Neural net for lattice QCD, and quantum methods for finite-temperature and density

Akio Tomiya (Faculty in IPUT Osaka)

akio_at_yukawa.kyoto-u.ac.jp

PI: Grant-in-Aid for Transformative Research Areas (A)
MLPhYs Foundation of "Machine Learning Physics"
Grant-in-Aid for Early-Career Scientists CI: Grant-in-Aid for Scientific Research (C), etc

Based on arXiv: arXiv: 2103.11965, 2205.08860 etc

Happy＂Kann－reki＂（full circle）birthday

還暦おめでとうございます！

When I entered to master course in Osaka university in 2010 （12 years ago！）， Tetsuya was the second year as a professor in Osaka university （My supervisor Fukaya－san also joined HEP group as an assistant prof．in 2010）

We had a lot of study groups：String theory，lattice field theory，RG

Happy＂Kann－reki＂（full circle）birthday Onogi－san and me

Onogi－san＝Supervisor＇s Supervisor＇s of me＝Great master（大師匠）！
And a mentor of me（he always encouraged me）．
He taught me quantum field theory（perturbation theory／SM／RG／GWW trs）， lattice field theory，algorithms，how to read a code，general relativity，etc In particular，my master thesis about many flavor QCD．

Thank you and congratulations Onogi－san！

Outline

Two exotic topics

1.What and why QCD/lattice QCD?
2. Lattice QCD + Machine learning 1. "Neural net = Smearing"

$$
\frac{d U_{\mu}^{(t)}(n)}{d t}=\mathscr{G}^{\bar{\theta}}\left(U_{\mu}^{(t)}(n)\right)
$$

3. Lattice QCD + Quantum algorithm 1.Finite temp/dens for QFT

Introduction

QCD: a fundamental theory of particles inside of nuclei

QCD (Quantum Chromo-dynamics) in 3 + 1 dimension

$$
\begin{gathered}
S=\int d^{4} x\left[-\frac{1}{2} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}(\mathrm{i} \partial+g A-m) \psi\right] \\
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-\mathrm{i} g\left[A_{\mu}, A_{\nu}\right]
\end{gathered}
$$

$$
\text { Quantization: }|\psi(t)\rangle=\mathrm{e}^{-\mathrm{i} H t}|\psi(0)\rangle \quad\left[A_{\mu}, E_{\nu}\right]=\mathrm{i} \hbar \delta_{\mu \nu}
$$

- QCD enables us to calculate (in principle):
- Equation of state of neutron star, Tc
- Scattering of quarks and gluons, Parton distributions
- Hadron spectrum!
- Strongly coupled quantum system
- Use lattice QCD + Monte-Carlo

Introduction

Lattice path integral > 1000 dim, Trapezoidal int is impossible

K. Wilson 1974

Innaginary time $t=-\mathrm{i} \tau$

$$
S=\int d^{4} x\left[+\frac{1}{2} \operatorname{tr} F_{\mu \nu} F_{\mu \nu}+\bar{\psi}(\not \partial-\mathrm{i} g A+m) \psi\right]
$$

Lattice regularization

$$
U_{\mu}=\mathrm{e}^{a \mathrm{ig} g A_{\mu}}
$$

$$
S[U, \psi, \bar{\psi}]=a^{4} \sum_{n}\left[-\frac{1}{g^{2}} \operatorname{Re} \operatorname{tr} U_{\mu \nu}+\bar{\psi}(I D+m) \psi\right] \quad \text { cutoff }=a^{-1}
$$

Both S give same expectation value for long range $\operatorname{Re} U_{\mu \nu} \sim \frac{-1}{2} g^{2} a^{4} F_{\mu \nu}^{2}+O\left(a^{6}\right)$
Path integral formalism

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\frac{1}{Z} \int \mathscr{D} U \mathscr{D} \bar{\psi} \mathscr{D} \psi e^{-S} \mathcal{O}(U)=\frac{1}{Z} \int \mathscr{D} U e^{-S_{\text {gauge }}[U]} \operatorname{det}(D+m) \mathscr{O}(U) \\
& =\frac{1}{Z} \int \frac{\mathscr{D} U e^{-S_{\text {eff }}[U]} \mathcal{O}(U)}{\square} \\
& =\prod_{n \in\{\mathbb{Z} / L\}^{4}} \prod_{\mu=1}^{4} d U_{\mu}(n) \begin{array}{l}
>1000 \text { dim. We cannot use Newton-Cotes } \\
\text { type integral like Trapezoid, Simpson etc. } \\
\text { We cannot control numerical error }
\end{array}
\end{aligned}
$$

Introduction

Monte-Carlo integration is available

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathscr{D} U e^{-S_{\mathrm{eff}}[U]} \mathcal{O}(U) \quad S_{\mathrm{eff}}[U]=S_{\text {gauge }}[U]-\log \operatorname{det}(\mathbb{D}[U]+m)
$$

Monte-Carlo: Generate field configurations with" $P[U]=\frac{1}{Z} e^{-S_{\text {eff }}[U] \text { ". It gives expectation value }}$

HMC: Hybrid (Hamiltonian) Monte-Carlo De-facto standard algorithm

$$
S(x, y)=\frac{1}{2}\left(x^{2}+y^{2}+x y\right)
$$

Introduction

Monte-Carlo integration is available

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathscr{D} U e^{-S_{\mathrm{eff}}[U]} \mathcal{O}(U) \quad S_{\mathrm{eff}}[U]=S_{\text {gauge }}[U]-\log \operatorname{det}(\mathbb{D}[U]+m)
$$

Monte-Carlo: Generate field configurations with " $P[U]=\frac{1}{Z} e^{-S_{\text {eff }}[U] \text { ". It gives expectation value }}$

Error of integration is determined by the number of sampling

$$
\langle O\rangle=\frac{1}{N_{\text {sample }}} \sum_{k}^{N_{\text {mance }}} O\left[U_{k}\right] \pm O\left(\frac{1}{\sqrt{N_{\text {sample }}}}\right)
$$

Introduction

Correlation between samples = inefficiency of calculation

$$
\begin{aligned}
& \langle O[\phi]\rangle=\frac{1}{N} \sum_{k}^{N} O\left[\phi_{k}\right] \pm O\left(\frac{1}{\sqrt{N_{\text {indep }}}}\right) \\
& N_{\text {indep }}=\frac{N_{\text {sample }}}{2 \tau_{a c}} \\
& \bar{\Gamma}(t)=\frac{1}{N-t} \sum_{k}\left(O\left[\phi_{k+t}\right]-\bar{O}\right)\left(O\left[\phi_{k}\right]-\bar{O}\right) \sim e^{-t / \tau_{a c}}
\end{aligned}
$$

Introduction

Summary for now: long autocorrelation = inefficiency

$$
\begin{gathered}
\langle O[\phi]\rangle=\frac{1}{N} \sum_{k}^{N} O\left[\phi_{k}\right] \pm O\left(\frac{1}{\sqrt{N_{\text {indep }}}}\right) \\
N_{\text {indep }}=\frac{N_{\text {sample }}}{2 \tau_{a c}}
\end{gathered}
$$

$\tau_{a c}$ is given by an update algorithm (N. Madras et. al 1988)

- Autocorrelation time $\tau_{a c}$ quantifies similarity between samples
- $\tau_{a c}$ is algorithm dependent quantity
- If $\tau_{a c}$ becomes half, we can get doubly precise results in the same time cost

Can we make this mild using machine learning?

Neural net can make human face images

Introduction

Neural net can make human face images

Neural nets can generate realistic human faces (Style GAN2)

Realistic Images can be generated by machine learning! Configurations as well? (configuration ~ images?)

ML for LQCD is needed

- Machine learning/ Neural networks
- Data processing techniques for 2d image in daily life (pictures = pixels = a set of real \#)
- Neural network can generate images! (arpproximately)
- Lattice QCD is more complicated than pictures
- 4 dimension
- Non-abelian gauge d.o.f. and symmetry
- Fermions
- Exactness of algorithm is necessary
- Q. How can we deal with?

Introduction

Configuration generation with machine learning is developing

Year	Group	ML	Dim.	Theory	Gauge sym	Exact?	Fermion?	Lattice2021/ref
2017	AT, Akinori Tanaka	$\begin{gathered} \text { RBM } \\ +\mathrm{HMC} \end{gathered}$	2d	Scalar	-	No	No	arXiv: 1712.03893
2018	K. Zhou+	GAN	2d	Scalar	-	No	No	arXiv: 1810.12879
2018	J. Pawlowski +	$\begin{gathered} \text { GAN } \\ +H M C \end{gathered}$	2d	Scalar	-	Yes?	No	arXiv: 1811.03533
2019	MIT+	Flow	2d	Scalar	-	Yes	No	arXiv: 1904.12072
2020	MIT+	Flow	2d	U(1)	Equivariant	Yes	No	arXiv: 2003.06413
2020	MIT+	Flow	2d	SU(N)	Equivariant	Yes	No	arXiv: 2008.05456
2020	AT, Akinori Tanaka+	SLMC	4d	SU(N)	Invariant	Yes	Partially	arXiv: 2010.11900
2021	м. Medvidovic'+	A-NICE	2d	Scalar	-	No	No	arXiv: 2012.01442
2021	S. Foreman	L2HMC	2d	U(1)	Yes	Yes	No	
2021	AT+	SLHMC	4d	QCD	Covariant	Yes	YES!	This talk
2021	L. Del Debbio+	Flow	2d	Scalar, O(N)	-	Yes	No	
2021	MIT+	Flow	2d	Yukawa	-	Yes	Yes	
2021	$\begin{gathered} \hline \text { S. Foreman, } \\ \mathrm{AT}_{+} \end{gathered}$	Flowed HMC	2d	U(1)	Equivariant	Yes	No but compatible	arXiv: 2112.01586
2021	XY Jing	Neural not	2d	$U(1)$	Equivariant	Yes	No	
2022	J. Finkenrath	Flow	2d	$\mathrm{U}(1)$	Equivariant	Yes	Yes (diagonalization)	arxiv: 2201.02216
2022	MIT+	Flow	2d, 4d	U(1), QCD	Equivariant	Yes	Yes	arXiv:2202.11712 +
2022	AT+	Flow	2d, 3d	Scalar		Yrs		

LQCD + Machine learning How to deal gauge sym.

Introduction

Neural network is a universal approximator of functions

Image classification, cats and dogs

Introduction

Affine transformation + element-wise transformation

Fully connected neural networks

$$
f_{\theta}(\vec{x})=\sigma^{(l=2)}\left(W^{(l=2)} \sigma^{(l=1)}\left(W^{(l=1)} \vec{x}+\vec{b}^{(l=1)}\right)+\vec{b}^{(l=2)}\right)
$$

Component of neural net: $l=2,3, \cdots$ and $\vec{u}^{(1)}=\vec{x}$

$$
\left\{\begin{array}{l}
z_{i}^{(l)}=\sum_{j} w_{i j}^{(l)} u_{j}^{(l-1)}+b_{i}^{(l)} \\
u_{i}^{(l)}=\sigma^{(l)}\left(z_{i}^{(l)}\right)
\end{array}\right.
$$

Matrix product vector addition (w, b determined in the training)
element-wise (local) Non-linear transf. Typically $\sigma \sim$ tanh shape
Neural network = (Variational) map between vector to vector

Introduction

Neural network is a universal approximator of functions

Image classification, cats and dogs

Fact: neural network can mimic any function! (universal app. thm)
In this example, neural net mimics a map between

Deep Learning and Physics image (10,000-dim vector) and label (2-dim vector)

What is the neural networks? Convolution layer = trainable filter

Trainable filter

W_{11}	W_{12}	W_{13}
W_{21}	W_{22}	W_{23}
W_{31}	W_{32}	W_{33}

Edge detection
Smoothing
(Gaussian tilter)

Gaussian filter		
1 1 2 16 2 42 1 2		

This can be any filter which helps feature extraction but still transitionally equivariant!

Convolution neural network

Training can be done with back propagation

Smearing

Smoothing improves global properties

Eg.

Coarse image

Numerical derivative is unstable

Smoothened image

Numerical derivative is stable

We want to smoothen gauge configurations with keeping gauge symmetry

Two types:

APE-type smearing
Stout-type smearing
M. Albanese+ 1987
R. Hoffmann+ 2007
C. Morningster+ 2003

Smearing

Smoothing with gauge symmetry, APE type

APE-type smearing

R. Hoffmann+ 2007

$$
\begin{array}{rc}
U_{\mu}(n) \rightarrow U_{\mu}^{\text {fat }}(n)=\mathcal{N}\left[(1-\alpha) U_{\mu}(n)+\frac{\alpha}{6} V_{\mu}^{\dagger}[U](n)\right] & \text { Covariant sum } \\
& \mathcal{N}[M]=\frac{M}{\sqrt{M^{\dagger} M}} \text { Or projection } \\
V_{\mu}^{\dagger}[U](n)=\sum_{\mu \neq \nu} U_{\nu}(n) U_{\mu}(n+\hat{\nu}) U_{\nu}^{\dagger}(n+\hat{\mu})+\cdots & V_{\mu}^{\dagger}[U](n) \& U_{\mu}(n) \text { shows same transformation } \\
\rightarrow U_{\mu}^{\text {fat }}[U](n) \text { is as well }
\end{array}
$$

Schematically,

In the calculation graph,

Smearing

Smoothing with gauge symmetry, stout type

Stout-type smearing

$$
\begin{aligned}
U_{\mu}(n) \rightarrow U_{\mu}^{\mathrm{fat}}(n) & =\mathrm{e}^{Q} U_{\mu}(n) \\
& =U_{\mu}(n)+\left(\mathrm{e}^{Q}-1\right) U_{\mu}(n)
\end{aligned}
$$

$Q:$ anti-hermitian traceless plaquette
This is less obvious but this actually obeys same transformation

Schematically,

In the calculation graph,

Smearing

Smearing decomposes into two parts

General form of smearing (covariant transformation)

$$
\begin{cases}z_{\mu}(n)=w_{1} U_{\mu}(n)+w_{2} \mathscr{G}[U] & \text { Gauge covariant sum } \\ U_{\mu}^{\mathrm{fat}}(n)=\mathscr{N}\left(z_{\mu}(n)\right) & \text { A local function }\end{cases}
$$

Smearing

Smearing ~ neural network with fixed parameter!

General form of smearing (covariant transformation)

$$
\begin{cases}z_{\mu}(n)=w_{1} U_{\mu}(n)+w_{2} \mathscr{G}[U] & \text { Gauge covariant sum } \\ U_{\mu}^{\mathrm{fat}}(n)=\mathcal{N}\left(z_{\mu}(n)\right) & \text { A local function }\end{cases}
$$

It has similar structure with neural networks,

$$
\begin{cases}z_{i}^{(l)}=\sum_{j} w_{i j}^{(l)} u_{j}^{(l-1)}+b_{i}^{(l)} & \begin{array}{l}
\text { Matrix product } \\
\text { vector addition }
\end{array} \\
u_{i}^{(l)}=\sigma^{(l)}\left(z_{i}^{(l)}\right) & \text { element-wise (local) } \\
\text { Non-linear transf. } \\
\text { Typically } \sigma \sim \text { tanh shape }\end{cases}
$$

Actually, we can find a dictionary between them

Gauge covariant neural network = trainable smearing

Dictionary		(convolutional) Neural network	Smearing in LQCD
	Input	Image (2d data, structured)	gauge config (4d data, structured)
	Output	Image (2d data, structured)	gauge config (4d data, structured)
	Symmetry	Translation	Translation, rotation $\left(90^{\circ}\right)$, Gauge sym.
	with Fixed param	Image filter	(APE/stout ...) Smearing
	Local operation	Summing up nearest neighbor with weights	Summing up staples with weights
	Activation function	Tanh, ReLU, sigmoid, ...	projection/normalization in Stout/HYP/HISQ
	Formula for chain rule	Backprop	"Smeared force calculations" (Stout)
	Training?	Backprop + Delta rule	AT Nagai 2103.11965

Takeaway message

Gauge Covariant Neural networks
 = trainable smearing, training for SU(N) fields

Gauge covariant neural network

= trainable smearing

Gauge covariant neural network = general smearing with trainable parameters w

$$
U_{\mu}^{(l+1)}(n)\left[U^{(l)}\right]:\left\{\begin{array}{l}
z_{\mu}^{(l+1)}(n)=w_{1}^{(l)} U_{\mu}^{(l)}(n)+w_{2}^{(l)} \mathscr{G}_{\bar{\theta}}^{(l)}[U] \\
\mathcal{N}\left(z_{\mu}^{(l+1)}(n)\right)
\end{array}\right.
$$

(Weight " w " can be depend on n and $\mu=$ fully connected like. Less symmetric, more parameters)
e.g.

$$
U_{\mu}^{\mathrm{NN}}(n)[U]=U_{\mu}^{(3)}(n)\left[U_{\mu}^{(2)}(n)\left[U_{\mu}^{(1)}(n)\left[U_{\mu}(n)\right]\right]\right]
$$

Good properties: Obvious gauge symmetry. Translation, rotational symmetries.

$$
U_{\mu}(n) \mapsto U_{\mu}^{\mathrm{NN}}(n)=U_{\mu}^{\mathrm{NN}}(n)[U]
$$

1. Gauge covariant composite function:
Input = gauge field, Output = gauge field
2. Parameters in the network can be trainable using ML techniques.

Gauge covariant neural network

 Training can be done with (extended) back propagation

 Training can be done with (extended) back propagation}

Gauge inv. loss function can be constructed by gauge invariant actions

Usual neural network

Gauge covariant neural network

 Neural ODE of Cov-Net = "gradient flow"

 Neural ODE of Cov-Net = "gradient flow"}

[^0]arXiv: 1806.07366 (Neural IPS 2018 best paper)

Gauge covariant neural network Neural ODE of Cov-Net = "gradient flow"

arXiv: 1512.03385
arXiv: 1806.07366 (Neural IPS 2018 best paper)

AT Y. Nagai arXiv: 2103.11965
"Gradient" flow (not has to be gradient of S)
"Continuous stout smearing is the Wilson flow"

Gauge covariant neural network Short summary

	Symmetry	Fixed parameter	Continuum limit of layers	How to Train
Conventional neural network	Convolution: Translation	Convolution: Filtering (e.g Gaussian/ Laplasian)	ResNet: Neural ODE	Delta rule and backprop Gradient opt.
Gauge cov. net	Gauge covariance Translation equiv, 90° rotation equiv	Smearing	"Gradient flow""	Extended Delta rule and backprop Gradient opt.

An application Self-learning HMC

Application for the staggered in 4d Problems to solve

Our neural network enables us to parametrize gauge symmetric action covariant way. It can be used in variational ansatz in gauge theory.

> e.g.

$$
\begin{aligned}
& S^{\mathrm{NN}}[U]=S_{\text {plaq }}\left[U_{\mu}^{\mathrm{NN}}(n)[U]\right] \\
& S^{\mathrm{NN}}[U]=S_{\text {stag }}\left[U_{\mu}^{\mathrm{NN}}(n)[U]\right]
\end{aligned}
$$

Test of our neural network?

Can we mimic a different Dirac operator using neural net?
Artificial example for HMC:

$$
\begin{cases}\text { Target action } & S[U]=S_{\mathrm{g}}[U]+S_{\mathrm{f}}[\phi, U ; m=0.3] \\ \text { Action in MD } & S_{\theta}[U]=S_{\mathrm{g}}[U]+S_{\mathrm{f}}\left[\phi, U_{\theta}^{\mathrm{NN}}[U] ; m_{\mathrm{h}}=0.4\right]\end{cases}
$$

Q. Simulations with approximated action can be exact?
-> Yes! with SLHMC (Self-learning HMC)

SL MC = Exact algorithm with ML

HMC

Eom Metropolis

Both use
$H_{\mathrm{HMC}}=\frac{1}{2} \sum \pi^{2}+S_{\mathrm{g}}+S_{\mathrm{f}}$

Non-conservation of H cancels since the molecular dynamics is reversible

Metropolis

$H=\frac{1}{2} \sum \pi^{2}+S_{\mathrm{g}}+S_{\mathrm{f}}[U]$
Eom
$H=\frac{1}{2} \sum \pi^{2}+S_{\mathrm{g}}+S_{\mathrm{f}}\left[U^{\mathrm{NN}}[U]\right]$
Neural net approximated fermion action but exact

SLHMC works as an adaptive reweighting!

Application for the staggered in 4d Lattice setup and question

Target Two color QCD (plaquette + staggered)

Algorithms

Parameter

Target action

Action in MD (for SLHMC)

SLHMC, HMC (comparison)

Four dimension, $\mathrm{L}=4, \mathrm{~m}=0.3$, beta $=2.7, \mathrm{Nf}=4$ (non-rooting)

$$
S[U]=S_{\mathrm{g}}[U]+S_{\mathrm{f}}[\phi, U ; m=0.3],
$$

For Metropolis Test

$$
S_{\theta}[U]=S_{\mathrm{g}}[U]+S_{\mathrm{f}}\left[\phi, U_{\theta}^{\mathrm{NN}}[U] ; m_{\mathrm{h}}=0.4\right],
$$

Observables Plaquette, Polyakov loop, Chiral condensate $\langle\bar{\psi} \psi\rangle$

Full scratch, fully written in Julia lang.
(But we added some functions on the public version)

Lattice QCD code We made a public code in Julia Language

What is julià? 1.Open source scientific language (Just in time compiler)
2.Fast as C/Fortran (sometime, faster), Productive as Python
3.Machine learning friendly (Julia ML packages + Python libraries w/ PyCall) 4. Supercomputers support Julia
${ }^{\boldsymbol{\phi}+\mathbf{+}} \mathbf{L a t t i c e Q C D} \mathbf{j} \boldsymbol{J}$ (Official package) : Laptop/desktop/PC-cluster/Jupyter (Google colab) SU(Nc)-heatbath/SLHMC/SU(Nc) Stout/(R)HMC/staggered/Wilson-Clover Domain-wall/Measurements (Now updating to v1.0, MPI ver is ready)

| 3 steps in 5 min |
| :--- | | 1. Download Julia binary |
| :--- |
| 2. Add the package through Julia package manager |
| 3. Execute! |

https://github.com/akio-tomiya/LatticeQCD.jI

Details (skip)

Results: Loss decreases along with the training

Loss function: $\quad L_{\theta}[U]=\frac{1}{2}\left|S_{\theta}[U, \phi]-S[U, \phi]\right|^{2}, \sim-\log$ (reweighting factor)

Without training, $\mathrm{e}^{\wedge}(-\mathrm{L}) \ll 1$, this means that candidate with approximated action never accept.
After training, $\quad e^{\wedge}(-L) \sim 1$, and we get practical acceptance rate!

Application for the staggered in 4d Results are consistent with each other

Expectation value			
Algorithm	Observable	Value	
HMC	Plaquette	0.7025(1)	
SLHMC	Plaquette	0.7023(2)	
HMC	\|Polyakov loop		0.82(1)
SLHMC	\|Polyakov loop		0.83(1)
HMC	Chiral condensate	0.4245(5)	
SLHMC	Chiral condensate	0.4241(5)	
Acceptance $=40 \%$			

Future work: Domain-wall/Overlap SLHMC (?)

Other architecture: Flow based sample algorithm

Related works

Gradient flow as a trivializing map

Trivializing map for lattice QCD has been demanded...

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \cdots \int \prod_{x \in 100} \prod_{y \in 100} \prod_{z \in 100} \prod_{t \in 100} d \phi_{x, y, z, t} \mathrm{e}^{-S(\phi)} \mathscr{O}\left[\phi_{x, y, z, t}\right]
$$

$$
\tilde{\phi}=\mathscr{F}_{\tau}(\phi) \quad \text { Flow equation (change variable) }
$$

If the solution satisfies $S\left(\mathscr{F}_{\tau}(\phi)\right)+\ln \operatorname{det}($ Jacobian $)=\sum_{n} \tilde{\phi}_{n}^{2}$,

Flow based sampling algorithm Normalizing flow ~ Change of variables

Simplest example: Box Muller

Point: Make problem easier with change of variables (make the measure flat)

$$
\begin{aligned}
& \begin{array}{c}
\text { RHS is flat measure } \\
\rightarrow \text { We can sample like right eq. }
\end{array}\left\{\begin{array}{l}
\xi_{1} \sim(0,2 \pi) \\
\xi_{2} \sim(0,1)
\end{array}\right. \\
& \begin{array}{l}
\text { We can reconstruct } \\
\text { a "field config" } x, y \\
\text { for original theory } \\
\text { like right eq. }
\end{array}
\end{aligned}\left\{\begin{array}{l}
x=r \cos \theta \quad \theta=\xi_{1} \\
y=r \sin \theta \quad r=\sqrt{-2 \log \xi_{2}}
\end{array}\right.
$$

A change of variable which $D \phi e^{-S[\phi]}$ makes flat $=$ Trivializing map

Related works

Gradient flow as a trivializing map

Trivializing map for lattice QCD has been demanded...

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \cdots \int \prod_{x \in 100} \prod_{y \in 100} \prod_{z \in 100} \prod_{t \in 100} d \phi_{x, y, z, t} \mathrm{e}^{-S(\phi)} \mathcal{O}\left[\phi_{x, y, z, t}\right]
$$

$$
\tilde{\phi}=\mathscr{F}_{\tau}(\phi) \quad \text { Flow equation (change variable) }
$$

If the solution satisfies $S\left(\mathscr{F}_{\tau}(\phi)\right)+\ln \operatorname{det}($ Jacobian $)=\sum_{n} \tilde{\phi}_{n}^{2}$,

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \cdots \int \prod_{x \in 100} \prod_{y \in 100} \prod_{z \in 100} \prod_{t \in 100} d \tilde{\phi} O\left[\mathscr{F}_{\tau}(\phi)\right] \mathrm{e}^{-\sum \tilde{\phi}_{n}^{2}}
$$

It becomes Gaussian integra!! Easy to evaluate!!
However, the Jacobian cannot evaluate easily, so it is not practical. Life is hard.

Related works

Flow based algorithm = neural net represented flow algorithm

MIT + Google brain 2019~
(a) Normalizing flow between prior and output distributions

(b) Inverse coupling layer

FIG. 1: In (a), a normalizing flow is shown transforming samples z from a prior distribution $r(z)$ to samples ϕ distributed according to $\tilde{p}_{f}(\phi)$. The mapping $f^{-1}(z)$ is constructed by composing inverse coupling layers g_{i}^{-1} as defined in Eq. (10) in terms of neural networks s_{i} and t_{i} and shown diagrammatically in (b). By optimizing the neural networks within each coupling layer, $\tilde{p}_{f}(\phi)$ can be made to approximate a distribution of interest, $p(\phi)$.

$$
\text { Train a neural net as a "flow" } \tilde{\phi}=\mathscr{F}(\phi)
$$

If it is well approximated, we can sample from a Gaussian It can be done "Normalizing flow" (Real Non-volume preserving map) Moreover, Jacobian is tractable!

Related works

Flow based algorithm = neural net represented flow algorithm

MIT + Google brain 2019~

(b) Inverse coupling layer

FIG. 1: In (a), a normalizing flow is shown transforming samples z from a prior distribution $r(z)$ to samples ϕ distributed according to $\tilde{p}_{f}(\phi)$. The mapping $f^{-1}(z)$ is constructed by composing inverse coupling layers g_{i}^{-1} as defined in Eq. (10) in terms of neural networks s_{i} and t_{i} and shown diagrammatically in (b). By optimizing the neural networks within each coupling layer, $\tilde{p}_{f}(\phi)$ can be made to approximate a distribution of interest, $p(\phi)$.

Their sampling strategy

> sample gaussian \rightarrow inverse trivializing map \rightarrow QFT configurations
> Tractable Jacobian (by even-odd strategy)
> After sampling, Metropolis-Hastings test (Detailed balance) \rightarrow exact!

Flow based sampling algorithm Flow based ML for QFT

MIT + Deepmind + ...

Reject
Reject
(Use left conf.)

Normalizing flow in Julia We made a public code in Julia Language

GomalizingFlow.jl: A Julia package for Flow-based

 sampling algorithm for lattice field theory
口 Pr

Akio Tomiya
Faculty of Technology and Science, International Professional University of Technology,
3-3-1, Umeda, Kita-ku, Osaka, 530-0001, Osaka, Japan

Satoshi Terasaki
AtelierArith, 980-0004, Miyagi, Japan
https://arxiv.org/abs/2208.08903

Abstract

GomalizingFlow.jl: is a package to generate configurations for quantum field theory on the lattice using the flow based sampling algorithm in Julia programming language. This software serves two main purposes: to accelerate research of lattice QCD with machine learning with easy prototyping, and to provide an independent implementation to an existing public Jupyter notebook in Python/PyTorch. GomalizingFlow.jl implements, the flow based sampling algorithm, namely, RealNVP and Metropolis-Hastings test for two dimension and three dimensional scalar field, which can be switched by a parameter file. HMC for that theory also implemented for comparison. This package has Docker image, which reduces effort for environment construction. This code works both on CPU and NVIDIA GPU.

Keywords: Lattice QCD, Particle physics, Machine learning, Normalizing flow, Julia

LQCD + Quantum galtorithm

Motivation

Sign problem prevents using Monte-Carlo

- Monte-Carlo enables us to evaluate expectation values for "statistical system", like lattice QCD in imaginary time

$$
\langle O[U]\rangle=\frac{1}{N_{\text {conf }}} \sum_{c}^{N_{\text {conf }}} O\left[U_{c}\right]+\mathcal{O}\left(\frac{1}{\sqrt{N_{\text {conf }}}}\right) \quad U_{c} \leftarrow P(U)=\frac{1}{Z} e^{-S[U]} \in \mathbb{R}_{+}
$$

- If we turn on the baryon chemical potential μ, Monte-Carlo methods do not work because $e^{-S[U]}$ becomes complex. This is no more probability. (sign problem)
- Operator formalism does not have such problem! But it requires huge memory to store quantum states, which cannot be realized even on supercomputer.
- Quantum states should be stored on quantum device (Feynman)

Motivation

$\mathrm{\mu}=0$ is good for Classical, $\mathrm{T}=0$ is good for Quantum

Classical machine: Lattice field theory calculations rely on

$$
P(U)=\frac{1}{Z} e^{-S[U]} \operatorname{det}(D[U]+m)^{2} \in \mathbb{R}_{+}
$$

- This $P(U)$ cannot be regarded as probability if $\mu \neq 0$ (sign problem)

Quantum machines can realize (any) unitary evolutions (Solovay Kitaev theorem),

$$
U(t)=\mathrm{e}^{-\mathrm{i} \hat{H} t} \quad \begin{aligned}
& \text { Phys.Rev.D } 105 \text { (2022) 9, } 094503 \\
& \text { and references therein }
\end{aligned}
$$

- No problem for $\mu \neq 0$ because we can only use unitary gates (operators)
- "Short time evolution" (shallow circuit) is preferred for near-term devices

	Classical Computers	Quantum Computers
Finite Density	Sign Problem	\checkmark
Finite Temperature	\checkmark	Challenging

We need a method to calculate $T>0$ and $\mu \neq 0$ for QCD and for near-term quantum devices

Summary of this talk
 Hybrid = Quantum algorithm + machine learning

Fukushima, Hatsuda

Rept.Prog.Phys.74:014001,2011

I investigated T-mu phase diagram using a quantum algorithm \& neural network (β-VQE, No sign problem) for Schwinger model (toy model of QCD)

QFT with Hamiltonian Hamiltonian vs Lagrangian

Operator formalism (This work)

H : Hamiltonian in QFT

Minkowski in $\mathrm{M} \wedge\{\mathrm{d}+1\}$

$$
U(t)=\mathrm{e}^{-\mathrm{i} t H \underset{\text { Euclid }(t \rightarrow \tau)}{\stackrel{\text { Real time }}{\leftrightarrows} \mathrm{Minkowski}(\tau \rightarrow \mathrm{t})}}
$$

$$
\langle O O(\tau)\rangle=\operatorname{Tr}[O(0) O(\tau) \rho]
$$

- Typical use case of quantum algorithm is for real-time. Unitary.
- Time evolution: Correlators (e.g. 2pt on light-cone), etc
- Main interest: $\langle\Omega| O|\Omega\rangle$, where $|\Omega\rangle$ is the exact ground state
- Difficulty: State preparation for exact ground state of H

State preparation, VQE and Beta-VQE State preparation is hard

We are interested in expectation value with true ground state for Hamiltonian

$$
\langle O\rangle=\langle\Omega| O|\Omega\rangle
$$

For the actual ground state $H|\Omega\rangle=E_{0}|\Omega\rangle$
The exact ground state can be prepared using adiabatic state preparation $=$ long unitary evolution with gradually changing Hamiltonian

$$
\mathrm{e}^{-\mathrm{i} H t} \approx\left(\mathrm{e}^{-\mathrm{i} H_{\mathrm{kin}} t / N} \mathrm{e}^{-\mathrm{i} H_{\mathrm{mass}} t / N} \ldots\right)^{N}
$$

B Chakraborty, M Honda, T Izubuchi, Y Kikuchi, AT

Phys.Rev.D 105 (2022)
9, 094503

BUT, Near term quantum devices are only capable to deal with simple (short) circuit! Variational approaches help to evaluate the ground state to evaluate the expectation value = Variational Quantum Eigen-solver (VQE), a quantum-classical hybrid algorithm

VQE and Beta VQE 1/2

Background: VQE is a variational method

- Quantum machine: Exact ground state $|\Omega\rangle$ preparation is hard. In particular, it is difficult on near term devices
- Variational method for a pure state with a short circuit (VQE, variation quantum eigen-solver).
- Quantum/Classical hybrid algorithm, iterative. U_{θ} is a short circuit.
- Parametrized unitary circuit (\sim parametrized state $|\theta\rangle, \theta$: a set of parameters)

VQE: Iterative approx

Expectation value

- Systematic error since $|\theta\rangle=U_{\theta}[\otimes|0\rangle] \neq|\Omega\rangle$ but cheap

QFT with Hamiltonian Hamiltonian vs Lagrangian

Operator formalism (This work)

H : Hamiltonian in QFT

- Thermal state in quantum system?
-> Density matrix formalism

Density matrix unifies description of pure states and mixed states

Pure states: System is purely quantum

$$
\rho_{\text {pure }}=|\Psi\rangle\langle\Psi| \quad\langle O\rangle=\operatorname{Tr}\left[O \rho_{\text {pure }}\right]=\langle\Psi| O|\Psi\rangle
$$

Mixed states: States are classically mixed (\neq superposition)

$$
\begin{aligned}
\rho_{\text {mixed }} & =\sum_{i} w_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \quad\langle O\rangle=\operatorname{Tr}\left[O \rho_{\text {mixed }}\right]=\sum_{i} w_{i}\left\langle\psi_{i}\right| O\left|\psi_{i}\right\rangle \\
w_{i} & \in \mathbb{R}_{+} \text {represents probability to find a pure state }\left|\psi_{i}\right\rangle
\end{aligned}
$$

Thermal states (Grand-canonical):

$$
\rho_{T, \mu}=\frac{1}{Z} \mathrm{e}^{-\frac{1}{T}(\hat{H}-\mu \hat{N})} \quad\langle O\rangle_{T, \mu}=\operatorname{Tr}\left[O \rho_{T, \mu}\right]
$$

Thermal-quantum average in general

$$
\langle O\rangle=\operatorname{Tr}[O \rho]
$$

Density matrix Quantum version of probability distribution

Thermal-quantum average in general

$$
\langle O\rangle=\operatorname{Tr}[O \rho]
$$

General Properties of density matrix ρ

- It unifies discretions of pure states and mixed states
- Normalized as $\operatorname{Tr}[\rho]=1$
- ρ can be regarded as quantum version of probability distribution $\mathrm{p}(\mathrm{x})$
- e.g.) $S=-\int d x p(x) \log p(x)$ (Shannon entropy)

$$
<->\quad S=-\operatorname{Tr}[\rho \log \rho] \text { (Von-Neumann entropy) }
$$

- Distance between two density matrices = quantum relative entropy (next)

VQE and Beta VQE $2 / 2$

Beta VQE is a variational method for mixed states

- KL divergence for $\rho=$ Kullback-Leibler Umegaki divergence (Pseudo-distance for ρ)
- Classical ver: $D(p \mid q)=\int d x p(x) \log p(x) / q(x) \quad$ (KL divergence)
- Relative entropy. Difference of two distributions (~distance)
- Positive definite, Used in machine learning
- $D=0$ if and only if p, q are equal
- Quantum $D\left(\rho_{1} \mid \rho_{2}\right)=\operatorname{Tr}\left[\rho_{1} \log \rho_{1} / \rho_{2}\right]$ (KL-Umegaki divergence \sim distance)
- Positive definite
- $\mathrm{D}=0$ if and only if ρ_{1}, ρ_{2} are equal
- Kullback-Leibler Umegaki divergence can be used for variational approaches

Ansatz for ρ ?

VQE and Beta VQE

Beta VQE is a variational method for mixed states

J. -Guo Liu+ 1902.02663
*M. Germain+ 1502.03509

- Variational ansatz for thermal quantum system:

Extended VQE for mixed states

- We minimize $\mathscr{L}(\Theta)=D\left(\rho_{\Theta} \mid \rho_{T, \mu}\right)-\ln Z_{T, \mu}=\operatorname{Tr}\left[\rho_{\Theta} \ln \rho_{\Theta}\right]+\frac{1}{T} \operatorname{Tr}\left[\rho_{\Theta}(\hat{H}-\mu \hat{N})\right]$
- Variational bound: $\mathscr{L}(\Theta) \geq-\log Z_{T, \mu}$
- Advantage of beta VQE
- No sign problem, even with the chemical potential
- Bounded variational approximation
- Disadvantage
- Systematic error
- Need numerical resource if we use a classical machine

Simulation results

Simulation setup (mostly skip)

- We apply beta-VQE for Schwinger model (= QED in 1+1d). Toy model of QCD, confinement, chiral symmetry breaking
$S=\int d^{2} x\left[-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}(\mathrm{i} \not \partial-g A-m) \psi\right] \longleftrightarrow H=\int d x\left[-\mathrm{i} \bar{\psi} \gamma^{1}\left(\partial_{1}+\mathrm{i} g A_{1}\right) \psi+m \bar{\psi} \psi+\frac{1}{2} \Pi^{2}\right]$

$$
\partial_{x} E=g \bar{\psi} \gamma^{0} \psi
$$

- Staggered fermion

- Jordan-Wigner transformation. Open Boundary condition.
- $\mathrm{g}=1, \mathrm{Nx}=(4,6), 8,10,1 / \mathrm{T}=[0.5-20.0]$, $\mathrm{mu}=[0-1.4], 4$ lattice spacings $1 / 2 \mathrm{a}=[0.5-0.35]$
- We do not take large volume limit but take continuum limit
- (Practically, Nx>10 cannot be calculated on our numerical resources)
- (My previous work shows data from $\mathrm{Nx}>12$ are essential to take stable large volume limit though)
- Setup for beta VQE:
- Unitary part = SU(4) ansatz
- Classical weight = Masked Auto-Encoder for Distribution Estimation (MADE)
- Training epoch is 500 . Sampling $=5000$ for classical distribution
- Observables
- Variational free energy (exact and variational one)
- (Translationally invariant) Chiral condensate
- Check point: Dependence of variational error on temperature and mu

Simulation results
 Variational free energy is $\mathrm{O}(1), \mathrm{Nx}=10$

Fukushima, Hatsuda
Rept.Prog.Phys.74:014001,2011

- We investigate T- μ phase diagram for Schwinger model
- Continuum extrapolation has been evaluated (except for additive mass renormalization by 2206.05308)
- The variational approach does not show difficulty for our parameter regime
- Towards to go large volume, optimization of code, GPU version, tensor network. (noise-free) real device!

Summary

1.What and why QCD/lattice QCD?
1.Problem: Long auto-correlation, Sign problem
2. Lattice QCD + Machine learning
1.Trainable smearing + SLHMC = adaptive reweighting
3. Lattice QCD + Quantum algorithm
1.Sign problem + non-unitary -> classical/quantum hybrid!

$$
\frac{d U_{\mu}^{(t)}(n)}{d t}=\mathscr{C}^{\bar{\theta}}\left(U_{\mu}^{(t)}(n)\right)
$$

Congratulations again, Onogi-san!

Self-introduction
 Lattice QCD \& Machine learning

What/who am I?

I am a particle physicist, working on lattice QCD.
I want to apply machine learning + quantum alg. on it.
My papers https://scholar.google.co.jp/citations?user=LKVay_wAAAAJ
Detection of phase transition via convolutional neural networks
A Tanaka, A Tomiya
Journal of the Physical Society of Japan 86 (6), 063001 Phase transition detection with NN
Evidence of effective axial $U(1)$ symmetry restoration at high temperature QCD
A Tomiya, G Cossu, S Aoki, H Fukaya, S Hashimoto, T Kaneko, J Noaki,
Physical Review D 96 (3), 034509
Axial anomaly at $\mathrm{T}>0$ with Mobius Domain-wall fermions
Schwinger model at finite temperature and density with beta VQE
A Tomiya
arXiv preprint arXiv:2205.08860 Phase diagram via Quantum/Classical algorithm

Biography

2010-2015 : Osaka university (Master\& PhD)
2015-2018 : Postdoc in CCNU (Wuhan, China)
2018-2021 : SPDR in RIKEN/BNL (Brookhaven, US)
2021- : Faculty in IPUT Osaka

KAKENHI (Grants-in-Aid for Scientific Research)

PI: Grant-in-Aid for Transformative Research Areas (A)
MLPhY/S Foundation of "Machine Learning Physics"
Grant-in-Aid for Transformative Research Areas (A)
Grant-in-Aid for Early-Career Scientists
CI: Grant-in-Aid for Scientific Research (C), etc

Details (skip)

Network: trainable stout (plaq+poly)

Structure of NN

(Polyakov loop+plaq in the stout-type)

$$
\Omega_{\mu}^{(l)}(n)=\rho_{\text {plaq }}^{(l)} O_{\mu}^{\text {plaq }}(n)+\left\{\begin{array}{lc}
\rho_{\rho \text { poly }, 4}^{(l)} O_{4}^{\text {poly }}(n)(\mu=4), & \text { arXiv: } 2103.11965 \\
\rho_{\text {poly }, \mathrm{s}}^{(l)} O_{i}^{\text {poly }}(n), & (\mu=i=1,2,3)
\end{array} \quad \text { All } \rho \text { is weight }\right. \text { meas an loop operator }
$$

Neural network

Parametrized action:

$$
S_{\theta}[U]=S_{\mathrm{g}}[U]+S_{\mathrm{f}}\left[\phi, U_{\theta}^{\mathrm{NN}}[U] ; m_{\mathrm{h}}=0.4\right]
$$

Action for MD is built by gauge covariant NN

Loss function:

$$
L_{\theta}[U]=\frac{1}{2}\left|S_{\theta}[U, \phi]-S[U, \phi]\right|^{2},
$$

Invariant under, rot, transl, gauge trf.

Training strategy:
1.Train the network in prior HMC (online training+stochastic gr descent) 2.Perform SLHMC with fixed parameter

Details (skip)

Results: Loss decreases along with the training

Loss function:

$$
L_{\theta}[U]=\frac{1}{2}\left|S_{\theta}[U, \phi]-S[U, \phi]\right|^{2},
$$

Intuitively, $\mathrm{e}^{\wedge}(-\mathrm{L})$ is understood as Boltzmann weight or reweighting factor.

Prior HMC run (training)

$$
\frac{\partial S}{\partial \rho_{i}^{(l)}}=2 \operatorname{Re} \sum_{\mu^{\prime}, m} \operatorname{tr}\left[U_{\mu^{\prime}}^{(l) \dagger}(m) \Lambda_{\mu^{\prime}, m} \frac{\partial C}{\partial \rho_{i}^{(l)}}\right] \quad \theta \leftarrow \theta-\eta \frac{\partial L_{\theta}(\mathcal{D})}{\partial \theta},
$$

Ω : sum of un-traced loops
C: one U removed Ω
\wedge : A polynomial of U. (Same object in stout)

$$
\frac{\partial L_{\theta}(\mathcal{D})}{\partial w_{i}^{(L-1)}}=\frac{\partial L_{\theta}(\mathcal{D})}{\partial S_{\theta}} \frac{\partial S_{\theta}}{\partial w_{i}^{(L-1)}} \stackrel{\tilde{a}}{\stackrel{\imath}{9}} 40
$$

Without training, $e^{\wedge}(-L) \ll 1$, this means that candidate with approximated action never accept.
After training, $\quad e^{\wedge}(-L) \sim 1$, and we get practical acceptance rate!

We perform SLHMC with these values!

Gauge covariant neural network
 Training can be done with (extended) back propagation

AT Y. Nagai arXiv: 2103.11965
Gauge inv. loss function can be constructed by gauge invariant actions

$$
S^{\mathrm{NN}}[U]=S\left[U_{\mu}^{\mathrm{NN}}(n)[U]\right]
$$

S: gauge action or fermion action

Loss function $\quad L_{\theta}[U]=f\left(S^{\mathrm{NN}}[U]\right)$
f : mean-square for example, mini-batch
(c.f. Behler-Parrinello type neural net)

Training: We can use "gradient descent" (also "Adam" (adaptive-momentum) is applicable)

Example of
Gradient descent

Gauge covariant neural network

 Training can be done with (extended) back propagation

 Training can be done with (extended) back propagation}

AT Y. Nagai arXiv: 2103.11965
Gauge inv. loss function can be constructed by gauge invariant actions

$$
S^{\mathrm{NN}}[U]=S\left[U_{\mu}^{\mathrm{NN}}(n)[U]\right]
$$

S: gauge action or fermion action

Loss function $\quad L_{\theta}[U]=f\left(S^{\mathrm{NN}}[U]\right)$
f : mean-square for example, mini-batch
(c.f. Behler-Parrinello type neural net)

Training: We can use "gradient descent" (also "Adam" (adaptive-momentum) is applicable)

$$
\begin{aligned}
& \text { Repeat update } \\
& \text { (until converge) }
\end{aligned} \theta^{(l)} \leftarrow \theta^{(l)}-\eta \frac{\partial L_{\theta}[U]}{\partial \theta^{(l)}} \quad \theta^{(l)} \text { is parameters in } l \text {-th layer }
$$

The second term requires the chain rule for matrix fields, we developed extended delta rule:

$$
\frac{\partial L_{\theta}[U]}{\partial \theta^{(l)}}=\frac{\partial L}{\partial f} \frac{\partial f}{\partial S^{\mathrm{NN}}} \frac{\partial S^{\mathrm{NN}}}{\partial U^{(l+1)}} \frac{\partial U^{(l+1)}}{\partial z^{(l+1)}} \frac{\partial z^{(l+1)}}{\partial \theta^{(l)}}
$$

This matrix derivative is common to the stout force (namely well known)

Simulation results
 Continuum extrapolation for $\mathrm{Nx}=8,10$

Continuum limit with a polynomial ansatz it looks good So far*

VQE and Beta VQE $2 / 2$

Beta VQE is a variational method for mixed states

J. -Guo Liu+ 1902.02663 *M. Germain+ 1502.03509

- Variational method for mixed states: Variational method on ρ
- $\rho_{\Theta}=\sum_{\{\vec{x}\}} p_{\phi}[\vec{x}] U_{\theta}|\vec{x}\rangle\langle\vec{x}| U_{\theta}^{\dagger}, \quad \Theta=\theta \cup \phi$ (parameters)
- $\vec{x}=\left(x_{1}, x_{2}, x_{3}, \cdots, x_{k}, \cdots\right)^{\top}$, and $x_{k} \in\{0,1\}$: (roughly) fermion occupation
- $|\vec{x}\rangle=\left|x_{1}\right\rangle \otimes\left|x_{2}\right\rangle \otimes\left|x_{3}\right\rangle \otimes \cdots$: easy to prepare
- $U_{\theta}|\vec{x}\rangle$: parametrized pure states, similar to the conventional VQE
- $p_{\phi}[\vec{x}]$: Classically approximated distribution for a configuration of \vec{x}, Neural network (MADE*) is used. $\phi=$ parameters This can generate configurations of \vec{x}

(masked) Auto-encoder for binary variable distribution

- MADE (neural network) mimics joint probability distribution e.g. $p\left(x_{1}, x_{2}, x_{3}\right)$, whose input is binary array $\left(x_{1}, x_{2}, x_{3}\right), x_{i}=0,1$

Reconstructed MNIST (Binarized)
Auto-encoder with a mask -> Generative model for binary array (Please ask me later in detail)

Extended VQE for mixed states

- We approximate $\rho=\frac{1}{Z} \mathrm{e}^{-\frac{1}{T}(\hat{H}-\mu \hat{N})}$ by $\rho_{\Theta}=\sum_{\{\vec{x}\}} p_{\phi}[\vec{x}] U_{\theta}|\vec{x}\rangle\left\langle\langle\vec{x}| U_{\theta}^{\dagger}\right.$
- $\langle O\rangle_{T, \mu} \approx \operatorname{Tr}\left[\rho_{\Theta} O\right]=\sum_{\{\vec{x}\}} p_{\phi}[\vec{x}]\langle\vec{x}| U_{\theta}^{\dagger} O U_{\theta}|\vec{x}\rangle$
- Quantum machine can store a state $U_{\theta}|\vec{x}\rangle$ (test wave function)
- Classical machine can sample thermal distribution from $p_{\phi}[\vec{x}]$ (neural net)
- All parameters are tuned such that minimizing $D\left(\rho_{\Theta} \mid \rho\right)$
- Optimization of parameters is done with a optimizer (as in machine learning)

Motivation

Sign problem prevents using Monte-Carlo

- Monte-Carlo enables us to evaluate expectation values for "statistical system", like lattice QCD in imaginary time

$$
\langle O[U]\rangle=\frac{1}{N_{\text {conf }}} \sum_{c}^{N_{\text {conf }}} O\left[U_{c}\right]+\mathcal{O}\left(\frac{1}{\sqrt{N_{\text {conf }}}}\right) \quad U_{c} \leftarrow P(U)=\frac{1}{Z} e^{-S[U]} \in \mathbb{R}_{+}
$$

- If we turn on the baryon chemical potential μ, Monte-Carlo methods do not work because $e^{-S[U]}$ becomes complex. This is no more probability. (sign problem)
- Operator formalism does not have such problem! But it requires huge memory to store quantum states, which cannot be realized even on supercomputer.
- Quantum states should be stored on quantum device (Feynman)

Motivation

$\mathrm{\mu}=0$ is good for Classical, $\mathrm{T}=0$ is good for Quantum

Classical machine: Lattice field theory calculations rely on

$$
P(U)=\frac{1}{Z} e^{-S[U]} \operatorname{det}(D[U]+m)^{2} \in \mathbb{R}_{+}
$$

- This $P(U)$ cannot be regarded as probability if $\mu \neq 0$ (sign problem)

Quantum machines can realize (any) unitary evolutions (Solovay Kitaev theorem),

$$
U(t)=\mathrm{e}^{-\mathrm{i} \hat{H} t} \quad \begin{aligned}
& \text { Phys.Rev.D } 105 \text { (2022) 9, } 094503 \\
& \text { and references therein }
\end{aligned}
$$

- No problem for $\mu \neq 0$ because we can only use unitary gates (operators)
- "Short time evolution" (shallow circuit) is preferred for near-term devices

	Classical Computers	Quantum Computers
Finite Density	Sign Problem	\checkmark
Finite Temperature	\checkmark	Challenging

We need a method to calculate $T>0$ and $\mu \neq 0$ for QCD and for near-term quantum devices

Summary of this talk
 Hybrid = Quantum algorithm + machine learning

Fukushima, Hatsuda

Rept.Prog.Phys.74:014001,2011

I investigated T-mu phase diagram using a quantum algorithm \& neural network (β-VQE, No sign problem) for Schwinger model (toy model of QCD)

QFT with Hamiltonian Hamiltonian vs Lagrangian

Operator formalism (This work)

H : Hamiltonian in QFT

Minkowski in $\mathrm{M} \wedge\{\mathrm{d}+1\}$

$$
U(t)=\mathrm{e}^{-\mathrm{i} t H \underset{\text { Euclid }(t \rightarrow \tau)}{\stackrel{\text { Real time }}{\leftrightarrows} \mathrm{Minkowski}(\tau \rightarrow \mathrm{t})}}
$$

$$
\langle O O(\tau)\rangle=\operatorname{Tr}[O(0) O(\tau) \rho]
$$

- Typical use case of quantum algorithm is for real-time. Unitary.
- Time evolution: Correlators (e.g. 2pt on light-cone), etc
- Main interest: $\langle\Omega| O|\Omega\rangle$, where $|\Omega\rangle$ is the exact ground state
- Difficulty: State preparation for exact ground state of H

State preparation, VQE and Beta-VQE State preparation is hard

We are interested in expectation value with true ground state for Hamiltonian

$$
\langle O\rangle=\langle\Omega| O|\Omega\rangle
$$

For the actual ground state $H|\Omega\rangle=E_{0}|\Omega\rangle$
The exact ground state can be prepared using adiabatic state preparation $=$ long unitary evolution with gradually changing Hamiltonian

$$
\mathrm{e}^{-\mathrm{i} H t} \approx\left(\mathrm{e}^{-\mathrm{i} H_{\mathrm{kin}} t / N} \mathrm{e}^{-\mathrm{i} H_{\mathrm{mass}} t / N} \ldots\right)^{N}
$$

B Chakraborty, M Honda, T Izubuchi, Y Kikuchi, AT

Phys.Rev.D 105 (2022)
9, 094503

BUT, Near term quantum devices are only capable to deal with simple (short) circuit! Variational approaches help to evaluate the ground state to evaluate the expectation value = Variational Quantum Eigen-solver (VQE), a quantum-classical hybrid algorithm

VQE and Beta VQE 1/2

Background: VQE is a variational method

- Quantum machine: Exact ground state $|\Omega\rangle$ preparation is hard. In particular, it is difficult on near term devices
- Variational method for a pure state with a short circuit (VQE, variation quantum eigen-solver).
- Quantum/Classical hybrid algorithm, iterative. U_{θ} is a short circuit.
- Parametrized unitary circuit (\sim parametrized state $|\theta\rangle, \theta$: a set of parameters)

VQE: Iterative approx

Expectation value

- Systematic error since $|\theta\rangle=U_{\theta}[\otimes|0\rangle] \neq|\Omega\rangle$ but cheap

QFT with Hamiltonian Hamiltonian vs Lagrangian

Operator formalism (This work)

H : Hamiltonian in QFT

- Thermal state in quantum system?
-> Density matrix formalism

Density matrix unifies description of pure states and mixed states

Pure states: System is purely quantum

$$
\rho_{\text {pure }}=|\Psi\rangle\langle\Psi| \quad\langle O\rangle=\operatorname{Tr}\left[O \rho_{\text {pure }}\right]=\langle\Psi| O|\Psi\rangle
$$

Mixed states: States are classically mixed (\neq superposition)

$$
\begin{gathered}
\rho_{\text {mixed }}=\sum_{i} w_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \quad\langle O\rangle=\operatorname{Tr}\left[O \rho_{\text {mixed }}\right]=\sum_{i} w_{i}\left\langle\psi_{i}\right| O\left|\psi_{i}\right\rangle \\
w_{i} \text { represents probability to find a pure state }\left|\psi_{i}\right\rangle
\end{gathered}
$$

Thermal states (Grand-canonical):

$$
\rho_{T, \mu}=\frac{1}{Z} \mathrm{e}^{-\frac{1}{T}(\hat{H}-\mu \hat{N})} \quad\langle O\rangle_{T, \mu}=\operatorname{Tr}\left[O \rho_{T, \mu}\right]
$$

Thermal-quantum average in general

$$
\langle O\rangle=\operatorname{Tr}[O \rho]
$$

Density matrix Quantum version of probability distribution

Thermal-quantum average in general

$$
\langle O\rangle=\operatorname{Tr}[O \rho]
$$

General Properties of density matrix ρ

- It unifies discretions of pure states and mixed states
- Normalized as $\operatorname{Tr}[\rho]=1$
- ρ can be regarded as quantum version of probability distribution $\mathrm{p}(\mathrm{x})$
- e.g.) $S=-\int d x p(x) \log p(x)$ (Shannon entropy)

$$
<->\quad S=-\operatorname{Tr}[\rho \log \rho] \text { (Von-Neumann entropy) }
$$

- Distance between two density matrices = quantum relative entropy (next)

VQE and Beta VQE $2 / 2$

Beta VQE is a variational method for mixed states

- KL divergence for $\rho=$ Kullback-Leibler Umegaki divergence (Pseudo-distance for ρ)
- Classical ver: $D(p \mid q)=\int d x p(x) \log p(x) / q(x) \quad$ (KL divergence)
- Relative entropy. Difference of two distributions (~distance)
- Positive definite, Used in machine learning
- $D=0$ if and only if p, q are equal
- Quantum $D\left(\rho_{1} \mid \rho_{2}\right)=\operatorname{Tr}\left[\rho_{1} \log \rho_{1} / \rho_{2}\right]$ (KL-Umegaki divergence \sim distance)
- Positive definite
- $\mathrm{D}=0$ if and only if ρ_{1}, ρ_{2} are equal
- Kullback-Leibler Umegaki divergence can be used for variational approaches

Ansatz for ρ ?

VQE and Beta VQE $2 / 2$

Beta VQE is a variational method for mixed states

J. -Guo Liu+ 1902.02663 *M. Germain+ 1502.03509

- Variational method for mixed states: Variational method on ρ
- $\rho_{\Theta}=\sum_{\{\vec{x}\}} p_{\phi}[\vec{x}] U_{\theta}|\vec{x}\rangle\langle\vec{x}| U_{\theta}^{\dagger}, \quad \Theta=\theta \cup \phi$ (parameters)
- $\vec{x}=\left(x_{1}, x_{2}, x_{3}, \cdots, x_{k}, \cdots\right)^{\top}$, and $x_{k} \in\{0,1\}$: (roughly) fermion occupation
- $|\vec{x}\rangle=\left|x_{1}\right\rangle \otimes\left|x_{2}\right\rangle \otimes\left|x_{3}\right\rangle \otimes \cdots$: easy to prepare
- $U_{\theta}|\vec{x}\rangle$: parametrized pure states, similar to the conventional VQE
- $p_{\phi}[\vec{x}]$: Classically approximated distribution for a configuration of \vec{x}, Neural network (MADE*) is used. $\phi=$ parameters This can generate configurations of \vec{x}

(masked) Auto-encoder for binary variable distribution

- MADE (neural network) mimics joint probability distribution e.g. $p\left(x_{1}, x_{2}, x_{3}\right)$, whose input is binary array $\left(x_{1}, x_{2}, x_{3}\right), x_{i}=0,1$

Reconstructed MNIST (Binarized)
Auto-encoder with a mask -> Generative model for binary array (Please ask me later in detail)

Extended VQE for mixed states

- We approximate $\rho=\frac{1}{Z} \mathrm{e}^{-\frac{1}{T}(\hat{H}-\mu \hat{N})}$ by $\rho_{\Theta}=\sum_{\{\vec{x}\}} p_{\phi}[\vec{x}] U_{\theta}|\vec{x}\rangle\langle\vec{x}| U_{\theta}^{\dagger}$
- $\langle O\rangle_{T, \mu} \approx \operatorname{Tr}\left[\rho_{\Theta} O\right]=\sum_{\{\vec{x}\}} p_{\phi}[\vec{x}]\langle\vec{x}| U_{\theta}^{\dagger} O U_{\theta}|\vec{x}\rangle$
- Quantum machine can store a state $U_{\theta}|\vec{x}\rangle$ (test wave function)
- Classical machine can sample thermal distribution from $p_{\phi}[\vec{x}]$ (neural net)
- All parameters are tuned such that minimizing $D\left(\rho_{\Theta} \mid \rho\right)$
- Optimization of parameters is done with a optimizer (as in machine learning)

Extended VQE for mixed states

- We minimize the loss function $\mathscr{L}(\Theta)=D-\ln Z=\operatorname{Tr}\left[\rho_{\Theta} \ln \rho_{\Theta}\right]+\frac{1}{T} \operatorname{Tr}\left[\rho_{\Theta}(\hat{H}-\mu \hat{N})\right]$
- Variational bound: $\mathscr{L}(\Theta)-\log Z_{T, \mu} \geq 0$
- We use $\operatorname{SU}(4)$ ansatz for each 2 qubits for U_{θ}

- Advantage of beta VQE
- No sign problem, even with the chemical potential
- Bounded variational approximation
- Disadvantage
- Systematic error
- Need numerical resource if we use a classical machine

Simulation results

Simulation setup (mostly skip)

- We apply beta-VQE for Schwinger model (= QED in 1+1d). Toy model of QCD, confinement, chiral symmetry breaking
$S=\int d^{2} x\left[-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}(\mathrm{i} \varnothing-g A-m) \psi\right] \longleftrightarrow H=\int d x\left[-\mathrm{i} \bar{\psi} \gamma^{1}\left(\partial_{1}+\mathrm{i} g A_{1}\right) \psi+m \bar{\psi} \psi+\frac{1}{2} \Pi^{2}\right]$

$$
\partial_{x} E=g \bar{\psi} \gamma^{0} \psi
$$

- Staggered fermion

- Jordan-Wigner transformation. Open Boundary condition.
- $g=1, N x=(4,6), 8,10,1 / T=[0.5-20.0], \mathrm{mu}=[0-1.4], 4$ lattice spacings $1 / 2 \mathrm{a}=[0.5-0.35]$
- We do not take large volume limit but take continuum limit
- (Practically, Nx>10 cannot be calculated on our numerical resources)
- (My previous work shows data from $\mathrm{Nx}>12$ are essential to take stable large volume limit though)
- Setup for beta VQE:
- Unitary part = SU(4) ansatz
- Classical weight = Masked Auto-Encoder for Distribution Estimation (MADE)
- Training epoch is 500 . Sampling $=5000$ for classical distribution
- Observables
- Variational free energy (exact and variational one)
- (Translationally invariant) Chiral condensate
- Check point: Dependence of variational error on temperature and mu

Simulation results

Variational free energy is $\mathrm{O}(1), \mathrm{Nx}=10$

Simulation results
 Continuum extrapolation for $\mathrm{Nx}=8,10$

Continuum limit with a polynomial ansatz it looks good So far*

Fukushima, Hatsuda
Rept.Prog.Phys.74:014001,2011

- We investigate T- μ phase diagram for Schwinger model
- Continuum extrapolation has been evaluated (except for additive mass renormalization by 2206.05308)
- The variational approach does not show difficulty for our parameter regime
- Towards to go large volume, optimization of code, GPU version, tensor network. (noise-free) real device!

QFT with Hamiltonian Same hamiltonian

Fermion has Anti-PBC for imaginary time direction. This is necessary to connect get trace formula in the operator formalism

$$
\psi(\tau+1 / T, \vec{x})=-\psi(\tau, \vec{x})
$$

Simulation results

Variational free energy is $\mathrm{O}(1), \mathrm{Nx}=10$

$\sim 1 / a$					Approx	Exact
μ / g	g / T	N_{x}	w / g	$\mathcal{L}-\ln Z$	$-\ln Z$	Diff (\%)
0.0	0.1	4	0.5	-27.779	-27.781	0.00804
0.0	0.1	4	0.35	-27.807	-27.808	0.005
0.0	0.1	10	0.5	-70.686	-70.718	0.0459
0.0	0.1	10	0.35	-71.744	-71.765	0.0302
0.0	0.5	4	0.5	-5.792	-5.802	0.185
0.0	0.5	4	0.35	-5.885	-5.891	0.105
0.0	0.5	10	0.5	-17.133	-17.25	0.68
0.0	0.5	10	0.35	-18.849	-18.934	0.448
0.0	10.0	4	0.5	-1.748	-1.75	0.161
0.0	10.0	4	0.35	-1.829	-1.829	0.0184
0.0	10.0	10	0.5	-8.218	-8.341	1.48
0.0	10.0	10	0.35	-9.98	-10.03	0.496
0.0	20.0	4	0.5	-1.492	-1.739	14.2
0.0	20.0	4	0.35	-1.653	-1.806	8.46
0.0	20.0	10	0.5	-8.202	-8.328	1.51
0.0	20.0	10	0.35	-9.955	-10.006	0.509

~1/a Approx								Exact $\mathrm{AT} 2205.08860$	
1.4	0.1	4	0.5	-28.021	-28.023	0.00697			
1.4	0.1	4	0.35	-27.989	-27.991	0.00755			
1.4	0.1	10	0.5	-70.842	-70.874	0.0453			
1.4	0.1	10	0.35	-71.742	-71.763	0.0291			
1.4	0.5	4	0.5	-6.784	-6.789	0.0609			
1.4	0.5	4	0.35	-6.644	-6.647	0.0327			
1.4	0.5	10	0.5	-17.989	-18.104	0.636			
1.4	0.5	10	0.35	-19.445	-19.534	0.456			
1.4	10.0	4	0.5	-3.708	-3.71	0.0728			
1.4	10.0	4	0.35	-3.63	-3.669	1.07			
1.4	10.0	10	0.5	-10.067	-10.243	1.71			
1.4	10.0	10	0.35	-11.763	-11.862	0.837			
1.4	20.0	4	0.5	-3.673	-3.681	0.218			
1.4	20.0	4	0.35	-3.621	-3.669	1.31			
1.4	20.0	10	0.5	-10.028	-10.224	1.92			
1.4	20.0	10	0.35	-11.699	-11.862	1.37			

1.Mild dependence on μ
2. Hard for $\mathrm{T}->0$ (large deviation) as expected

The general gate consists of 15 single qubit gates and 3 CNOT gates.
Each two qubit unitary is parametrized by 15 parameters in the rotational gates, which parametrizes the $\mathrm{SU}(4)$ group.

VQE and Beta VQE 1/2 Background: VQE is a variational method

- Quantum machine: Exact ground state preparation is hard. In particular, it is difficult on near term devices
- Variational method for a pure state with a short circuit (VQE, variation quantum eigen-solver).
- Quantum/Classical hybrid algorithm, iterative
- Parametrized unitary circuit (\sim parametrized state $|\theta\rangle, \theta$: a set of parameters)
- $|\theta\rangle=\hat{U}(\theta)\left(|0\rangle_{1}|0\rangle_{2}|0\rangle_{3} \cdots\right)$, and $\hat{U}(\theta)$ is a short circuit (entanglement + rotations)
- If $\langle\theta| H|\theta\rangle=0,|\theta\rangle \approx|\Omega\rangle$, where $|\Omega\rangle$ is the exact ground state = Variational approach for quantum system

VQE and Beta VQE (skip)

Beta VQE is a variational method for mixed states

- Variational method for mixed states: Variational method on ρ
- $\rho_{\Theta}=\sum_{\{\vec{x}\}} p_{\phi}[\vec{x}] U_{\theta}|\vec{x}\rangle\langle\vec{x}| U_{\theta}^{\dagger}, \quad \Theta=\theta \cup \phi$ (parameters)
- $\vec{x}=\left(x_{1}, x_{2}, x_{3}, \cdots, x_{k}, \cdots\right)^{\top}$, and $x_{k} \in\{0,1\}:$ (roughly) fermion excitation
- $U_{\theta}|\vec{x}\rangle$: parametrized pure states, similar to the conventional VQE
- $p_{\phi}[\vec{x}]$: Classically approximated distribution for a configuration of \vec{x}, Neural network (MADE*) is used. $\phi=$ parameters
- Minimizing $D\left(\rho_{\Theta} \mid \rho_{T, \mu}^{\text {exact }}\right)$, we get approximated a set of states (= thermal)
- Shifted one (by a constant) is used in practice:
- $\mathscr{L}(\Theta) \equiv D\left(\rho_{\Theta} \mid \rho_{T, \mu}^{\text {exact }}\right)-\underbrace{\ln Z}=\operatorname{Tr}\left[\rho_{\Theta} \ln \rho_{\Theta}\right]+\frac{1}{T} \operatorname{Tr}\left[\rho_{\Theta}(\hat{H}-\mu \hat{N})\right]$ const

The two language problem and solution?

The two language problem and solution?

- Programs for machine learning are usually implemented in Python
- LatticeQCD is in C++ (+CUDA)
- Two different languages used = " 2 (programming) language problem"
- Use of one language is better for productivity
- Python + LQCD: GPT for Grid, PyBridge++ for Bridge++, PyQCD

The two language problem and solution?

- Programs for machine learning are usually implemented in Python
- LatticeQCD is in C++ (+CUDA)
- Two different languages used = " 2 (programming) language problem"
- Use of one language is better for productivity
- Python + LQCD: GPT for Grid, PyBridge++ for Bridge++, PyQCD
- Julia language* could be a solution of the problem
- High performance as $\mathrm{C}++$, Write like Python

- NASA uses Julia (:. Works on supercomputers
- Machine learning, GPU and MPI friendly (Flux.jl, CUDA.jl, MPI.jl etc)
- LatticeQCD.jl, AT \& Y. Nagai (updating to 1.0): \$ LatticeQCD.jl MPI-Parallel, stout smearing, domain-wall, staggered, (R)HMC, improved gauge actions, $\mathrm{SU}(\mathrm{Nc})$, gauge-covariant-neural net, ILDG support, etc...

Beta VQE 2/4

Extended VQE for mixed states

- How can we realize $\rho_{\Theta} \approx \rho$ for $\rho=\frac{1}{Z} \mathrm{e}^{-\frac{1}{T}(\hat{H}-\mu \hat{N})}$
- Minimize Kullback-Leibler-Umegaki divergence (pseudo-distance)
- $D\left(\rho_{\Theta} \mid \rho\right)=\operatorname{Tr}\left[\rho_{\Theta} \ln \frac{\rho_{\Theta}}{\rho}\right]=\operatorname{Tr}\left[\rho_{\Theta} \ln \rho_{\Theta}\right]-\operatorname{Tr}\left[\rho_{\Theta} \ln \rho\right]$
- Relative entropy for density matrices (Classical ver. is called KL div.)
- This is bounded $D\left(\rho_{\Theta} \mid \rho\right) \geq 0$ and saturated iff $\rho_{\Theta}=\rho$
- In practice, we minimize shifted one,

$$
\mathscr{L}(\Theta)=D\left(\rho_{\Theta} \mid \rho\right)-\underbrace{\ln Z}_{\text {const }}=\operatorname{Tr}\left[\rho_{\Theta} \ln \rho_{\Theta}\right]+\frac{1}{T} \operatorname{Tr}\left[\rho_{\Theta}(\hat{H}-\mu \hat{N})\right]
$$

We can define, a loss function, $\tilde{\mathscr{L}}(\Theta)=D\left(\rho_{\Theta} \| \rho\right)$

$$
\rho_{T, \mu}=\frac{1}{Z_{T, \mu}} \mathrm{e}^{-\frac{1}{T}(\hat{H}-\mu \hat{N})}
$$

$$
\begin{align*}
D\left(\rho_{\Theta} \| \rho_{T, \mu}\right) & =\operatorname{Tr}\left[\rho_{\Theta} \log \frac{\rho_{\Theta}}{\rho_{T, \mu}}\right], \tag{24}\\
& =\operatorname{Tr}\left[\rho_{\Theta} \log \rho_{\Theta}\right]-\operatorname{Tr}\left[\rho_{\Theta} \log \rho_{T, \mu}\right], \tag{25}\\
& =\operatorname{Tr}\left[\rho_{\Theta} \log \rho_{\Theta}\right]-\operatorname{Tr}\left[\rho_{\Theta} \log \frac{1}{Z_{T, \mu}} \mathrm{e}^{-\frac{1}{T}(\hat{H}-\mu \hat{N})}\right], \tag{26}\\
& =\operatorname{Tr}\left[\rho_{\Theta} \log \rho_{\Theta}\right]+\operatorname{Tr}\left[\rho_{\Theta} \log Z_{T, \mu}\right]+\frac{1}{T} \operatorname{Tr}\left[\rho_{\Theta}(\hat{H}-\mu \hat{N})\right], \tag{27}\\
& =\operatorname{Tr}\left[\rho_{\Theta} \log \rho_{\Theta}\right]+\operatorname{Tr}\left[\rho_{\Theta}\right] \log Z_{T, \mu}+\frac{1}{T} \operatorname{Tr}\left[\rho_{\Theta}(\hat{H}-\mu \hat{N})\right], \tag{28}\\
& =\operatorname{Tr}\left[\rho_{\Theta} \log \rho_{\Theta}\right]+\underset{\text { (const in } \Theta)}{\log Z_{T, \mu}+\frac{1}{T} \operatorname{Tr}\left[\rho_{\Theta}(\hat{H}-\mu \hat{N})\right] .} \text {. } \tag{29}
\end{align*}
$$

The last line follows because ρ_{Θ} is normalized.
In practice, we use,

$$
\begin{equation*}
\mathscr{L}(\Theta)=\tilde{\mathscr{L}}(\Theta)-\log Z_{T, \mu}=\operatorname{Tr}\left[\rho_{\Theta} \log \rho_{\Theta}\right]+\frac{1}{T} \operatorname{Tr}\left[\rho_{\Theta}(\hat{H}-\mu \hat{N})\right] . \tag{30}
\end{equation*}
$$

Namely,

$$
\begin{equation*}
\mathscr{L}(\Theta)=\operatorname{Tr}\left[\rho_{\Theta} \log \rho_{\Theta}\right]+\frac{1}{T} \operatorname{Tr}\left[\rho_{\Theta} \mathscr{H}\right] \tag{31}
\end{equation*}
$$

Beta VQE 3/4

Extended VQE for mixed states

- $\mathscr{L}(\Theta)=\operatorname{Tr}\left[\rho_{\Theta} \ln \rho_{\Theta}\right]+\frac{1}{T} \operatorname{Tr}\left[\rho_{\Theta}(\hat{H}-\mu \hat{N})\right]$
- $\operatorname{Tr}\left[\rho_{\Theta} \log \rho_{\Theta}\right]=\sum_{\{\vec{x}\}} p_{\phi}(\vec{x}) \log p_{\phi}(\vec{x})$
- We need two derivatives
- $\frac{\partial}{\partial \phi} \mathscr{L}(\Theta)=\frac{\partial}{\partial \phi} \sum_{\{\vec{x}\}} p_{\phi}(\vec{x})\left[\log p_{\phi}(\vec{x})\right]:$: Classical -> gradient descent
- $\left.\frac{\partial}{\partial \theta} \mathscr{L}(\Theta)=\frac{1}{T} \frac{\partial}{\partial \theta}\langle\vec{x}| U_{\theta}^{\dagger} \mathscr{H} U_{\theta}|\vec{x}\rangle\right]:$ Quantum

REINFORCE algorithm

MADE: Masked Auto-encoder for Distribution Estimation

1502.03509

I (mostly) skip this section in the seminar

Summary of MADE
 (simple) Neural network for probability estimation

- MADE = Masked Auto-encoder for Distribution Estimation
- Auto-encoder is a neural network
- It can mimic a joint distribution of binary variables $(0,1)$
- $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is distributed as $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \equiv p[\vec{x}]$
- It is categorized as a generative model (as the normalizing flow)
- It is correctly normalized

Basics (skip)
 Product rule in the probability theory

- A configuration of variables $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is distributed as $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \equiv p[\vec{x}]$
- Probability distribution is normalized.
- For binary variables,

$$
1=\sum_{x_{1}=0}^{1} \sum_{x_{2}=0}^{1} \sum_{x_{3}=0}^{1} \sum_{x_{4}=0}^{1^{\prime}} p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{\{\vec{x}\}} p_{\phi}[\vec{x}]
$$

Basics (skip)
 Product rule in the probability theory

- definition of the conditional probability is $p\left(x_{2} \mid x_{1}\right) \equiv \frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{1}\right)}$
- Equivalently, $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)$: Product rule
- We can generalize to more than 2 variables
. $p\left(x_{3} \mid x_{1}, x_{2}\right)=\frac{p\left(x_{1}, x_{2}, x_{3}\right)}{p\left(x_{1}, x_{2}\right)} \Leftrightarrow p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)$
- $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)$
. We abbreviate this as $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\prod_{k=1}^{4} p\left(x_{k} \mid x_{<k}\right)$

Bernoulli process (skip) un-fair coin

- A (un-)fair coin, which takes face for a probability p, Tail for 1-p
- This process is called "Bernoulli trial" in Math
- Let us denote it as $\operatorname{Bernoulli}(p)$

Basics (skip)
 Product rule in the probability theory

- Neural network (NN) mimics $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)$, whose input is binary array $\left(x_{1}, x_{2}, x_{3}\right): 3$ correlated coins
- We can draw a sample using $\hat{x}_{1} \sim y_{1} \approx p\left(x_{1}\right)$
- How can we construct $\hat{x}_{2} \sim y_{2} \approx p\left(x_{2} \mid x_{1}\right)$
- input only depends on x_{1}
- How can we construct $\hat{x}_{3} \sim y_{3} \approx p\left(x_{3} \mid x_{1}, x_{2}\right)$
- input only depends on x_{1}, x_{2}

Auto-encoder (skip)
 Auto-encoder ~ (un normalized) flow

$$
\begin{aligned}
& -E[x]=\sum_{i} x_{i} \log y_{i}+\left(1-x_{i}\right) \log \left(1-y_{i}\right) \\
& e^{-E[x]}=\prod_{i} y_{i}^{-x_{i}}\left(1-y_{i}\right)^{-\left(1-x_{i}\right)} \\
& \sum_{\{x\}} e^{-E[x]} \neq 1 \quad \text { Not-normalized }
\end{aligned}
$$

Auto-regressive property (skip)

Product rule

$$
\begin{aligned}
& y_{1}=p\left(x_{1}=1\right), y_{2}=p\left(x_{2}=1 \mid x_{1}\right), y_{3}=p\left(x_{3}=1 \mid x_{1}, x_{2}\right) \\
& \longrightarrow p\left(x_{1}=0\right)=1-y_{1}, p\left(x_{2}=0 \mid x_{1}\right)=1-y_{2}, p\left(x_{3}=0 \mid x_{1}, x_{2}\right)=1-y_{3} \\
& \longrightarrow y_{d}=p\left(x_{d}=1 \mid x_{<d}\right) \quad p\left(x_{d}=0 \mid x_{<d}\right)=1-y_{d}
\end{aligned}
$$

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\prod_{k=1}^{4} p\left(x_{k} \mid x_{<k}\right)
$$

$$
\longrightarrow \quad-\log p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-\sum_{k=1}^{4} \log p\left(x_{k} \mid x_{<k}\right)
$$

MADE (skip)

Masked auto-encoder for density estimation

Assign numbers on node:
Input\& output node = assign

MADE (skip)

Masked auto-encoder for density estimation

We can draw a set of sample $\left(\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3}\right)$ from $p_{\phi}\left(x_{1}, x_{2}, x_{3}\right)$ where ϕ is network param.

[^0]: arXiv: 1512.03385

