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Happy “Kann-reki”(full circle) birthday
Onogi-san and me

Akio Tomiya

When I entered to master course in Osaka university in 2010 (12 years ago!),  
Tetsuya was the second year as a professor in Osaka university 

(My supervisor Fukaya-san also joined HEP group as an assistant prof. in 2010)


We had a lot of study groups: String theory, lattice field theory, RG

http://kabuto.phys.sci.osaka-u.ac.jp/HETphoto/HETCamp2010.html

還暦おめでとうございます!
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Onogi-san and me

Akio Tomiya

Onogi-san = Supervisor’s Supervisor’s of me = Great master (大師匠)!

And a mentor of me (he always encouraged me).


He taught me quantum field theory (perturbation theory/SM/RG/GWW trs),  
lattice field theory, algorithms, how to read a code, general relativity, etc

In particular, my master thesis about many flavor QCD.


Thank you and congratulations Onogi-san!

Happy “Kann-reki”(full circle) birthday

2015

http://www-het.phys.sci.osaka-u.ac.jp/photo2015/Tea%20party/tea%20party.html

おおししょう



1.What and why QCD/lattice QCD?


2. Lattice QCD + Machine learning


1.“Neural net = Smearing”


3. Lattice QCD + Quantum algorithm 


1.Finite temp/dens for QFT

Outline

4

dU(t)
μ (n)
dt

= 𝒢θ̄(U(t)
μ (n))

Two exotic topics
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Introduction
QCD: a fundamental theory of particles inside of nuclei

Akio Tomiya

QCD (Quantum Chromo-dynamics) in 3 + 1 dimension

Fμν = ∂μAν − ∂νAμ − ig[Aμ, Aν]

S = ∫ d4x[ −
1
2

tr FμνFμν + ψ̄(i∂/ + gA/ − m)ψ]

|ψ(t)⟩ = e−iHt |ψ(0)⟩

• QCD enables us to calculate (in principle):

• Equation of state of neutron star, Tc 

• Scattering of quarks and gluons, Parton 

distributions

• Hadron spectrum!


• Strongly coupled quantum system

• Use lattice QCD + Monte-Carlo

Quantization: [Aμ, Eν] = iℏδμν



=
1
Z ∫ 𝒟Ue−Seff[U]𝒪(U)

6

Lattice path integral > 1000 dim, Trapezoidal int is impossible

Akio Tomiya

= ∏
n∈{ℤ/L}4

4

∏
μ=1

dUμ(n) >1000 dim. We cannot use Newton–Cotes 

type integral like Trapezoid, Simpson etc.

We cannot control numerical error

⟨𝒪⟩ =
1
Z ∫ 𝒟U𝒟ψ̄𝒟ψe−S𝒪(U)

S[U, ψ, ψ̄] = a4 ∑
n

[−
1
g2

Re tr Uμν + ψ̄(D/ + m)ψ]
Re Uμν ∼

−1
2

g2a4F2
μν + O(a6)

=
1
Z ∫ 𝒟Ue−Sgauge[U] det(D + m)𝒪(U)

S = ∫ d4x[ +
1
2

tr FμνFμν + ψ̄(∂/ − igA/ + m)ψ]

Introduction

Uμ = eaigAμ

Both S give same expectation value for long range

Lattice regularization cutoff = a−1

K. Wilson 1974

Imaginary time
t = − iτ

Path integral formalism
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Monte-Carlo integration is available

Akio Tomiya

サンプ サンプ サンプ→ → → …

U1 U2 U3

Monte-Carlo: Generate field configurations with  “ ”. It gives expectation valueP[U] =
1
Z

e−Seff[U]

⟨𝒪⟩ =
1
Z ∫ 𝒟Ue−Seff[U]𝒪(U) Seff[U] = Sgauge[U] − log det(D/ [U] + m)

Introduction

S(x, y) =
1
2

(x2 + y2 + xy)

HMC: Hybrid (Hamiltonian) Monte-Carlo

De-facto standard algorithm

M. Creutz 1980

P[U ]P[U ]P[U ]
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Monte-Carlo integration is available

Akio Tomiya

サンプ サンプ サンプ→ → → …

U1 U2 U3

Monte-Carlo: Generate field configurations with  “ ”. It gives expectation valueP[U] =
1
Z

e−Seff[U]

⟨𝒪⟩ =
1
Z ∫ 𝒟Ue−Seff[U]𝒪(U) Seff[U] = Sgauge[U] − log det(D/ [U] + m)

Introduction
M. Creutz 1980

Error of integration is determined by the number of sampling

⟨𝒪⟩ =
1

Nsample

Nsample

∑
k

𝒪[Uk] ± O(
1

Nsample

)

P[U ]P[U ]P[U ]
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Akio Tomiya

サンプルA サンプルB サンプルC→ → → …

ϕ1 ϕ2 ϕ3

Large τac means, such simulation is inefficient

Correlation between samples = inefficiency of calculation

t

Introduction

e−t/τac

Γ̄(t)

Correlated Correlated

Slightly Correlated

Nindep =
Nsample

2τac

Γ̄(t) =
1

N − t ∑
k

(O[ϕk+t] − Ō)(O[ϕk] − Ō) ∼ e−t/τac

⟨O[ϕ]⟩ =
1
N

N

∑
k

O[ϕk] ± O(
1

Nindep

)
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Summary for now: long autocorrelation = inefficiency

Akio Tomiya

• Autocorrelation time  quantifies similarity between samples


•  is algorithm dependent quantity


• If  becomes half, we can get doubly precise results in the same time cost

τac

τac

τac

⟨O[ϕ]⟩ =
1
N

N

∑
k

O[ϕk] ± O(
1

Nindep

)

τac is given by an update algorithm (N. Madras et. al 1988)

Can we make this mild using machine learning?

Introduction

t

e−t/τac

Γ̄(t)

Nindep =
Nsample

2τac

Γ̄(t) =
1

N − t ∑
k

(O[ϕk+t] − Ō)(O[ϕk] − Ō) ∼ e−t/τac



Akio Tomiya
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Neural net can make human face images
Introduction



Akio Tomiya
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Neural net can make human face images
Introduction

Realistic Images can be generated by machine learning!

Configurations as well? (configuration ~ images?)

Neural nets can generate realistic human faces (Style GAN2)



ML for LQCD is needed
• Machine learning/ Neural networks


• Data processing techniques for 2d image in 
daily life (pictures = pixels = a set of real #)


• Neural network can generate images! 
(arpproximately)


• Lattice QCD is more complicated than pictures


• 4 dimension


• Non-abelian gauge d.o.f. and symmetry 

• Fermions


• Exactness of algorithm is necessary


• Q. How can we deal with?
13

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/



Akio Tomiya
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Introduction
Configuration generation with machine learning is developing
Year Group ML Dim. Theory Gauge sym Exact? Fermion? Lattice2021/ref
2017 AT, Akinori 

Tanaka
RBM  

+ HMC
2d Scalar - No No arXiv: 1712.03893

2018 K. Zhou+ GAN 2d Scalar - No No arXiv: 1810.12879

2018 J. Pawlowski + GAN

+HMC

2d Scalar - Yes? No arXiv: 1811.03533

2019 MIT+ Flow 2d Scalar - Yes No arXiv: 1904.12072

2020 MIT+ Flow 2d U(1) Equivariant Yes No arXiv: 2003.06413

2020 MIT+ Flow 2d SU(N) Equivariant Yes No arXiv: 2008.05456

2020 AT, Akinori 
Tanaka + SLMC 4d SU(N) Invariant Yes Partially arXiv: 2010.11900

2021 M. Medvidovic´+ A-NICE 2d Scalar - No No arXiv: 2012.01442

2021 S. Foreman L2HMC 2d U(1) Yes Yes No
2021 AT+ SLHMC 4d QCD Covariant Yes YES! This talk
2021 L. Del 

Debbio+ Flow 2d Scalar, O(N) - Yes No
2021 MIT+ Flow 2d Yukawa - Yes Yes
2021 S. Foreman, 

AT+
Flowed 
HMC

2d U(1) Equivariant Yes No but compatible arXiv: 2112.01586

2021 XY Jing Neural 
net

2d U(1) Equivariant Yes No
2022 J. Finkenrath Flow 2d U(1)
 Equivariant Yes Yes (diagonalization) arxiv: 2201.02216

2022 MIT+ Flow 2d, 4d U(1), QCD Equivariant Yes Yes arXiv:2202.11712 +

2022 AT+ Flow 2d, 3d Scalar Yrs
＋…



LQCD + Machine learning  
How to deal gauge sym.

15
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Introduction
Neural network is a universal approximator of functions

Akio Tomiya

f: Neural net

Images of “dog”

Images of “cat”

Flatten
⟹

0.000
0.000
0.8434
0.756
0.3456

⋮

Image is a vector

(this is 10,000 dimension)

10,000 dimension

2 dimension

Input

100x100

Image classification, cats and dogs

dog = (0
1) Label is 2 dim vector


(cat = (1, 0)t)

f(Image of dog) = (0.1
0.9)

cat = (1
0)

dog = (0
1)
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Affine transformation + element-wise transformation

Akio Tomiya

fθ( ⃗x ) = σ(l=2)(W(l=2)σ(l=1)(W(l=1) ⃗x + ⃗b (l=1)) + ⃗b (l=2))
Fully connected neural networks

Neural network = (Variational) map between vector to vector

 represents a set of parameters: eg θ w(l)
ij , b(l)

i , ⋯

Introduction

(throughout this talk!)

z(l)
i = ∑

j

w(l)
ij u(l−1)

j + b(l)
i{

Component of neural net:  and l = 2,3,⋯ ⃗u (1) = ⃗x

u(l)
i = σ(l)(z(l)

i )

Matrix product

vector addition

(w, b determined in  
the training)

element-wise (local)

Non-linear transf.
Typically σ ~ tanh shape
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Introduction
Neural network is a universal approximator of functions

Akio Tomiya

f: Neural net

Images of “dog”

Images of “cat”

Flatten
⟹

0.000
0.000
0.8434
0.756
0.3456

⋮

Image is a vector

(this is 10,000 dimension)

Fact: neural network can mimic any function! (universal app. thm)

In this example, neural net mimics a map between 
 image (10,000-dim vector)  and label (2-dim vector)

10,000 dimension

2 dimension

Input

100x100

Image classification, cats and dogs

dog = (0
1) Label is 2 dim vector


(cat = (1, 0)t)

f(Image of dog) = (0.1
0.9)

cat = (1
0)

dog = (0
1)

Mathematical Physics Studies

Akinori Tanaka
Akio Tomiya
Koji Hashimoto

Deep Learning 
and Physics

Fit ansatz
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What is the neural networks?
Convolution layer = trainable filter

Akio Tomiya

0 1 0

1 -2 1

0 1 0* =
Filter on image

w11 w12 w13

w21 w22 w23

w31 w32 w33*

Convolution layer

Laplacian filter

Edge detection

Trainable filter

→
Edge detection
Smoothing
…

This can be any filter which helps feature extraction 
but still transitionally equivariant!

Fukushima, Kunihiko (1980)

Zhang, Wei (1988) + a lot!

1 2 1

2 4 2

1 2 1

1
16

Gaussian filter

(Discretization of )∂2

(Gaussian filter)

IMPORTANT: If inputs are shifted to right, outputs are shifted to right
= translationally equivaliant (similar to covariance, operation just commute)
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Convolution neural network
Training can be done with back propagation

Akio Tomiya

w11 w12 w13

w21 w22 w23

w31 w32 w33

Translation

equivariant map


with trainable

parameters

cat = (1
0)

dog = (0
1)

G.A. 

Pooling/

flatten

Dense

net

feed
L

loss function

quantifies


error of output

Feedback = training

(Steepest descent)
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Smearing
Smoothing improves global properties

Akio Tomiya

Eg. Coarse image Smoothened image

Numerical derivative is unstable Numerical derivative is stable


We want to smoothen gauge configurations

with keeping gauge symmetry

APE-type smearing

Stout-type smearing
Two types:

M. Albanese+ 1987
R. Hoffmann+ 2007

C. Morningster+ 2003

1 2 1

2 4 1

1 2 1

1
16

Gaussian filter
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Smearing
Smoothing with gauge symmetry, APE type

Akio Tomiya

APE-type smearing

Uμ(n) → Ufat
μ (n) = 𝒩 [(1 − α)Uμ(n) +

α
6

V†
μ[U](n)]

V†
μ[U](n) = ∑

μ≠ν

Uν(n)Uμ(n + ̂ν)U†
ν (n + ̂μ) + ⋯

𝒩 [M] =
M

M†M

= + ∑
ν

α
6𝒩[ ]

Schematically,

V α /6
𝒩 [⋯] U(1)U Mult


Sum

(1 − α)

1 − α

In the calculation graph,

+

Or projection

M. Albanese+ 1987
R. Hoffmann+ 2007

&   shows same transformationV†
μ[U ](n) Uμ(n)

→  is as wellU fat
μ [U ](n)

+

NormalizationCovariant sum
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Smearing
Smoothing with gauge symmetry, stout type

Akio Tomiya

Stout-type smearing
Uμ(n) → Ufat

μ (n) = eQUμ(n)

: anti-hermitian traceless plaquetteQ

(eQ − 1)U UfatU +

= e

= Uμ(n) + (eQ − 1)Uμ(n)

( )
= e( −1)+

C. Morningster+ 2003

This is less obvious but  this actually obeys same transformation

Schematically,

In the calculation graph,

Covariant sum
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Smearing
Smearing decomposes into two parts

Akio Tomiya

General form of smearing (covariant transformation)

zμ(n) = w1Uμ(n) + w2𝒢[U]

Ufat
μ (n) = 𝒩(zμ(n)){ A local function

Gauge covariant sum
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Smearing
Smearing ～ neural network with fixed parameter!

Akio Tomiya

It has similar structure with neural networks,

AT Y. Nagai arXiv: 2103.11965

zμ(n) = w1Uμ(n) + w2𝒢[U]

Ufat
μ (n) = 𝒩(zμ(n)){ A local function

Actually, we can find a dictionary between them

General form of smearing (covariant transformation)

z(l)
i = ∑

j

w(l)
ij u(l−1)

j + b(l)
i{u(l)

i = σ(l)(z(l)
i )

Matrix product

vector addition

element-wise (local)

Non-linear transf.
Typically σ ~ tanh shape

Gauge covariant sum
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Gauge covariant neural network
= trainable smearing

Akio Tomiya

Dictionary

AT Y. Nagai arXiv: 2103.11965

(convolutional) 
Neural network Smearing in LQCD

Input Image 
(2d data, structured)

gauge config

(4d data, structured)

Output Image 
(2d data, structured)

gauge config

(4d data, structured)

Symmetry Translation Translation, rotation(90°), 
Gauge sym.

Gauge sym

with Fixed param Image filter (APE/stout …) Smearing

Local operation Summing up nearest 
neighbor with weights

Summing up staples 
with weights

Activation function Tanh, ReLU, sigmoid, … projection/normalization 
in Stout/HYP/HISQ

Formula for chain rule Backprop “Smeared force 
calculations” (Stout)

Training? Backprop + Delta rule AT Nagai 2103.11965

Well-known

(Index i in the neural net corresponds to n & μ in smearing. Information processing with NN is evolution of scalar field)



27

Gauge Covariant Neural networks 
= trainable smearing, training for SU(N) fields

Takeaway message
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Gauge covariant neural network
= trainable smearing

Akio Tomiya

Gauge covariant neural network = general smearing with trainable parameters w

z(l+1)
μ (n) = w(l)

1 U(l)
μ (n) + w(l)

2 𝒢(l)
θ̄

[U]

𝒩(z(l+1)
μ (n)){U(l+1)

μ (n)[U(l)] :

UNN
μ (n)[U] = U(3)

μ (n)[U(2)
μ (n)[U(1)

μ (n)[Uμ(n)]]]
Good properties: Obvious gauge symmetry. Translation, rotational symmetries.

Uμ(n) ↦ UNN
μ (n) = UNN

μ (n)[U]
1. Gauge covariant composite function:  

(Analogous to convolutional layer, this fully uses information of the symmetries)

(Weight “ ” can be depend on  and  = fully connected like. Less symmetric, more parameters)w n μ

AT Y. Nagai arXiv: 2103.11965

2. Parameters in the network can be trainable using ML techniques.

e.g.

Input = gauge field, Output = gauge field
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Gauge covariant neural network
Training can be done with (extended) back propagation

Akio Tomiya

Gauge inv. loss function can be constructed by gauge invariant actions
AT Y. Nagai arXiv: 2103.11965

UNN
μ (n)[U]

Gauge covariant map with 

trainable parameters

Feed to Dirac op D [UNN
μ (n)[U]]

Parametrized Dirac operator

Construct loops
W [UNN

μ (n)[U]]
Parametrized loop operators 


(e.g. plaquette, Polyakov loop)

U UNN

Parametrized 
action

Splaq [UNN]

Sferm [UNN]

w11 w12 w13

w21 w22 w23

w31 w32 w33

Translation

equivariant map


with trainable

parameters

cat = (1
0)

dog = (0
1)

G.A. 

Pooling/

flatten

Dense

net

feed
L

feed
L

feed L

Invariant

loss function

Invariant

loss function

Translation equivariant =  
the image is shifted, 


output image is also shifted

Usual neural network

Covariant neural networks Covariant

e.g.

= e( )
w1 +w2 Q [UNN] L

Topological charge
cf. Gauge equivariant neural net  (M Favoni+)

Covariantdistorted
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Gauge covariant neural network
Neural ODE of Cov-Net = “gradient flow”

Akio Tomiya

⃗u (l)\⃗u (l−1)
+𝒢

d ⃗u (t)

dt
= 𝒢( ⃗u (t))

ResNet

Neural ODE
(Neural IPS 2018 best paper)

arXiv: 1806.07366

arXiv: 1512.03385

Continuum

Layer 

Limit
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Gauge covariant neural network
Neural ODE of Cov-Net = “gradient flow”

Akio Tomiya

U(l)
+

⃗u (l)\⃗u (l−1)
+𝒢

d ⃗u (t)

dt
= 𝒢( ⃗u (t))

ResNet

dU(t)
μ (n)
dt

= 𝒢θ̄(U(t)
μ (n))

U(l+1)
𝒢θ̄

“Continuous stout smearing is the Wilson flow”

AT Y. Nagai arXiv: 2103.11965

Neural ODE

Gauge-cov net

Neural ODE

for Gauge-cov NN 

arXiv: 1806.07366

arXiv: 1512.03385

2010 M. Luscher

(Neural IPS 2018 best paper)

Continuum

Layer 

Limit

Continuum

Layer 

Limit

“Gradient” flow 
(not has to be gradient of S)
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Gauge covariant neural network
Short summary

Akio Tomiya

Symmetry Fixed parameter Continuum 
limit of layers How to Train

Conventional 
neural network

Convolution: 
Translation

Convolution: 
Filtering 

(e.g Gaussian/
Laplasian)

ResNet:

 Neural ODE

Delta rule and 
backprop


Gradient opt.

Gauge cov. net 
AT Y. Nagai arXiv: 2103.11965

Gauge covariance

Translation equiv, 
90° rotation equiv

Smearing “Gradient flow”
Extended Delta 

rule and 
backprop


Gradient opt.

Next, I show a demonstration

Re-usable stout  
force subroutine


(Implementation is easy &

no need to use ML library)



An application 
Self-learning HMC

33
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Problems to solve

Akio TomiyaApplication for the staggered in 4d

Our neural network enables us to parametrize gauge symmetric action

covariant way. It can be used in variational ansatz in gauge theory.

arXiv: 2103.11965

SNN[U] = Splaq [UNN
μ (n)[U]]

SNN[U] = Sstag [UNN
μ (n)[U]]

Test of our neural network?
Can we mimic a different Dirac operator using neural net?

e.g.

Action in MD Sθ[U] = Sg[U] + Sf[ϕ, UNN
θ [U]; mh = 0.4],

Target action S[U] = Sg[U] + Sf[ϕ, U; m = 0.3],

{
Q. Simulations with approximated action can be exact?

 -> Yes! with SLHMC (Self-learning HMC)

Artificial example for HMC:
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SLHMC for gauge system with dynamical fermions

Akio TomiyaSLHMC = Exact algorithm with ML

HMC U U U U U U

U′￼U

π

ϕ

π′￼

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom Metropolis
Both use 

HHMC =
1
2 ∑ π2 + Sg + Sf

Self

Lerning

HMC

U U U U U U

U′￼U

π

ϕ

π′￼

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom

Metropolis

H =
1
2 ∑ π2 + Sg + Sf[U]

H =
1
2 ∑ π2 + Sg+Sf[UNN[U]]

Neural net approximated 

fermion action but exact

Non-conservation of H cancels since

the molecular dynamics is reversible

arXiv: 2103.11965 and reference therein

SLHMC works as an adaptive reweighting!
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Lattice setup and question

Akio Tomiya

Two color QCD (plaquette + staggered)

Four dimension, L=4, m = 0.3, beta = 2.7, Nf=4 (non-rooting)

Plaquette, Polyakov loop, Chiral condensate ⟨ψ ψ⟩

Application for the staggered in 4d

Full scratch, 

fully written in Julia lang.

Observables

(But we added some functions on the public version)

Parameter

Target

Code

Action in MD 
(for SLHMC) Sθ[U] = Sg[U] + Sf[ϕ, UNN

θ [U]; mh = 0.4],

Target action S[U] = Sg[U] + Sf[ϕ, U; m = 0.3], For Metropolis Test

AT+ (in prep)

SLHMC, HMC (comparison)Algorithms

arXiv: 2103.11965



What is          ?

37

We made a public code in Julia Language

Akio Tomiya

SU(Nc)-heatbath/SLHMC/SU(Nc) Stout/(R)HMC/staggered/Wilson-Clover 

Domain-wall/Measurements (Now updating to v1.0, MPI ver is ready)

3 steps in 5 min

Lattice QCD code
AT & Y. Nagai in prep

1. Download Julia binary

2. Add the package through Julia package manager

3. Execute!

1.Open source scientific language (Just in time compiler)

2.Fast as C/Fortran (sometime, faster), Productive as Python

3.Machine learning friendly (Julia ML packages + Python libraries w/ PyCall)

4.Supercomputers support Julia

https://github.com/akio-tomiya/LatticeQCD.jl

: Laptop/desktop/PC-cluster/Jupyter (Google colab)(Official package)

https://github.com/akio-tomiya/LatticeQCD.jl


Akio Tomiya
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Details (skip)
Results: Loss decreases along with the training

Lθ[U] =
1
2

Sθ[U, ϕ] − S[U, ϕ]
2
,Loss function:

arXiv: 2103.11965

~ -log(reweighting factor)

Without  training, e^(-L)<< 1, this means that candidate with approximated action

never accept.

After training,   e^(-L) ~1, and we get practical acceptance rate!

Training iteration history



Akio Tomiya
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Application for the staggered in 4d
Results are consistent with each other

Acceptance = 40%

Expectation value

arXiv: 2103.11965

Future work: Domain-wall/Overlap SLHMC (?)



Other architecture: 
Flow based sample algorithm

40
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Related works
Gradient flow as a trivializing map

Akio Tomiya

If the solution satisfies  ,S(ℱτ(ϕ)) + ln det(Jacobian) = ∑
n

ϕ̃2
n

Trivializing map for lattice QCD has been demanded…

arxiv 1904.12072, 2003.06413, 2008.05456

⟨𝒪⟩ =
1
Z ∫ ⋯∫ ∏

x∈100
∏

y∈100
∏

z∈100
∏

t∈100

dϕx,y,z,te−S(ϕ)𝒪[ϕx,y,z,t]

ϕ̃ = ℱτ(ϕ) Flow equation (change variable)

M. Luscher arXiv:0907.5491
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Normalizing flow ~ Change of variables

Akio TomiyaFlow based sampling algorithm
Simplest example: Box Muller

∫
∞

−∞
dx∫

∞

−∞
dy e− 1

2 x2− 1
2 y2

=
1
2 ∫

2π

0
dθ∫

1

0
dz

θ = ξ1
r = −2 log ξ2

x = r cos θ

{
{y = r sin θ

RHS is flat measure

→We can sample like right eq.

Point: Make problem easier with change of variables (make the measure flat)

We can reconstruct

a “field config”   

for original theory


like right eq.

x, y

A change of variable which  makes flat = Trivializing map Dϕe−S[ϕ]

z = e− 1
2 (x2+y2)

tan θ = y/x{Change

of variables

ξ1 ∼ (0,2π)
ξ2 ∼ (0,1)

EasyOriginal integral: hard
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Related works
Gradient flow as a trivializing map

Akio Tomiya

If the solution satisfies  ,S(ℱτ(ϕ)) + ln det(Jacobian) = ∑
n

ϕ̃2
n

However, the Jacobian cannot evaluate easily, so it is not practical.

Life is hard.

Trivializing map for lattice QCD has been demanded…

arxiv 1904.12072, 2003.06413, 2008.05456

⟨𝒪⟩ =
1
Z ∫ ⋯∫ ∏

x∈100
∏

y∈100
∏

z∈100
∏

t∈100

dϕx,y,z,te−S(ϕ)𝒪[ϕx,y,z,t]

ϕ̃ = ℱτ(ϕ)

⟨𝒪⟩ =
1
Z ∫ ⋯∫ ∏

x∈100
∏

y∈100
∏

z∈100
∏

t∈100

dϕ̃𝒪[ℱτ(ϕ)]e−∑ ϕ̃2
n

Flow equation (change variable)

It becomes Gaussian integral! Easy to evaluate!!

M. Luscher arXiv:0907.5491
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Flow based algorithm = neural net represented flow algorithm

Akio Tomiya

MIT + Google brain 2019~

Train a neural net as a “flow”  
If it is well approximated, we can sample from a Gaussian 

It can be done “Normalizing flow” (Real Non-volume preserving map) 
Moreover, Jacobian is tractable!

ϕ̃ = ℱ(ϕ)

arxiv 1904.12072, 2003.06413, 2008.05456

Related works 
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Flow based algorithm = neural net represented flow algorithm

Akio Tomiya

sample gaussian → inverse trivializing map → QFT configurations 
Tractable Jacobian (by even-odd strategy) 
After sampling, Metropolis-Hastings test (Detailed balance)→ exact!

arxiv 1904.12072, 2003.06413, 2008.05456

Related works 
MIT + Google brain 2019~

Their sampling strategy
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Flow based ML for QFT

Akio TomiyaFlow based sampling algorithm

∫ Dϕe−S[ϕ]O[ϕ] ∝ ∏
i

∫ dφie−V(φi)J−1[φ]O[F[φ]]

EasyOriginal integral: hard

arXiv: 2101.08176 and ref therein

Vol

∏
i

e−V(φi)
Trivial theory


(no kinetic term, no topology)

“Cooling = change of variable”

via trained neural net

“un-trivializing map” 

Reject

(Use left conf.)

Metropolis-Hastings with
e−S /e−V(φi)J−1[φ]

Flow-based sampling algorithm

Reject

(Use left conf.)

SampleSampleSampleSample

FlowFlowFlow Flow Flow

No auto-correlation

No correlation for points

No auto-correlation

Approx.correlation for points

Small auto-correlation

Correct correlations

MIT + Deepmind + …
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We made a public code in Julia Language

Akio TomiyaNormalizing flow in Julia

https://arxiv.org/abs/2208.08903

https://github.com/AtelierArith/GomalizingFlow.jl

Ad

A public code for

Flow-based sampling 


algorithm

not only 2d but also 3d

http://www.apple.com


LQCD + Quantum galtorithm 

48



Motivation
Sign problem prevents using Monte-Carlo

Akio Tomiya

• Monte-Carlo enables us to evaluate expectation values for “statistical 
system”, like lattice QCD in imaginary time

Uc ← P(U) =
1
Z

e−S[U]⟨O[U]⟩ =
1

Nconf

Nconf

∑
c

O[Uc] + 𝒪 ( 1
Nconf ) ∈ ℝ+

• If we turn on the baryon chemical potential μ, Monte-Carlo methods do not 
work because  becomes complex. This is no more probability. (sign 
problem)


• Operator formalism does not have such problem! But it requires huge memory 
to store quantum states, which cannot be realized even on supercomputer.


• Quantum states should be stored on quantum device (Feynman)

e−S[U]

Great successes!

Sign problem

arXiv:0906.3599
μ



50

μ = 0 is good for Classical, T=0 is good for Quantum

Akio TomiyaMotivation

P(U) =
1
Z

e−S[U] det(D[U] + m)2 ∈ ℝ+

Classical machine: Lattice field theory calculations rely on

Quantum machines can realize (any) unitary evolutions (Solovay Kitaev theorem),

U(t) = e−iĤt

- This P(U) cannot be regarded as probability if μ ≠ 0 (sign problem)

We need a method to calculate T>0 and μ≠0 for QCD

and for near-term quantum devices

- No problem for μ≠0 because we can only use unitary gates (operators)

- “Short time evolution” (shallow circuit) is preferred for near-term devices

Since 1980 (M. Creutz)~

Phys.Rev.D 105 (2022) 9, 094503

and references therein

*https://indico.hiskp.uni-bonn.de/event/40/contributions/484/attachments/358/630/Powers%20Talk%20Final%20Draft%20Updated.pdf

*
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Summary of this talk
Hybrid = Quantum algorithm + machine learning

Akio Tomiya

I investigated T-mu phase diagram using a quantum algorithm & neural network 
(β-VQE, No sign problem) for Schwinger model (toy model of QCD)

AT arXiv: 2205.08860

Fukushima ,  Hatsuda

Rept.Prog.Phys.74:014001,2011



52

QFT with Hamiltonian
Hamiltonian vs Lagrangian

Akio Tomiya

U(τ) = e−τHU(t) = e−itH Euclid(t → τ)

Minkowski(τ → t)

Minkowski in M^{d+1} Euclid in S^1 x M^d

ρ = U(τ)/Z

t = − iτ

⟨OO(τ)⟩ = Tr[O(0)O(τ)ρ]

H : Hamiltonian in QFT
Finite temperature/imaginary timeReal time

Operator formalism (This work)

- Typical use case of quantum algorithm is for real-time. Unitary.

- Time evolution: Correlators (e.g. 2pt on light-cone), etc

- Main interest: , where  is the exact ground state


- Difficulty: State preparation for exact ground state of H
⟨Ω |O |Ω⟩ |Ω⟩



B Chakraborty, M 
Honda, T Izubuchi, Y 
Kikuchi, AT
 
Phys.Rev.D 105 (2022) 
9, 094503
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State preparation is hard

Akio Tomiya

BUT, Near term quantum devices are only capable to deal with simple (short) circuit!

State preparation, VQE and Beta-VQE

Variational approaches help to evaluate the ground state to evaluate the expectation value

= Variational Quantum Eigen-solver (VQE), a quantum-classical hybrid algorithm

We are interested in expectation value with true ground state for Hamiltonian
⟨O⟩ = ⟨Ω |O |Ω⟩

For the actual ground state H |Ω⟩ = E0 |Ω⟩
The exact ground state can be prepared using adiabatic state preparation = long 
unitary evolution with gradually changing Hamiltonian

e−iHt ≈ (e−iHkint/Ne−iHmasst/N⋯)N



Background: VQE is a variational method

Akio TomiyaVQE and Beta VQE 1/2

• Quantum machine: Exact ground state  preparation is hard. In particular, it is 
difficult on near term devices


• Variational method for a pure state with a short circuit (VQE, variation quantum 
eigen-solver). 


• Quantum/Classical hybrid algorithm, iterative.  is a short circuit.


• Parametrized unitary circuit (~parametrized state , : a set of parameters)

|Ω⟩

Uθ

|θ⟩ θ

|0⟩
|0⟩
|0⟩
|0⟩

Uθ hk

⟨H⟩θ = ∑
k

⟨θ |hk |θ⟩
(re) construct

minimize  tuning ⟨H⟩θ θ

Tuned parameter

Expectation value

Quantum

ClassicalVQE: Iterative approx

Uθ[ ⊗ |0⟩] = |θ⟩

• Systematic error since  but cheap|θ⟩ = Uθ[ ⊗ |0⟩] ≠ |Ω⟩
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QFT with Hamiltonian
Hamiltonian vs Lagrangian

Akio Tomiya

U(τ) = e−τHU(t) = e−itH Euclid(t → τ)

Minkowski(τ → t)

Minkowski in M^{d+1} Euclid in S^1 x M^d

ρ = U(τ)/Z

t = − iτ

⟨OO(τ)⟩ = Tr[O(0)O(τ)ρ]

H : Hamiltonian in QFT
Finite temperature/imaginary timeReal time

Operator formalism (This work)

- Thermal state in quantum system?

   -> Density matrix formalism
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unifies description of pure states and mixed states

Akio Tomiya

ρpure = |Ψ⟩⟨Ψ |

Density matrix

ρmixed = ∑
i

wi |ψi⟩⟨ψi |

Pure states:

Mixed states:

  represents probability to find a pure state wi ∈ ℝ+ |ψi⟩

Thermal states (Grand-canonical):

⟨O⟩ = Tr[Oρpure] = ⟨Ψ |O |Ψ⟩

⟨O⟩ = Tr[Oρmixed] = ∑
i

wi⟨ψi |O |ψi⟩

⟨O⟩T,μ = Tr[OρT,μ]ρT,μ =
1
Z

e− 1
T (Ĥ−μN̂)

Thermal-quantum average in general

⟨O⟩ = Tr[Oρ]

States are classically mixed (≠ superposition)

(Alternative approach TPQ: AT Yuki Nagai APLAT, 2020)

System is purely quantum
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Quantum version of probability distribution

Akio TomiyaDensity matrix

Thermal-quantum average in general

General Properties of density matrix ρ

⟨O⟩ = Tr[Oρ]

• It unifies discretions of pure states and mixed states


• Normalized as 


•  can be regarded as quantum version of probability distribution p(x)


• e.g.)     (Shannon entropy) 

          <—>       (Von-Neumann entropy)


• Distance between two density matrices = quantum relative entropy (next)

Tr[ρ] = 1
ρ

S = − ∫ dx p(x)log p(x)

S = − Tr[ρ log ρ]
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Beta VQE is a variational method for mixed states

Akio TomiyaVQE and Beta VQE 2/2

• KL divergence for ρ = Kullback–Leibler Umegaki divergence (Pseudo-distance for ρ)


• Classical ver:    (KL divergence)


• Relative entropy. Difference of two distributions (~distance)


• Positive definite, Used in machine learning


• D=0 if and only if p, q are equal


• Quantum  (KL-Umegaki divergence ~ distance)


• Positive definite


• D=0 if and only if  are equal


• Kullback–Leibler Umegaki divergence can be used for variational approaches

D(p |q) = ∫ dx p(x)log p(x)/q(x)

D(ρ1 |ρ2) = Tr[ρ1 log ρ1/ρ2]

ρ1, ρ2

Ansatz for ρ?
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Beta VQE is a variational method for mixed states

Akio TomiyaVQE and Beta VQE

• Variational ansatz for thermal quantum system:


•  ,     (parameters)


• ,  and  : (roughly) fermion occupation


•  : easy to prepare


• : parametrized pure states, similar to the conventional VQE


• : Classically approximated distribution for a configuration of ,  
Neural network (MADE*) is used.  = parameters 
This can generate configurations of 

ρΘ = ∑
{ ⃗x }

pϕ[ ⃗x ] Uθ | ⃗x ⟩⟨ ⃗x |U†
θ Θ = θ ∪ ϕ

⃗x = (x1, x2, x3, ⋯, xk, ⋯)⊤ xk ∈ {0,1}

| ⃗x ⟩ = |x1⟩ ⊗ |x2⟩ ⊗ |x3⟩ ⊗ ⋯

Uθ | ⃗x ⟩

pϕ[ ⃗x ] ⃗x
ϕ

⃗x

J. -Guo Liu+ 1902.02663
*M. Germain+ 1502.03509

Variational  
quantum circuit 
(Entanglement)

Neural 
network 

(Thermal)

• ,  and 
 : (roughly) fermion 

occupation


•  :

⃗x = (x1, x2, x3, ⋯, xk, ⋯)⊤

xk ∈ {0,1}

| ⃗x ⟩ = |x1⟩ ⊗ |x2⟩ ⊗ |x3⟩ ⊗ ⋯

Product state 
(Easy to prepare)
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Extended VQE for mixed states

Akio TomiyaBeta VQE

• We minimize 


• Variational bound:  


• Advantage of beta VQE


• No sign problem, even with the chemical potential


• Bounded variational approximation


• Disadvantage


• Systematic error


• Need numerical resource if  we use a classical machine

ℒ(Θ) = D(ρΘ |ρT,μ) − ln ZT,μ = Tr[ρΘ ln ρΘ] +
1
T

Tr[ρΘ(Ĥ − μN̂ )]

ℒ(Θ) ≥ − log ZT,μ

Jin-Guo Liu+ 1902.02663
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Simulation setup (mostly skip)

Akio TomiyaSimulation results

• Staggered fermion

• Jordan-Wigner transformation. Open Boundary condition.

• g = 1, Nx = (4, 6), 8, 10, 1/T = [0.5-20.0], mu= [0-1.4], 4 lattice spacings 1/2a = [0.5-0.35]

• We do not take large volume limit but take continuum limit


• (Practically, Nx>10 cannot be calculated on our numerical resources)

• (My previous work shows data from Nx>12 are essential to take stable large volume limit though)


• Setup for beta VQE:

• Unitary part = SU(4) ansatz

• Classical weight = Masked Auto-Encoder for Distribution Estimation (MADE)


• Training epoch is 500. Sampling = 5000 for classical distribution

• We apply beta-VQE for Schwinger model (= QED in 1+1d). 
Toy model of QCD, confinement, chiral symmetry breaking 

S = ∫ d2x[ −
1
4

FμνFμν + ψ̄(i∂/ − gA/ − m)ψ] H = ∫ dx[ − iψγ1(∂1 + igA1)ψ + mψ ψ +
1
2

Π2]
∂xE = gψ̄ γ0ψ

• Observables

• Variational free energy (exact and variational one)

• (Translationally invariant) Chiral condensate


• Check point: Dependence of variational error on temperature and mu
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Variational free energy is O(1), Nx=10

Akio TomiyaSimulation results

β = 1/T

T

μ
1.Mild dependence on μ (not fatal)

2.Hard for T -> 0 (large deviation) as expected

AT. 2205.08860
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Akio TomiyaSummary for T-mu

• We investigate T-μ phase diagram for Schwinger model


• Continuum extrapolation has been evaluated 
(except for additive mass renormalization by 2206.05308)


• The variational approach does not show difficulty for our parameter regime


• Towards to go large volume, optimization of code, GPU version, tensor 
network. (noise-free) real device!

⟨ψ ψ⟩T,μ

⟨ψ ψ⟩0.05,0

Fukushima ,  Hatsuda

Rept.Prog.Phys.74:014001,2011

AT. 2205.08860



1.What and why QCD/lattice QCD?


1.Problem: Long auto-correlation, Sign problem


2. Lattice QCD + Machine learning


1.Trainable smearing + SLHMC = adaptive reweighting


3. Lattice QCD + Quantum algorithm 


1.Sign problem + non-unitary -> classical/quantum hybrid!

Summary

64

dU(t)
μ (n)
dt

= 𝒢θ̄(U(t)
μ (n))

Congratulations again, Onogi-san!



65
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Self-introduction
Lattice QCD & Machine learning

Akio Tomiya

2010 - 2015 : Osaka university (Master& PhD)

2015 - 2018 : Postdoc in CCNU (Wuhan, China)

2018 - 2021 : SPDR in RIKEN/BNL (Brookhaven, US)

2021 -          : Faculty in IPUT Osaka

My papers

Biography

Phase transition detection with NN

Axial anomaly at T>0 with Mobius Domain-wall fermions

What/who am I?
I am a particle physicist, working on lattice QCD. 

I want to apply machine learning + quantum alg. on it.

https://scholar.google.co.jp/citations?user=LKVqy_wAAAAJ

https://cometscome.github.io/DLAP2020/

KAKENHI (Grants-in-Aid for Scientific Research)
PI: Grant-in-Aid for Transformative Research Areas (A)

Phase diagram via Quantum/Classical algorithm

      Grant-in-Aid for Early-Career Scientists

CI: Grant-in-Aid for Scientific Research (C), etc



Akio Tomiya

67

Details (skip)
Network: trainable stout (plaq+poly)

Gauge covariant neural network and full QCD simulation

Lθ[U ] =
1
2

Sθ[U, ϕ] − S[U, ϕ]
2
,Loss function:

Structure of NN

U(l+1)
μ (n) = exp(Q(l)

μ (n))U(l)
μ (n)

Sθ[U] = Sg[U] + Sf[ϕ, UNN
θ [U]; mh = 0.4],

UNN
μ (n)[U] = U(2)

μ (n)[U(1)
μ (n)[Uμ(n)]] 2- layered stout

All  is weightρ
(Polyakov loop+plaq 
in  the stout-type)

Training strategy: 1.Train the network in prior HMC (online training+stochastic gr descent)

2.Perform SLHMC with fixed parameter

Neural network  
Parametrized action:

Action for MD is built by 

gauge covariant NN

with 6 trainable parameters

TA: Traceless, anti-hermitian operation

 meas an loop operatorO

arXiv: 2103.11965

Invariant under,

rot, transl, gauge trf.



Akio Tomiya
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Details (skip)
Results: Loss decreases along with the training

Gauge covariant neural network and full QCD simulation

Lθ[U ] =
1
2

Sθ[U, ϕ] − S[U, ϕ]
2
,Loss function:

Prior HMC run (training)

C: one U removed Ω
Λ: A polynomial of U. (Same object in stout)

Training history

We perform SLHMC with these values!

arXiv: 2103.11965

Ω: sum of un-traced loops

Intuitively, e^(-L) is understood as 

Boltzmann weight or reweighting factor.

Without  training,  e^(-L)<< 1,

this means that candidate with approximated action

never accept.

After training,   e^(-L) ~1, and we get

practical acceptance rate!
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Gauge covariant neural network
Training can be done with (extended) back propagation

Akio Tomiya

Gauge covariant neural network and full QCD simulation

Gauge inv. loss function can be constructed by gauge invariant actions

SNN[U] = S [UNN
μ (n)[U]]

Lθ[U] = f (SNN[U])  : mean-square for example, 
     mini-batch
f

θ(l) ← θ(l) − η
∂Lθ[U]

∂θ(l)

Training: We can use “gradient descent” (also “Adam” (adaptive-momentum) is applicable)

 is parameters in -th layerθ(l) l

S: gauge action or fermion action

Loss function

AT Y. Nagai arXiv: 2103.11965

(c.f. Behler-Parrinello type neural net)

Repeat update 
(until converge)

Example of  
Gradient descent



This matrix derivative is common to the stout force 
(namely well known)
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Gauge covariant neural network
Training can be done with (extended) back propagation

Akio Tomiya

Gauge covariant neural network and full QCD simulation

Gauge inv. loss function can be constructed by gauge invariant actions

SNN[U] = S [UNN
μ (n)[U]]

Lθ[U] = f (SNN[U])

∂Lθ[U]
∂θ(l)

=
∂L
∂f

∂f
∂SNN

∂SNN

∂U(l+1)

∂U(l+1)

∂z(l+1)

∂z(l+1)

∂θ(l)

 : mean-square for example, 
     mini-batch
f

θ(l) ← θ(l) − η
∂Lθ[U]

∂θ(l)

Training: We can use “gradient descent” (also “Adam” (adaptive-momentum) is applicable)

The second term requires the chain rule for matrix fields, we developed extended delta rule:

 is parameters in -th layerθ(l) l

S: gauge action or fermion action

Loss function

AT Y. Nagai arXiv: 2103.11965

(c.f. Behler-Parrinello type neural net)

Repeat update 
(until converge)
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Continuum extrapolation for Nx = 8, 10

Akio TomiyaSimulation results

Nx = 8 Nx = 10

Continuum limit with a polynomial ansatz

it looks good So far*

We use Nx = 10 results for the phase diagram

*(I did not include additive mass shift (Ross Dempsey+ arXiv: 2206.05308).

I thank to Takis Angelides (DESY) and Etsuko Itou (RIKEN) for letting me know this important reference!)

AT. 2205.08860
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Beta VQE is a variational method for mixed states

Akio TomiyaVQE and Beta VQE 2/2

• Variational method for mixed states: Variational method on ρ


•  ,     (parameters)


• ,  and  : (roughly) fermion occupation


•  : easy to prepare


• : parametrized pure states, similar to the conventional VQE


• : Classically approximated distribution for a configuration of ,  
Neural network (MADE*) is used.  = parameters 
This can generate configurations of 

ρΘ = ∑
{ ⃗x }

pϕ[ ⃗x ] Uθ | ⃗x ⟩⟨ ⃗x |U†
θ Θ = θ ∪ ϕ

⃗x = (x1, x2, x3, ⋯, xk, ⋯)⊤ xk ∈ {0,1}

| ⃗x ⟩ = |x1⟩ ⊗ |x2⟩ ⊗ |x3⟩ ⊗ ⋯

Uθ | ⃗x ⟩

pϕ[ ⃗x ] ⃗x
ϕ

⃗x

J. -Guo Liu+ 1902.02663
*M. Germain+ 1502.03509
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(masked) Auto-encoder for binary variable distribution

Akio TomiyaMADE?

*M. Germain+ 1502.03509

• MADE (neural network) mimics joint probability distribution e.g.
 , whose input is binary array  , p(x1, x2, x3) (x1, x2, x3) xi = 0, 1

Auto-encoder with a mask -> Generative model for binary array

(Please ask me later in detail)

Reconstructed MNIST (Binarized)
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Extended VQE for mixed states

Akio TomiyaBeta VQE

• We approximate  by 


•  


• Quantum machine can store a state 


• Classical machine can sample thermal distribution from (neural net)


• All parameters are tuned such that minimizing 


• Optimization of parameters is done with a optimizer (as in machine learning)

ρ =
1
Z

e− 1
T (Ĥ−μN̂) ρΘ = ∑

{ ⃗x }

pϕ[ ⃗x ] Uθ | ⃗x ⟩⟨ ⃗x |U†
θ

⟨O⟩T,μ ≈ Tr[ρΘO] = ∑
{ ⃗x }

pϕ[ ⃗x ] ⟨ ⃗x |U†
θ OUθ | ⃗x ⟩

Uθ | ⃗x ⟩

pϕ[ ⃗x ]

D(ρΘ |ρ)

Jin-Guo Liu+ 1902.02663

(test wave function)

NN VQE



Motivation
Sign problem prevents using Monte-Carlo

Akio Tomiya

• Monte-Carlo enables us to evaluate expectation values for “statistical 
system”, like lattice QCD in imaginary time

Uc ← P(U) =
1
Z

e−S[U]⟨O[U]⟩ =
1

Nconf

Nconf

∑
c

O[Uc] + 𝒪 ( 1
Nconf ) ∈ ℝ+

• If we turn on the baryon chemical potential μ, Monte-Carlo methods do not 
work because  becomes complex. This is no more probability. (sign 
problem)


• Operator formalism does not have such problem! But it requires huge memory 
to store quantum states, which cannot be realized even on supercomputer.


• Quantum states should be stored on quantum device (Feynman)

e−S[U]

Great successes!

Sign problem

arXiv:0906.3599
μ
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μ = 0 is good for Classical, T=0 is good for Quantum

Akio TomiyaMotivation

P(U) =
1
Z

e−S[U] det(D[U] + m)2 ∈ ℝ+

Classical machine: Lattice field theory calculations rely on

Quantum machines can realize (any) unitary evolutions (Solovay Kitaev theorem),

U(t) = e−iĤt

- This P(U) cannot be regarded as probability if μ ≠ 0 (sign problem)

We need a method to calculate T>0 and μ≠0 for QCD

and for near-term quantum devices

- No problem for μ≠0 because we can only use unitary gates (operators)

- “Short time evolution” (shallow circuit) is preferred for near-term devices

Since 1980 (M. Creutz)~

Phys.Rev.D 105 (2022) 9, 094503

and references therein

*https://indico.hiskp.uni-bonn.de/event/40/contributions/484/attachments/358/630/Powers%20Talk%20Final%20Draft%20Updated.pdf

*
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Summary of this talk
Hybrid = Quantum algorithm + machine learning

Akio Tomiya

I investigated T-mu phase diagram using a quantum algorithm & neural network 
(β-VQE, No sign problem) for Schwinger model (toy model of QCD)

AT arXiv: 2205.08860

Fukushima ,  Hatsuda

Rept.Prog.Phys.74:014001,2011
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QFT with Hamiltonian
Hamiltonian vs Lagrangian

Akio Tomiya

U(τ) = e−τHU(t) = e−itH Euclid(t → τ)

Minkowski(τ → t)

Minkowski in M^{d+1} Euclid in S^1 x M^d

ρ = U(τ)/Z

t = − iτ

⟨OO(τ)⟩ = Tr[O(0)O(τ)ρ]

H : Hamiltonian in QFT
Finite temperature/imaginary timeReal time

Operator formalism (This work)

- Typical use case of quantum algorithm is for real-time. Unitary.

- Time evolution: Correlators (e.g. 2pt on light-cone), etc

- Main interest: , where  is the exact ground state


- Difficulty: State preparation for exact ground state of H
⟨Ω |O |Ω⟩ |Ω⟩



B Chakraborty, M 
Honda, T Izubuchi, Y 
Kikuchi, AT
 
Phys.Rev.D 105 (2022) 
9, 094503
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State preparation is hard

Akio Tomiya

BUT, Near term quantum devices are only capable to deal with simple (short) circuit!

State preparation, VQE and Beta-VQE

Variational approaches help to evaluate the ground state to evaluate the expectation value

= Variational Quantum Eigen-solver (VQE), a quantum-classical hybrid algorithm

We are interested in expectation value with true ground state for Hamiltonian
⟨O⟩ = ⟨Ω |O |Ω⟩

For the actual ground state H |Ω⟩ = E0 |Ω⟩
The exact ground state can be prepared using adiabatic state preparation = long 
unitary evolution with gradually changing Hamiltonian

e−iHt ≈ (e−iHkint/Ne−iHmasst/N⋯)N



Background: VQE is a variational method

Akio TomiyaVQE and Beta VQE 1/2

• Quantum machine: Exact ground state  preparation is hard. In particular, it is 
difficult on near term devices


• Variational method for a pure state with a short circuit (VQE, variation quantum 
eigen-solver). 


• Quantum/Classical hybrid algorithm, iterative.  is a short circuit.


• Parametrized unitary circuit (~parametrized state , : a set of parameters)

|Ω⟩

Uθ

|θ⟩ θ

|0⟩
|0⟩
|0⟩
|0⟩

Uθ hk

⟨H⟩θ = ∑
k

⟨θ |hk |θ⟩
(re) construct

minimize  tuning ⟨H⟩θ θ

Tuned parameter

Expectation value

Quantum

ClassicalVQE: Iterative approx

Uθ[ ⊗ |0⟩] = |θ⟩

• Systematic error since  but cheap|θ⟩ = Uθ[ ⊗ |0⟩] ≠ |Ω⟩
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QFT with Hamiltonian
Hamiltonian vs Lagrangian

Akio Tomiya

U(τ) = e−τHU(t) = e−itH Euclid(t → τ)

Minkowski(τ → t)

Minkowski in M^{d+1} Euclid in S^1 x M^d

ρ = U(τ)/Z

t = − iτ

⟨OO(τ)⟩ = Tr[O(0)O(τ)ρ]

H : Hamiltonian in QFT
Finite temperature/imaginary timeReal time

Operator formalism (This work)

- Thermal state in quantum system?

   -> Density matrix formalism
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unifies description of pure states and mixed states

Akio Tomiya

ρpure = |Ψ⟩⟨Ψ |

Density matrix

ρmixed = ∑
i

wi |ψi⟩⟨ψi |

Pure states:

Mixed states:

 represents probability to find a pure state wi |ψi⟩

Thermal states (Grand-canonical):

⟨O⟩ = Tr[Oρpure] = ⟨Ψ |O |Ψ⟩

⟨O⟩ = Tr[Oρmixed] = ∑
i

wi⟨ψi |O |ψi⟩

⟨O⟩T,μ = Tr[OρT,μ]ρT,μ =
1
Z

e− 1
T (Ĥ−μN̂)

Thermal-quantum average in general

⟨O⟩ = Tr[Oρ]

States are classically mixed (≠ superposition)

(Alternative approach TPQ: AT Yuki Nagai APLAT, 2020)

System is purely quantum
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Quantum version of probability distribution

Akio TomiyaDensity matrix

Thermal-quantum average in general

General Properties of density matrix ρ

⟨O⟩ = Tr[Oρ]

• It unifies discretions of pure states and mixed states


• Normalized as 


•  can be regarded as quantum version of probability distribution p(x)


• e.g.)     (Shannon entropy) 

          <—>       (Von-Neumann entropy)


• Distance between two density matrices = quantum relative entropy (next)

Tr[ρ] = 1
ρ

S = − ∫ dx p(x)log p(x)

S = − Tr[ρ log ρ]
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Beta VQE is a variational method for mixed states

Akio TomiyaVQE and Beta VQE 2/2

• KL divergence for ρ = Kullback–Leibler Umegaki divergence (Pseudo-distance for ρ)


• Classical ver:    (KL divergence)


• Relative entropy. Difference of two distributions (~distance)


• Positive definite, Used in machine learning


• D=0 if and only if p, q are equal


• Quantum  (KL-Umegaki divergence ~ distance)


• Positive definite


• D=0 if and only if  are equal


• Kullback–Leibler Umegaki divergence can be used for variational approaches

D(p |q) = ∫ dx p(x)log p(x)/q(x)

D(ρ1 |ρ2) = Tr[ρ1 log ρ1/ρ2]

ρ1, ρ2

Ansatz for ρ?
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Beta VQE is a variational method for mixed states

Akio TomiyaVQE and Beta VQE 2/2

• Variational method for mixed states: Variational method on ρ


•  ,     (parameters)


• ,  and  : (roughly) fermion occupation


•  : easy to prepare


• : parametrized pure states, similar to the conventional VQE


• : Classically approximated distribution for a configuration of ,  
Neural network (MADE*) is used.  = parameters 
This can generate configurations of 

ρΘ = ∑
{ ⃗x }

pϕ[ ⃗x ] Uθ | ⃗x ⟩⟨ ⃗x |U†
θ Θ = θ ∪ ϕ

⃗x = (x1, x2, x3, ⋯, xk, ⋯)⊤ xk ∈ {0,1}

| ⃗x ⟩ = |x1⟩ ⊗ |x2⟩ ⊗ |x3⟩ ⊗ ⋯

Uθ | ⃗x ⟩

pϕ[ ⃗x ] ⃗x
ϕ

⃗x

J. -Guo Liu+ 1902.02663
*M. Germain+ 1502.03509
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(masked) Auto-encoder for binary variable distribution

Akio TomiyaMADE?

*M. Germain+ 1502.03509

• MADE (neural network) mimics joint probability distribution e.g.
 , whose input is binary array  , p(x1, x2, x3) (x1, x2, x3) xi = 0, 1

Auto-encoder with a mask -> Generative model for binary array

(Please ask me later in detail)

Reconstructed MNIST (Binarized)
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Extended VQE for mixed states

Akio TomiyaBeta VQE

• We approximate  by 


•  


• Quantum machine can store a state 


• Classical machine can sample thermal distribution from (neural net)


• All parameters are tuned such that minimizing 


• Optimization of parameters is done with a optimizer (as in machine learning)

ρ =
1
Z

e− 1
T (Ĥ−μN̂) ρΘ = ∑

{ ⃗x }

pϕ[ ⃗x ] Uθ | ⃗x ⟩⟨ ⃗x |U†
θ

⟨O⟩T,μ ≈ Tr[ρΘO] = ∑
{ ⃗x }

pϕ[ ⃗x ] ⟨ ⃗x |U†
θ OUθ | ⃗x ⟩

Uθ | ⃗x ⟩

pϕ[ ⃗x ]

D(ρΘ |ρ)

Jin-Guo Liu+ 1902.02663

(test wave function)
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Extended VQE for mixed states

Akio TomiyaBeta VQE 4/4

• We minimize the loss function 


• Variational bound:  


• We use SU(4) ansatz for each 2 qubits for 


• Advantage of beta VQE


• No sign problem, even with the chemical potential


• Bounded variational approximation


• Disadvantage


• Systematic error


• Need numerical resource if  we use a classical machine

ℒ(Θ) = D − ln Z = Tr[ρΘ ln ρΘ] +
1
T

Tr[ρΘ(Ĥ − μN̂ )]

ℒ(Θ) − log ZT,μ ≥ 0

Uθ

Jin-Guo Liu+ 1902.02663



89

Simulation setup (mostly skip)

Akio TomiyaSimulation results

• Staggered fermion

• Jordan-Wigner transformation. Open Boundary condition.

• g = 1, Nx = (4, 6), 8, 10, 1/T = [0.5-20.0], mu= [0-1.4], 4 lattice spacings 1/2a = [0.5-0.35]

• We do not take large volume limit but take continuum limit


• (Practically, Nx>10 cannot be calculated on our numerical resources)

• (My previous work shows data from Nx>12 are essential to take stable large volume limit though)


• Setup for beta VQE:

• Unitary part = SU(4) ansatz

• Classical weight = Masked Auto-Encoder for Distribution Estimation (MADE)


• Training epoch is 500. Sampling = 5000 for classical distribution

• We apply beta-VQE for Schwinger model (= QED in 1+1d). 
Toy model of QCD, confinement, chiral symmetry breaking 

S = ∫ d2x[ −
1
4

FμνFμν + ψ̄(i∂/ − gA/ − m)ψ] H = ∫ dx[ − iψγ1(∂1 + igA1)ψ + mψ ψ +
1
2

Π2]
∂xE = gψ̄ γ0ψ

• Observables

• Variational free energy (exact and variational one)

• (Translationally invariant) Chiral condensate


• Check point: Dependence of variational error on temperature and mu
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Variational free energy is O(1), Nx=10

Akio TomiyaSimulation results

β = 1/T

T

μ
1.Mild dependence on μ (not breaking)

2.Hard for T -> 0 (large deviation) as expected

AT. 2205.08860
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Continuum extrapolation for Nx = 8, 10

Akio TomiyaSimulation results

Nx = 8 Nx = 10

Continuum limit with a polynomial ansatz

it looks good So far*

We use Nx = 10 results for the phase diagram

*(I did not include additive mass shift (Ross Dempsey+ arXiv: 2206.05308).

I thank to Takis Angelides (DESY) and Etsuko Itou (RIKEN) for letting me know this important reference!)

AT. 2205.08860
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Akio TomiyaSummary for T-mu

• We investigate T-μ phase diagram for Schwinger model


• Continuum extrapolation has been evaluated (except for additive mass 
renormalization by 2206.05308)


• The variational approach does not show difficulty for our parameter regime


• Towards to go large volume, optimization of code, GPU version, tensor 
network. (noise-free) real device!

⟨ψ ψ⟩T,μ

⟨ψ ψ⟩0.05,0

Fukushima ,  Hatsuda

Rept.Prog.Phys.74:014001,2011

AT. 2205.08860
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QFT with Hamiltonian
Same hamiltonian

Akio Tomiya

U(τ) = e−τHU(t) = e−itH To Euclid (t → τ)

To Minkowski (τ → t)

ρ = U(τ)/Z

Z = ∫ 𝒟ψ̄𝒟ψeiSM

t = − iτ

Z = ∫ 𝒟ψ̄𝒟ψe−SE

SM = ∫
∞

−∞
dt∫ ddx ℒM(x, t) SE = ∫

1/T

0
dτ∫ ddx ℒE(x, τ)

Fermion has Anti-PBC for imaginary time direction. 
This is necessary to connect get trace formula  
in the operator formalism

ψ(τ + 1/T, ⃗x ) = − ψ(τ, ⃗x )

path int Path int

⟨OO(t)⟩ = ⟨Ω | 𝖳̂O(0)O(t) |Ω⟩ ⟨OO(τ)⟩ = Tr[O(0)O(τ)ρ]
|Ω⟩ ∼ lim U(t) |0⟩

H : Hamiltonian for QFT)
Finte temperatureReal time

Conventional QFT

This work

perturbation

perturbation

Operator formalism
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Variational free energy is O(1), Nx=10

Akio TomiyaSimulation results
Approx Exact

Approx Exact
~1/a

~1/a

1.Mild dependence on μ

2.Hard for T -> 0 (large deviation) as expected

AT. 2205.08860
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SU(4)
Variational ansatz

Akio Tomiya

J. -Guo Liu+ 1902.02663

The general gate consists of 15 single qubit gates and 3 CNOT gates. 

Each two qubit unitary is parametrized by 15 parameters in the rotational gates, which 

parametrizes the SU(4) group. 



Akio TomiyaVQE and Beta VQE 1/2

• Quantum machine: Exact ground state preparation is hard. In particular, it is 
difficult on near term devices


• Variational method for a pure state with a short circuit (VQE, variation quantum 
eigen-solver). 


• Quantum/Classical hybrid algorithm, iterative


• Parametrized unitary circuit (~parametrized state , : a set of parameters) 


• , and  is a short circuit (entanglement + 
rotations)


• If , , where  is the exact ground state 
= Variational approach for quantum system


•

|θ⟩ θ

|θ⟩ = Û(θ)( |0⟩1 |0⟩2 |0⟩3⋯) Û(θ)

⟨θ |H |θ⟩ = 0 |θ⟩ ≈ |Ω⟩ |Ω⟩

Background: VQE is a variational method
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Beta VQE is a variational method for mixed states

Akio TomiyaVQE and Beta VQE (skip)

• Variational method for mixed states: Variational method on ρ


•  ,     (parameters)


• ,  and  : (roughly) fermion excitation


• : parametrized pure states, similar to the conventional VQE


• : Classically approximated distribution for a configuration of ,  
Neural network (MADE*) is used.  = parameters


• Minimizing , we get approximated a set of states (= thermal)


• Shifted one (by a constant) is used in practice:


•   

ρΘ = ∑
{ ⃗x }

pϕ[ ⃗x ] Uθ | ⃗x ⟩⟨ ⃗x |U†
θ Θ = θ ∪ ϕ

⃗x = (x1, x2, x3, ⋯, xk, ⋯)⊤ xk ∈ {0,1}

Uθ | ⃗x ⟩

pϕ[ ⃗x ] ⃗x
ϕ

D(ρΘ |ρexact
T,μ )

ℒ(Θ) ≡ D(ρΘ |ρexact
T,μ ) − ln Z⏟

const

= Tr[ρΘ ln ρΘ] +
1
T

Tr[ρΘ(Ĥ − μN̂)]

J. -Guo Liu+ 1902.02663
*M. Germain+ 1502.03509
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The two language problem and solution?
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Akio Tomiya

• Programs for machine learning are usually implemented in Python


• LatticeQCD is in C++ (+CUDA) 


• Two different languages used = “2 (programming) language problem”


• Use of one language is better for productivity


• Python + LQCD: GPT for Grid, PyBridge++ for Bridge++, PyQCD


• Julia language* could be a solution of the problem 

• High performance as C++, Write like Python


• NASA uses Julia 😲. Works on supercomputers


• Machine learning, GPU and MPI friendly (Flux.jl, CUDA.jl, MPI.jl etc)


• LatticeQCD.jl, AT & Y. Nagai (updating to 1.0):  
MPI-Parallel, stout smearing, domain-wall, staggered, (R)HMC, improved gauge 
actions, SU(Nc), gauge-covariant-neural net, ILDG support, etc…

The two language problem and solution?

100 * introduction: https://www.youtube.com/c/TheJuliaLanguage/playlists, https://akio-tomiya.github.io/julia_in_physics/ (japanese)

https://akio-tomiya.github.io/julia_in_physics/


• Programs for machine learning are usually implemented in Python


• LatticeQCD is in C++ (+CUDA) 


• Two different languages used = “2 (programming) language problem”


• Use of one language is better for productivity


• Python + LQCD: GPT for Grid, PyBridge++ for Bridge++, PyQCD


• Julia language* could be a solution of the problem 

• High performance as C++, Write like Python


• NASA uses Julia 😲. Works on supercomputers


• Machine learning, GPU and MPI friendly (Flux.jl, CUDA.jl, MPI.jl etc)


• LatticeQCD.jl, AT & Y. Nagai (updating to 1.0):  
MPI-Parallel, stout smearing, domain-wall, staggered, (R)HMC, improved gauge 
actions, SU(Nc), gauge-covariant-neural net, ILDG support, etc…

The two language problem and solution?

101 * introduction: https://www.youtube.com/c/TheJuliaLanguage/playlists, https://akio-tomiya.github.io/julia_in_physics/ (japanese)
Akio Tomiya

https://akio-tomiya.github.io/julia_in_physics/
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Extended VQE for mixed states

Akio TomiyaBeta VQE 2/4

• How can we realize  for  


• Minimize Kullback–Leibler–Umegaki divergence (pseudo-distance)


• 


• Relative entropy for density matrices (Classical ver. is called KL div.)


• This is bounded  and saturated iff  


• In practice, we minimize shifted one, 

ρΘ ≈ ρ ρ =
1
Z

e− 1
T (Ĥ−μN̂)

D(ρΘ |ρ) = Tr[ρΘ ln
ρΘ

ρ
] = Tr[ρΘ ln ρΘ] − Tr[ρΘ ln ρ]

D(ρΘ |ρ) ≥ 0 ρΘ = ρ

ℒ(Θ) = D(ρΘ |ρ) − ln Z⏟
const

= Tr[ρΘ ln ρΘ] +
1
T

Tr[ρΘ(Ĥ − μN̂)]

Jin-Guo Liu+ 1902.02663
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Akio TomiyaNote (skip)

(const in Θ)

ρT,μ =
1

ZT,μ
e− 1

T (Ĥ−μN̂ )

T,μ
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Extended VQE for mixed states

Akio TomiyaBeta VQE 3/4

• 


•    


• We need two derivatives


•  : Classical 


• : Quantum 

ℒ(Θ) = Tr[ρΘ ln ρΘ] +
1
T

Tr[ρΘ(Ĥ − μN̂)]

Tr[ρΘ log ρΘ] = ∑
{ ⃗x }

pϕ( ⃗x )log pϕ( ⃗x )

∂
∂ϕ

ℒ(Θ) =
∂

∂ϕ ∑
{ ⃗x }

pϕ( ⃗x )[log pϕ( ⃗x )]

∂
∂θ

ℒ(Θ) =
1
T

∂
∂θ

⟨ ⃗x |U†
θ ℋUθ | ⃗x ⟩]

REINFORCE algorithm

p: a neural network 
   -> gradient descent

Jin-Guo Liu+ 1902.02663



MADE: Masked Auto-encoder for Distribution Estimation 
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1502.03509

I (mostly) skip this section in the seminar



• MADE = Masked Auto-encoder for Distribution Estimation


• Auto-encoder is a neural network


• It can mimic a joint distribution of binary variables (0, 1)


•  is distributed as   


• It is categorized as a generative model (as the normalizing flow)


• It is correctly normalized

(x1, x2, x3, x4) p(x1, x2, x3, x4) ≡ p[ ⃗x ]

(simple) Neural network for probability estimation 
Summary of MADE

arXiv: 1502.03509



• A configuration of variables  is distributed as 
 


• Probability distribution is normalized. 


• For binary variables, 

(x1, x2, x3, x4)
p(x1, x2, x3, x4) ≡ p[ ⃗x ]

1 =
1

∑
x1=0

1

∑
x2=0

1

∑
x3=0

1

∑
x4=0

p(x1, x2, x3, x4) = ∑
{ ⃗x }

pϕ[ ⃗x ]

Product rule in the probability theory
Basics (skip)

arXiv: 1502.03509



• definition of the conditional probability is  


• Equivalently,  : Product rule


• We can generalize to more than 2 variables


•     


• 


• We abbreviate this as  

p(x2 |x1) ≡
p(x1, x2)

p(x1)

p(x1, x2) = p(x1)p(x2 |x1)

p(x3 |x1, x2) =
p(x1, x2, x3)

p(x1, x2)
⇔ p(x1, x2, x3) = p(x3 |x1, x2)p(x2 |x1)p(x1)

p(x1, x2, x3, x4) = p(x1)p(x2 |x1)p(x3 |x1, x2)p(x4 |x1, x2, x3)

p(x1, x2, x3, x4) =
4

∏
k=1

p(xk |x<k)

Product rule in the probability theory
Basics (skip)

arXiv: 1502.03509



• A (un-)fair coin, which takes face for a probability p, Tail for 1-p


• This process is called “Bernoulli trial” in Math


•  Let us denote it as Bernoulli(p)

un-fair coin
Bernoulli process (skip)

arXiv: 1502.03509



• Neural network (NN) mimics 
, whose input is binary 

array  : 3 correlated coins


• We can draw a sample using 


• How can we construct 


• input only depends on 


• How can we construct 


• input only depends on 

p(x1, x2, x3) = p(x1)p(x2 |x1)p(x3 |x1, x2)
(x1, x2, x3)

̂x1 ∼ y1 ≈ p(x1)

̂x2 ∼ y2 ≈ p(x2 |x1)

x1

̂x3 ∼ y3 ≈ p(x3 |x1, x2)

x1, x2

Product rule in the probability theory
Basics (skip)

arXiv: 1502.03509



Auto-encoder ~ (un normalized) flow
Auto-encoder (skip)

x1

x2

x3

y1

y2

y3

−E[x] = ∑
i

xi log yi + (1 − xi)log(1 − yi)

e−E[x] = ∏
i

y−xi
i (1 − yi)−(1−xi)

∑
{x}

e−E[x] ≠ 1 Not-normalized

arXiv: 1502.03509



Product rule
Auto-regressive property (skip)

y1 = p(x1 = 1), y2 = p(x2 = 1 |x1), y3 = p(x3 = 1 |x1, x2)

p(x1 = 0) = 1 − y1, p(x2 = 0 |x1) = 1 − y2, p(x3 = 0 |x1, x2) = 1 − y3

p(x1, x2, x3, x4) =
4

∏
k=1

p(xk |x<k)

−log p(x1, x2, x3, x4) = −
4

∑
k=1

log p(xk |x<k)

yd = p(xd = 1 |x<d) p(xd = 0 |x<d) = 1 − yd

arXiv: 1502.03509



Masked auto-encoder for density estimation
MADE (skip)

1

2

3

̂x2 ∼ y2 ≈ p(x2)

y1

y2

y3

x1

x2

x3

1

2

3
1

2

1

2

̂x1 ∼ y1 ≈ p(x1 |x2, x3)

̂x3 ∼ y3 ≈ p(x3 |x2)

arXiv: 1502.03509

Assign numbers on node:

Input& output node = assign 



Masked auto-encoder for density estimation
MADE (skip)

1

2

3

̂x2 ∼ y2 ≈ p(x2)

y1

y2

y3

x1

x2

x3

1

2

3
1

2

1

2

̂x1 ∼ y1 ≈ p(x1 |x2, x3)

̂x3 ∼ y3 ≈ p(x3 |x2)

arXiv: 1502.03509



Masked auto-encoder for density estimation
MADE (skip)

1

2

3

̂x2 ∼ y2 ≈ p(x2)

y1

y2

y3

x1

x2

x3

1

2

3
1

2

1

2

̂x1 ∼ y1 ≈ p(x1 |x2, x3)

̂x3 ∼ y3 ≈ p(x3 |x2)

arXiv: 1502.03509



Masked auto-encoder for density estimation
MADE (skip)

1

2

3

̂x2 ∼ y2 ≈ p(x2)

y1

y2

y3

x1

x2

x3

1

2

3
1

2

1

2

̂x1 ∼ y1 ≈ p(x1 |x2, x3)

̂x3 ∼ y3 ≈ p(x3 |x2)

arXiv: 1502.03509



Masked auto-encoder for density estimation
MADE (skip)

1

2

3

̂x2 ∼ y2 ≈ p(x2)

y1

y2

y3

x1

x2

x3

1

2

3
1

2

1

2
̂x3 ∼ y3 ≈ p(x3 |x2)

̂x1 ∼ y1 ≈ p(x1 |x2, x3)

arXiv: 1502.03509



Masked auto-encoder for density estimation
MADE (skip)

1

2

3

̂x2 ∼ y2 ≈ p(x2)

y1

y2

y3

x1

x2

x3

1

2

3
1

2

1

2

̂x1 ∼ y1 ≈ p(x1 |x1, x3)

̂x3 ∼ y3 ≈ p(x3 |x2)

arXiv: 1502.03509



Masked auto-encoder for density estimation
MADE (skip)

1

2

3

≈ p(x2)

y1

y2

y3

x1

x2

x3

1

2

3
1

2

1

2

≈ p(x1 |x2, x3)

≈ p(x3 |x2)

We can draw a set of sample  from  where  is network param.( ̂x1, ̂x2, ̂x3) pϕ(x1, x2, x3) ϕ

̂x2 ∼ y2

̂x1 ∼ y1(x2, x3)

̂x3 ∼ y3(x2)

arXiv: 1502.03509


