=G#!$ must be O#1$. This condition is satisfied
because the expansion

 G#!$ ! G#0$ %
X1

n!1

G#n$#0$ !
n

n!
(30)

is valid for 8! ! O#1$.

The formula (28) provides an estimate of the finite size
effect due to the fixed topological charge. The leading
correction is of orderO#1=V$ as advertised. The dimension
is compensated by the topological susceptibility "t. In
ChPT it is evaluated as "t ! m!=Nf by the sea quark
mass m and the chiral condensate ! as well as the number
of flavors Nf [19]. The finite volume correction is sup-
pressed when the quark mass is larger than 1=#!V$, while
it becomes significant when m& 1=#!V$. This is consis-
tent with the fact that the topological charge has a strong
effect in the # regime, which is characterized bym!V & 1.
The correction has a coefficient G#2$#0$ that represents the
! dependence of the correlator. This is not known, in
general, but can be fitted with lattice data at various Q.
In the mass region where ChPT is applicable, it can also be
estimated, as done in [12] at the tree level for pseudoscalar
meson mass. One-loop calculations are in progress.

The other interesting formula (29) suggests a possibility
to calculate CP-odd observables, such as the neutron elec-
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A lot of applications
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FIG. 1: A schematic diagram for the time-correlation function of the flavor singlet operator P 0(x).

Each solid line denotes the valence quark propagator.

In order to preserve the exact chiral symmetry, which is essential for the definition of the

topological charge, we employ the overlap-Dirac operator [12, 13]

D(mq) =
(

m0 +
mq

2

)

+
(

m0 −
mq

2

)

γ5sgn [HW (−m0)] (4)

with mass mq. The kernel operator HW (−m0) is the conventional Wilson-Dirac operator

with a large negative mass term −m0.

In place of the topological charge density ρ(x) (and ρ(0)) in (2), we use mqP 0(x) (and

mqP 0(0)), that were shown to give the same asymptotic constant as (2) [6] (the origi-

nal suggestion is in [11]), where P 0(x) is the flavor singlet pseudo-scalar density P 0(x) ≡

1
Nf

∑Nf

f=1 ψ̄
f(x)γ5[1−aD(0)/(2m0)]ψf(x). The correlator Cη′(t) ≡

∑

"x 〈P
0(x)P 0(0)〉 contains

a connected and a disconnected diagram as shown in Fig. 1. If we pick the disconnected piece

and identify a “topological charge density”, it can be written as ρ1(x) = mqtr[γ5(Dc+mq)−1
x,x],

where Dc is a chirally-symmetric (γ5Dc +Dcγ5 = 0) nonlocal operator, relating to D(0) by

Dc = [1−aD(0)/(2m0)]−1D(0) [14]. Integrated over the entire lattice volume, ρ1(x) reduces

to the number of fermionic zero-modes, and thus has the necessary property for the topolog-

ical charge density. This implies that the correlator 〈ρ1(x)ρ1(0)〉 has the same asymptotic

constant as (2). However, the correlator 〈mqP 0(x)mqP 0(0)〉 approaches the constant with

the rate governed by the η′ mass, e−mη′ |x|, which is much faster than e−mπ |x| appearing in

〈ρ1(x)ρ1(0)〉.

Simulations are carried out for two-flavor (Nf = 2) QCD on a 163×32 lattice at a lattice

spacing ∼ 0.12 fm. For the gluon part, the Iwasaki action is used at β = 2.30 together with

unphysical Wilson fermions and associated twisted-mass ghosts [15]. The unphysical degrees

5

t
5 10 15 20 25

C
(t)

-0.002

0.000

0.002

0.004
disconnected  
connected
η' 
A + cosh  
A

FIG. 2: Time-correlation function of the flavor singlet η′ (circles) and its connected (triangle

down) and disconnected (triangle up) contributions. Data at mq = 0.025 are shown.

jugate gradient algorithm with a low-mode preconditioning. Low-modes are also used for

averaging over source points [21], which significantly improves the statistical signal. For the

disconnected diagram, the quark propagator is represented by the eigenmode decomposi-

tion and approximated by the 50 conjugate pairs of the low-lying eigenmodes. The quark

propagator is then obtained for any source point without extra computational cost, and the

disconnected loops can be calculated with an average over the source point. The trunca-

tion is motivated by the expectation that the long distance correlation is dominated by the

low-lying fermion modes; its validity has to be checked numerically (see below).

In Fig. 2, we plot Cη′(t) together with those of connected and disconnected parts for

mq = 0.025. The curve is the fit to the function A + B(e−Mt + e−M(T−t)) with data for

Cη′(t) in the range t ∈ [4, 28]. The horizontal line is the fitted constant A, and the curvature

of the data points represents the contamination by the flavor-singlet state η′, that rapidly

decays due to its heavy mass. Assuming |c4| " 2χ2
tΩ, we obtain a4χt = 3.40(27) × 10−5

at mq = 0.025. The error is estimated using the jackknife method with bin size of 20

configurations, with which the statistical error saturates.

Since the disconnected diagram is computed with only 50 pairs of low-lying eigenmodes,

we have to check whether they suffice to saturate Cη′(t). For the time range [4, 28] used for

fitting, as the number of eigenmodes is increased from 10 to 30, the change of correlator

|δCη′ |/Cη′ is ∼ 3%, while from 30 to 50, it is only ∼ 0.3%, which is less than 8% of the

statistical error. Thus Cη′ is well saturated with 50 eigenmodes. This also holds for all six
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FIG. 1: Spectral density πρQ(λ) (left) and mode number NQ(λ) (right) of the Dirac operator at mud = 0.015, ms = 0.080, and
Q = 0. The lattice result (given by histogram (left) or solid symbols (right)) is compared with the ChPT formula (1) drawn
by solid curves. For comparison, the prediction at the leading order of ε expansion (dashed curves) is also shown.
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this framework depend on the strange quark mass. The
curves in Figs. 1 and 2 are drawn using the Nf = 2 + 1
formula, but the difference from Nf = 2 is hardly visible
in the range λ < 0.03. The numerical results of Σeff

and F are, in fact, insensitive to the choice of Nf in the
formula, except for F in the heavy mass region. We also
note that there is no significant difference of Σeff between
ms = 0.080 and 0.100, which confirms decoupling of the
strange quark from the low-energy dynamics.
From the data in the non-trivial topological sector

Q = 1,we observe that the topological charge Q largely
affects the spectral density near λ ! 0, but the values
of Σeff and F are consistent with those at Q = 0, as
listed in Table I. The data at L = 24 also show the ex-
pected scaling behavior from (1). Since the definition of
Σeff (4) explicitly contains the lattice volume, the results
from different volumes cannot be compared directly. Af-
ter converting the L = 24 lattice result Σeff = 0.00306(7)
to that of L = 16, we obtain 0.00341(18), which is con-
sistent with 0.00333(18) obtained on the L = 16 lattice.
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FIG. 3: Three parameter fit of Σeff to the Nf = 2+1 ChPT.

renormalization +1.2
−1.1 %

chiral fit +2.2
−0.7 %

finite volume +1.4
−0.0 %

finite a ±7.4 %
total +7.9

−7.5 %

TABLE II: Systematic errors for [Σphys(2 GeV)]1/3. The total
error is obtained by adding each estimate by quadrature.

Next, we analyze the sea quark mass dependence of
Σeff from which Σ, F and L6 can be determined. To see
the convergence of the chiral expansion, we carry out fits
using four, five and six lightest data points as a function
of mud with ms fixed at 0.080. The data points and fit
curves of the Nf = 2 + 1 formula are shown in Fig. 3.
The curvature due to the chiral logarithm in (4) is man-
ifest.The fit result for Σphys, which is Σeff in the limit of
V = ∞ and mud = 0 while keeping ms fixed at 0.08, is
stable under change of the fitting range. Since we observe
no sizablems dependence (see Table I), Σphys can be con-
sidered as the one at the physical strange quark mass.
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curves in Figs. 1 and 2 are drawn using the Nf = 2 + 1
formula, but the difference from Nf = 2 is hardly visible
in the range λ < 0.03. The numerical results of Σeff

and F are, in fact, insensitive to the choice of Nf in the
formula, except for F in the heavy mass region. We also
note that there is no significant difference of Σeff between
ms = 0.080 and 0.100, which confirms decoupling of the
strange quark from the low-energy dynamics.
From the data in the non-trivial topological sector

Q = 1,we observe that the topological charge Q largely
affects the spectral density near λ ! 0, but the values
of Σeff and F are consistent with those at Q = 0, as
listed in Table I. The data at L = 24 also show the ex-
pected scaling behavior from (1). Since the definition of
Σeff (4) explicitly contains the lattice volume, the results
from different volumes cannot be compared directly. Af-
ter converting the L = 24 lattice result Σeff = 0.00306(7)
to that of L = 16, we obtain 0.00341(18), which is con-
sistent with 0.00333(18) obtained on the L = 16 lattice.
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Next, we analyze the sea quark mass dependence of
Σeff from which Σ, F and L6 can be determined. To see
the convergence of the chiral expansion, we carry out fits
using four, five and six lightest data points as a function
of mud with ms fixed at 0.080. The data points and fit
curves of the Nf = 2 + 1 formula are shown in Fig. 3.
The curvature due to the chiral logarithm in (4) is man-
ifest.The fit result for Σphys, which is Σeff in the limit of
V = ∞ and mud = 0 while keeping ms fixed at 0.08, is
stable under change of the fitting range. Since we observe
no sizablems dependence (see Table I), Σphys can be con-
sidered as the one at the physical strange quark mass.
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Nucleon!

• No additive renormalization with overlap 
fermion. It enabled another direction of  
studies: sigma terms, the strange quark 
content, in particular. 

• Tetsuya, together with his student Hiroshi 
Ohki, initiated a computation.  

• Followed by other groups, then. Many of  
them were problematic, though.

I. INTRODUCTION

A piece of information on the nucleon structure can be extracted from its quark mass

dependence. Nucleon sigma term σπN characterizes the effect of finite quark mass on the

nucleon mass. Up to non-analytic and higher order terms, the nucleon mass is written as

MN = M0 + σπN , where M0 is the nucleon mass in the chiral limit. The exact definition of

σπN is given by the form of a scalar form factor of the nucleon at zero recoil as

σπN = mud

(

〈N |ūu+ d̄d|N〉 − V 〈0|ūu+ d̄d|0〉
)

(1)

where mud denotes degenerate up and down quark mass. The second term in the parenthe-

sis represents a subtraction of the vacuum contribution, and V is the (three-dimensional)

physical volume 1. For the sake of simplicity we represent the vacuum subtracted matrix

element 〈N |q̄q|N〉 − V 〈0|q̄q|0〉 by 〈N |q̄q|N〉 in what follows. (q represents a quark field: up

(u), down (d), or strange (s).) Note that the sigma term is renormalization group invariant,

since the renormalization factor cancels between the quark mass mq and the scalar operator

q̄q.

While the up and down quarks contribute to σπN both as valence and sea quarks, the

strange quark appears only as a sea quark contribution. As a measure of the strange quark

content of the nucleon, the y parameter

y ≡
2〈N |s̄s|N〉

〈N |ūu+ d̄d|N〉
, (2)

is commonly introduced. Besides characterizing the purely sea quark content of the nucleon,

which implies a clear distinction from the quark model picture of hadrons, this parameter

plays an important role to determine the detection rate of possible neutralino dark matter

in the supersymmetric extension of the Standard Model [1, 2, 3, 4, 5, 6, 7]. Already with the

present direct dark matter search experiments one may probe a part of the MSSM model

parameter space, and new experiments such as XMASS and SuperCDM will be able to

improve the sensitivity by 2–3 orders of magnitude. Therefore, a precise calculation of the

y parameter (or equivalently another parameter fTs ≡ ms〈N |s̄s|N〉/MN) will be important

for excluding or proving the neutralino dark matter scenario.

1 The nucleon state |N(p)〉 is normalized as 〈N(p)|N(p′)〉 = (2π)3δ(3)(p−p′). In (1) we omit the momentum

argument for the nucleon, since we do not consider finite momentum insertion in this paper.
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Figure 4: Strange-quark sigma term results based on lattice QCD. Colours as in Figure 3. Fukugita et
al. [37], Dong et al. [38], Lewis et al. [55], SESAM [39], JLQCD (2008) [45], JLQCD 2010 [56], QCDSF
[46], Young & Thomas [48], Toussaint & Freeman [57], Martin-Camalich et al. [50], Dürr et al. [51],
QCDSF-UKQCD [52], Freeman & Toussaint [58], Shanahan et al. [53], JLQCD (2012) [59], Ren et al. [54],
Engelhardt [60].

lighted in Figure 6, which shows how the predicted cross section for a particular constrained min-
imal supersymmetric standard model (CMSSM) model2 depends strongly on SpN (with ss con-
strained by the phenomenological s0) [65]. In contrast, the displayed ellipse shows the range of
predicted cross sections within the 95% confidence level interval of the lattice QCD determinations
of sl and ss from Refs. [48, 57]. It should be stressed that the reduced variation in the cross section
is a consequence of the increased precision in ss from lattice QCD input — which is not reliant on
the propogation of the phenomenological uncertainty in s0.

Generic dark matter cross section packages, such as micrOMEGAs [68], have been designed
to take as inputs sl and s0. With the improvement in lattice QCD results discussed above, it would
be advantageous to see these packages reformulated to take sl and ss as inputs3. In the meantime,
with cross section predictions based on s0 as an input, the reduction in uncertainty in ss may
be equivalently stated as a reduction in sl �s0, cf. Eq. (2.6). A crude, yet conservative view of

2The figure displays the predicted cross-section for “model C”, as one of a class of benchmark models proposed
pre-LHC [66, 67].

3Of course these are precisely the same thing with an appropriately included correlation coefficient.
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FIG. 17: The disconnected diagram contributing to the renormalization of flavor-singlet scalar

operator (cross). At higher orders, the quark loop and the quark line on the bottom may be

connected by an arbitrary number of gluon propagators. Since the quark-quark-gluon vertex con-

serves chirality, the chirality of the quark propagating in the loop does not change, as far as the

regularization respects chiral symmetry.

VI. COMPARISON WITH PREVIOUS LATTICE CALCULATIONS

In this section, we emphasize an important role played by the exact chiral symmetry in

the calculation of the strange quark content. Then we compare our result with the previous

calculations.

A. Renormalization issue of the operator s̄s

First, let us consider the renormalization of the s̄s operator in the flavor SU(3) symmetric

limit for simplicity. Using the flavor triplet quark field ψ, the s̄s operator can be written in

terms of flavor-singlet and octet operators as

(s̄s)phys =
1

3

{

(ψ̄ψ)phys −
√
3 (ψ̄λ8ψ)phys

}

, (26)

where λ8 is a Gell-Mann matrix. Note that, in this section, we put the superscript “phys”

on the renormalized quantities defined in the continuum theory to distinguish them from

bare operators, which is in our case defined on the lattice.

In general, the singlet and octet operators may be renormalized differently

(ψ̄ψ)phys = Z0 (ψ̄ψ), (27)

(ψ̄λ8ψ)phys = Z8 (ψ̄λ
8ψ), (28)

24



Strong coupling constant

• Mostly done (at the time) through the QCD 
potential (or the Wilson-loop), but one can use any 
perturbative quantities, say the Adler function. 

• Discussion started at Tetsuya’s office.

conservation is recovered in the continuum limit, this term can be expanded in terms of

small aQµ as

∆J
µν(Q) =

∑

m,n=1

(

δµν
∑

ρ

Q̂2m
ρ − Q̂2(m−1)

µ Q̂µQ̂ν

)

Q2n
ν Fmn(Q̂). (13)

where Fmn denotes the scalar function depends on the index m,n and momentum Q. It

satisfies the condition
∑

µ Q̂µ∆J
µν(Q) = 0 coming from the WT identity for Ja,cv

µ . In this

work, we confirmed that this term is numerically negligible in the range (aQ)2 < 1, and

ignore its contribution as we discuss later.

III. FIT WITH THE PERTURBATIVE FORMULA

Defining ΠJ(Q) = Π(0)
J (Q) + Π(1)

J (Q), the Operator Product Expansion (OPE) of VPF,

ΠV+A(Q) = ΠV (Q) + ΠA(Q), is given by

ΠV+A|OPE(Q
2,αs) = c+ C0(Q

2, µ2,αs)

+ CV+A
m (Q2, µ2,αs)

m̄2(Q)

Q2

+
∑

q=u,d,s

CV+A
q̄q (Q2,αs)

〈mq q̄q〉

Q4

+ CGG(Q
2,αs)

〈(αs/π)GG〉

Q4
+O(Q−6) (14)

for large Q2. The perturbative expansion of the coefficients C(V+A)
X (X = 0, q̄q and GG) is

known up to two- to four-loop order in the continuum renormalization scheme, i.e. the MS

scheme, depending on the terms.

The first term c in (14) is a scheme-dependent constant, divergent in the limit of infinite

ultraviolet cutoff. For the Adler function D(Q2) = −Q2dΠ(Q2)/dQ2, which is a physical

observable, the first term disappears and the contributions from other terms remain finite.

The coefficients in the second and third terms are perturbatively calculated to four-loop

order in the MS scheme [16–18]; the expression explicitly contains α(3)
s (Q) defined in the MS

scheme. (The superscript (3) stands for the number of flavors.) The third term contains

the running mass m̄(Q) whose anomalous dimension is known to three-loop order [19, 20].

The fourth and fifth terms represent higher order effects in OPE containing dimension-four

operators. Their Wilson coefficients are calculated at three-loop order [20].
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FIG. 1: (aQ)2 dependence of VPF, ΠV+A(Q), at all valence quark masses: mq = 0.015 (circle),

0.025 (square), 0.035 (diamond), and 0.050 (triangle). Top half is a result at ms = 0.08 while the

bottom is at ms = 0.10. Solid curves show a fit function at each quark masses. Filled symbols are

the points for which each momentum component is equal to or smaller than 2π/16 in the lattice

unit.
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Shintani et al. (2010) Not competitive in precision…



I learned a lot of  things from our decades-long collaborations. 

• LGT, LQCD in particular, is not just a toy to play on computers. In 
fact, it includes everything. 

• Chiral symmetry is central to χSB, index theorem, topological 
susceptibility… It works on the lattice! All new. 

• Perturbative at short distances, even on the lattice, of  course!
→ excited states, and inclusive processes 

our (more recent) works



Short distances
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FIG. 6. Same as Figure 5 but calculated on ensembles with different lattice cutoffs. Pion masses

are Mπ ! 300 MeV.
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FIG. 7. Lattice result for RV+A after the chiral and continuum extrapolations. Data in each bin

are extrapolated assuming (18). The bin size is larger in the short-distance region |x| ! 0.4 fm

(blue crosses) than others (red squares) as there are fewer lattice points.
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Current correlator

Tomii et al. (2017)
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FIG. 5. Exponent of the Dirac spectral density F (λ) with the Pauli-Villars mass amPV = 1 (top),

mPV = 3 (middle), and amPV → ∞ (bottom). The renormalization scale λ(µ) is set to µ = 6 GeV.

The lattice data at β = 4.17 (crosses), 4.35 (triangle) and 4.47 (dots) are shown. Grayed data

points are those with aλ > 0.5. Lines represent results from the perturbative expansion.
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Dirac spectrum

Nakayama et al. (2018)FIG. 14. Comparison of ⇧̃(M2) in the continuum limit with the experimental values of the �

meson contribution.

VI. CONCLUSION AND OUTLOOK

The Borel transform has often been used in the QCD sum rule analyses in order to

improve the convergence of OPE and to enhance the contribution of the ground state, which

is of the main interest. A crucial question is then whether the theoretical uncertainty in the

perturbative expansion and OPE is well under control. The uncertainty due to the modeling

of the excited state and continuum contributions is another important issue in the QCD sum

rule. In this work, we provide a method to compute the Borel transform utilizing the lattice

QCD data for current correlators. Since the computation is fully nonperturbative in the

entire range of the Borel mass M , one can use the result to verify the theoretical methods

so far used in the QCD sum rule.

We find a good agreement between the lattice data and OPE in the region of M >

1.0 GeV. The OPE is truncated at the order 1/M6. Since the OPE involves unknown

condensates, this comparison can be used to determine these parameters, provided that the

lattice data are su�ciently precise. As the first example, we attempt to extract the gluon

condensate, which appears in OPE at the order 1/M4. The size of the error is comparable

to those of previous phenomenological estimates. With more precise lattice data in various

channels, one would be able to determine the condensates of higher dimensions, which have
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Borel transformation

Ishikawa et al. (2021)



Smeared spectrum

Correlation function:

Spectral function:

Smearing:

approx: by ?
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narrow wide
Bailas, SH, Ishikawa, PTEP 2020, 4, 043B07 (2000); arXiv:2001.11779

when the smearing kernel is …



Inclusive processes

Differen'al decay rate:

Structure func'on (or hadronic tensor):

Total decay rate:

kinema'cal (phase-space) factor

Gambino, SH (2020)



Compton amplitude obtained on the la?ce:

tsrc t1 t2 tsnk

J†
µ J⌫

BB

Fig. 4 Valence quark propagators and their truncations. The thin line connecting the

source tsrc and sink tsnk time slices represents the spectator strange quark propagator. A

smearing is introduced for the initial B meson interpolating operator at tsrc and tsnk. The

solid thick lines are the initial b and dashed line denotes the final c quark. The currents J†
µ

and J⌫ are inserted at t1 and t2, respectively.

see [24–26] for instance.) So far, in the literature, the moments of hadron energy and invari-

ant mass as well as the lepton energy have been considered; our proposal is to analyze the

inverse moments (12) and (13) at su�ciently small !, instead, to extract |Vcb| or |Vub|. To
actually extract the moments from the experimental data is beyond the scope of this work.

The structure functions Ti have been calculated within the heavy quark expansion

approach. At the tree-level, the explicit form is given in the appendix of [23]. One-loop

or even two-loop calculations have also been carried out [27–29], but they only concern the

di↵erential decay rates (or the imaginary part of the structure functions), and one needs to

perform the contour integral to relate them to the unphysical kinematical region.

4 Lattice calculation strategy

In this section, we describe the method to extract Ti’s from a four-point function calcu-

lated on the lattice. Although we take the B ! D(⇤)`⌫ channel to be specific, the extension

to other related channels is straightforward.

We consider the four-point function of the form

CSJJS
µ⌫ (tsnk, t1, t2, tsrc) =

X

x

D
PS(x, tsnk)J̃

†
µ(q, t1)J̃⌫(q, t2)P

S†(0, tsrc)
E
, (14)

where PS is a smeared pseudo-scalar density operator to create/annihilate the initial B

meson at rest. The inserted currents J̃µ are either vector or axial-vector b ! c current

and assumed to carry the spatial momentum projection
P

x1
eiq·x1J(x1, t1). Thus, the mass

dimension of J̃µ is zero. The quark-line diagram representing (14) is shown in Figure 4.
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K(Ĥ) = k0 + k1e−Ĥ + k2e−2Ĥ + ⋯ + kNe−kNĤ
Approx :

=

Energy integral to be evaluated:

smeared spectrum!
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band from OPE



More challenges ahead

• QCD seems to be the theory at all distances: short and long. But, 
harder to treat in the middle. Can we go without the factorization, 
which is the basis of  PDF, say? 

• Related: Can we approach the light-cone from Euclidean lattice? 

• (smeared) Spectral function: more uses, including hadronic B decays.

We need Tetsuya’s insight on QFT, one more time!  


