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Happy “Kann-reki”’(full circle) birthday “°*™"

Onogi-san and me

BERHTESSIWVNET!

When | entered to master course in Osaka university in 2010 (12 years ago!),
Tetsuya was the second year as a professor in Osaka university
(My supervisor Fukaya-san also joined HEP group as an assistant prof. in 2010)

We had a lot of study groups: String theory, lattice field theory, RG




Happy “Kann-reki”’(full circle) birthday “°*™"

Onogi-san and me

&
Onogi-san = Supervisor’s Supervisor’s of me = Great master (XEf[E)!

And a mentor of me (he always encouraged me).

He taught me quantum field theory (perturbation theory/SM/RG/GWW trs),
attice field theory, algorithms, how to read a code, general relativity, etc
n particular, my master thesis about many flavor QCD.

Thank you and congratulations Onogi-san!




Outline

Two exotic topics

1.What and why QCD/lattice QCD?

2. Lattice QCD + Machine learning dUW(n) _
—— = U
{ . 5y - ( /,t (n))
1.“Neural net = Smearing dt
3. Lattice QCD + Quantum algorithm | b l

1.Finite temp/dens for QFT
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Introduction

QCD: a fundamental theory of particles inside of nuclei

7 QCD (Quantum Chromo-dynamics) in 3 + 1 dimension mesmewmrm,

1
S = Jd“x[ — Etr F,F"+ lp(i@ + gA — m)l//]

F,=0dA,—d,A, —iglA,A)]

Quantization: |y (1)) = e | y(0)) A, E)=ins,,  §

e QCD enables us to calculate (in principle):
 Equation of state of neutron star, Tc

e Scattering of quarks and gluons, Parton
distributions

e Hadron spectrum!
e Strongly coupled quantum system
e Use lattice QCD + Monte-Carlo




Introduction

Lattice path integral > 1000 dim, Trapezoidal int is impossible

K. Wilson 1974

1 _ .
[meaginery Hime 5= Jd“x[ + Etr FﬂvFﬂv + l/f(@ —1gA + m)l//]

I = — 11

Lafttice regularization

U,u — eaigAﬂ

1
SIU, w,yp] = a42 [— ?Re r U, + l/'/(D + m)l//] cutoff = a™!

—1
Both S give same expectation value for long range Re U, ~ nga“ij + O(a®)
Path integral formalism

L _ S 1 =S, [U]
(O0) = DUDyDye0O(U) =E DUe Pt det(D + m)O(U)

DUeV10(U)

Z.
1
Z .

1

4
H HdUﬂ(n) >1000 dim. We cannot use Newton-Cotes

ne{Z/L}* p=1 type integral like Trapezoid, Simpson etc.
We cannot control numerical error



Introduction
Monte-Carlo integration is available
(0) = j@ Ue>V10(U) Sl U1 = Spaugel U1 — log det(D[U] + m)

Monte-Carlo: Generate field configurations with “P|[U| = Ee_Seff[U]”. It gives expectation value

HMC: Hybrid (Hamiltonian) Monte-Carlo ]
De-facto standard algorithm £

1
S(x,y) = 5(362 + y2 + xy)




Introduction

Monte-Carlo integration is available

M. Creutz 1980

1 —Setl U]
(@)zE DUe™“10(U) SeilU1 = Sqaugel U1 — log det(D[U] + m)

Monte-Carlo: Generate field configurations with “P|[U| = Ee_Seff[U]”. It gives expectation value




Introduction

Correlation between samples = inefficiency of calculation

| 1 2 10|
(O[¢]) = — ) Olgh] + O )
N - N. 5 06
indep S 04
. N, sample ;)Zf):
]Vindep o 2T 0 10 20 30 40 t
L) =— Z (Olyy] — O)Olhy] — 0) ~ ™"

Sﬂ g[hﬁt @[F‘[F@ @{t@@] -
Large Tac Means, such simulation is |neff|0|ent



Introduction

Summary for now: long autocorrelation = inefficiency

<0[¢]>—12N‘,0[¢]+0< L
=3y 20l =

]Vindep
N . N, sample
indep — ZTac
L(f) = —— Z (Ol — O)(Olgh] — O) ~ e~

T,c is given by an update algorithm (N. Madras et. al 1988)

e Autocorrelation time 7. quantifies similarity between samples
e 7,.Is algorithm dependent quantity

o If 7,. becomes half, we can get doubly precise results in the same time cost

Can we make this mild using machine learning?



Akio Tomiya

Introduction

Neural net can make human face images

0@ G person does not exist - Goog'© X +

C & google.com/search?q=person+does+not+exist&og=person+does+&a.. ¥ ¥ # O

3! Apps & Akio TOMIYA & Google drive [l MIT-LAT [Ej Deepleamingan.. / Zenn| 7O457%... »
i {
GQ . g|€ person does not exist X 4
QAIRT BDEk ODHE B=-2-2 QHE :H-5tR3 0

#9 588,000,000 &+ (0.43 #)

thispersondoesnotexist.com v ZDNX—IJ%ZRT

This Person Does Not Exist
This Person Does Not Exist.

DA IESHRER

How does this person does not exist work?

Who made this person does not exist?



Introduction

Neural net can make human face images

Neural nets can generate realistic human faces (Style GAN2)

o @ [ This Person Does Not Exist x +
“— C’k & thispersondoesnotexist.com r VY RO
Y Apps & Akio TOMIYA & Google drive ' MIT-LAT B Deep Learning an... Jr Zenn | 707 37..

T =

Realistic Images can be generated by machine learning!
Configurations as well? (configuration ~ images?)



ML for LQCD is needed

e Machine learning/ Neural networks

e Data processing techniques for 2d image Iin
daily life (pictures = pixels = a set of real #)

* Neural network can generate images!
(arpproximately)

e Lattice QCD is more complicated than pictures
e 4 dimension
e Non-abelian gauge d.o.f. and symmetry
e Fermions

e Exactness of algorithm is necessary

® Q_ HOW can we deal W|th? http://www.physics.adelaide.edu.au/theory/staff/leinweber/Visual QCD/QCDvacuum/

13



Introduction

Akio Tomiya

Configuration generation with machine learning is developing

Year | Group ML | Dim. | Theory | Gaugesym | Exact? Fermion? Lattice2021/ref
2017 | AT, Akinori +RE.\'>|An 2d Scalar - No No arXiv: 1712.03893
2018 | K. Zhou+ | GAN 2d Scalar - No No arXiv: 1810.12879
2018 | J. Pawlowski + f_ﬁ/’l\'n 2d Scalar - Yes? No arXiv: 1811.03533
2019| MIT+ Flow 2d Scalar - Yes No arXiv: 1904.12072
2020| MIT+ Flow 2d U(1) Equivariant Yes No arXiv: 2003.06413
2020| MIT+ Flow 2d SU(N) | Equivariant Yes No arXiv: 2008.05456
2020| AL Aot G| MC | 4d SU(N) | Invariant Yes Partially arXiv: 2010.11900
2021 | M. Medvidovic+ | A-N|CE 2d Scalar - No No arXiv: 2012.01442
2021 | S. Foreman | L2HMC 2d U(1) Yes Yes No

2021 AT+ SLHMC 4d QCD Covariant Yes YES! This talk
2021| LDel | Flow 2d  |Scalar, O(N) - Yes No

2021 MIT+ | Flow | 2d | Yukawa - Yes Yes

2021 | S Foreman, Flljaltlxgd 2d U(1) | Equivariant Yes No but compatible | arXiv: 2112.01586
2021| XY Jing Ngg:al 2d UQ) Equivariant Yes No

2022 | J. Finkenrath | Flow 2d U(1) Equivariant Yes Yes (diagonalization) arxiv: 2201.02216
2022| MIT+ Flow | 2d,4d | U(1), QCD | Equivariant Yes Yes arXiv:2202.11712 +
2022 AT+ Flow 2d, 3d Scalar Yrs

+ ...



LQCD + Machine learning
How to deal gauge sym.



Introduction

Neural network is a universal approximator of functions

Image classification, cats and dogs

100x100 (0.000
_ £ Flaten | (0.8434 | IMage is a vector d _ Label is 2 dim vector
- M 0.756 | (this is 10,000 dimension) 1 (cat = (1, O)Y
0.3456
\ i
d0§= <O> 0.1
110,000 dimension f: Neural net : f(Image of dog) = ( ' >
’ Input 0.9
e . .
‘. . 2 dimension
E Images of “dog” » » .
o _aa=n cat = <1>
|'- = » \0
B S

Images of “cat”
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Introduction

Affine transformation + element-wise transformation

Fully connected neural networks
() = 6EDWEDGED (W=D 4 p (=D)) 4 p (=)

ré’ represents a set of parameters: eg wg), bl.(l), .+« (throughout this talk!)

Component of neural net: [ = 2.3.--- and u) =7 .
Matrix product

) N (1—1 [y Vector addition
Zl-( ) = Wl§- )I/tj( ) + bi( . (w, b determined in
j the training)
D) — (D) element-wise (local)
W= (Zi ) Non-linear transf.

Typically o ~ tanh shape

Neural network = (Variational) map between vector to vector




Introduction

Neural network is a universal approximator of functions

Image classification, cats and dogs

100x100 (0.000 )
0.000 | 0 | |
Flaten | (0.8434 | IMage is a vector d _ Label is 2 dim vector
0.756 | (this is 10,000 dimension) 1 (cat = (1, 0)Y
0.3456
L)
dog =
$10,000 dimension f: Neural net ¥ <1> f(Image of dog) = <001>
’ Input 0.9
.4 . 2 dimension
N Images of “dog” .
S ia=- cat = (1>
|'- — > 0
TR F|t ansatz

Images of “cat”

Fact: neural network can mimic any function! (universal app. thm)

Koji Hashimoto
Deep Learning

In this example, neural net mimics a map between and Physics
image (10,000-dim vector) and label (2-dim vector)




What is the neural networks?

Convolution layer = trainable filter

Filter on image

Laplacian filter
O|11]0
1121
0(1]0

Edge detection

(Discretization of 0°)

Fukushima, Kunihiko (1980)
Zhang, Wei (1988) + a lot!

Trainable filter

Edge deteCtiOn Gaussian filter

W11 | W12 | W13 1]

Smoothin — 2|42
W21 | W22 [ W23 (Gaussian filter) 16 o |

W31 | W32 [ W33

This can be any filter which helps feature extraction

but still transitionalli eiuivariant!



Convolution neural network

Training can be done with back propagation

loss function
quantifies
error of output

W11 | W12 [ W13

W21 | W22 [ W23

—_—) —>
W31 | W32 | W33 G.A. feed L
B Pooling/

Translation | flatten
equivariant map
with trainable

parameters

.....
ke,
......
.............................
------

.
.
.
*
-------------
___________
----------
- an®
L] -
L] s
L] s
L] s
.....
............
nnnnnnnnnnnnnnnnn




Smea ring Akio Tomiya

Smoothing improves global properties
Coarse image Smoothened image

Numerical derivative is unstable Numerical derivative is stable

We want to smoothen gauge configurations
with keeping gauge symmetry

APE-type smearing M. Albanese+ 1987
Two types: R. Hoffmann+ 2007
Stout-type smearing C. Morningster+ 2003



Smea ring Akio Tomiya

Smoothing with gauge symmetry, APE type

M. Albanese+ 1987
APE_type smearing R. Hoffmann+ 2007

Covariant sum Normalization

M
fat — a T — i i
U’u(n) — U’ua (n)=N [(1 — a)UM(n) + gVﬂ[U](n)] N [M] \/W Or projection
VZ[U](H) = Z Uy(n) Uﬂ(n + D) Uj(n + )+ - V;[U](n)& U, (n) shows same transformation
UFv *U;at[U](n) is as well
Schematically,

— =N [o-o—>—+iZF1+14 ]

In the calculation graph,

H{E ()




Akio Tomiya

Smearing

Smoothing with gauge symmetry, stout type

Stout-type smearing
U ﬂ(n) - U ;at(n) — GQU ﬂ(n) Covariant sum

= U,(n) + (2 — DU, (n)

(: anti-hermitian traceless plaquette
This is less obvious but this actually obeys same transformation

/
U [(eQ - 1)U}€L Ufat

C. Morningster+ 2003

\ 4 \ 4

Schematically,

AN
7

|
o

[
ANV
\
—
ANV

In the calculation graph,




Smea ring Akio Tomiya

Smearing decomposes into two parts

General form of smearing (covariant transformation)

Zﬂ(n) = W Uﬂ(”l) +w,S[U]  Gauge covariant sum

U/Eat(n) = N (z,(n)) A local function




Smea ring Akio Tomiya

Smearing ~ neural network with fixed parameter!

. i ] AT Y. Nagai arXiv: 2103.11965
General form of smearing (covariant transformation)

Z,,,(n) = W Uﬂ(”l) +w,S[U]  Gauge covariant sum

U;at(n) = N (z,(n)) A local function

It has similar structure with neural networks,

(D _— (D, ,(-1) (I) Matrix product
Zi o Wij uj T bi vector addition

j .
D _ (Do element-wise (local)
l/tl.( ) = 0( )(Zi( )) Non-linear transf.
Typically o ~ tanh shape

Actually, we can find a dictionary between them



Gauge covariant neural network

= trainable smearing

Dictionary

(convolutional)
Neural network

Akio Tomiya

AT Y. Nagai arXiv: 2103.11965

Smearing in LQCD

Inout Image gauge config
P (2d data, structured) (4d data, structured)
Image gauge config
Qi (2d data, structured) (4d data, structured)
Symmetry Translation Translation, rotation(90°),
Gauge sym.
with Fixed param Image filter (APE/stout ...) Smearing

Local operation

Summing up nearest
neighbor with weights

Summing up staples
with weights

Activation function

Tanh, RelLU, sigmoid, ...

projection/normalization
in Stout/HYP/HISQ

Formula for chain rule

Backprop

“Smeared force
calculations” (Stout)

Training?

Backprop + Delta rule

AT Nagai 2103.11965

Well-known

(Index i in the neural net corresponds to n & p in smearing. Information processing with NN is evolution of scalar field)



Takeaway message

Gauge Covariant Neural networks
= trainable smearing, training for SU(N) fields

27



Gauge Covariant neural network Akio Tomiya

= trainable smearing AT Y. Nagai arXiv: 2103.11965

Gauge covariant neural network = general smearing with trainable parameters w

2"y = wPUP () + wPEP U]
U(’“)(n)[U(l)] . 1 2 0
p :
N (Z,EZH)(H))

(Weight “w” can be depend on n and u = fully connected like. Less symmetric, more parameters)

o UNNW[U] = UP(n) | UP(n) U}t”(n)[Uﬂ(n)]

Good properties: Obvious gauge symmetry. Translation, rotational symmetries.

U, (n) = UNNn) = UNN(m)[ U]

1. Gauge covariant composite function:
Input = gauge field, Output = gauge field

2. Parameters in the network can be trainable using ML techniques.



Gauge Covariant neural network Akio Tomiya

Training can be done with (extended) back propagation

AT Y. Nagai arXiv: 2103.11965
Gauge inv. loss function can be constructed by gauge invariant actions

Usual neural network

W11 | W12 | W13 Invariant
oo <0> loss function
W21 | Wa2 | Was 1
— — —
W31 | W32 | W33 G.A. Dense feed L
ll Pooling/ net = (5)

Translation | flatten
equivariant map

with trainable /

parameters Translation equivariant =

the image is shifted,
output image is also shifted
Parametrized Invarian_t
Covariant neural networks
D |UNNWU]| — Sgerm | UMY —> L
- ov n ferm
P O 2C feed
prsdl, e arametrized Dirac operator
UNN(”)[U] M P trized Dirac op
> -
C

e sy
- i : r"Cz‘/o Covariant 1 [U NN]
BT e - s NN / p aq feed
w e 2
_ W1{3+W2{:3 Parametrized loop operators Q [U ] L
# — (e >+ (e.g. plaquette, Polyakov loop)  Topological charge

cf. Gauge equivariant neural net (M Favoni+)




Gauge Covariant neural network Akio Tomiya

Neural ODE of Cov-Net = “gradient flow”

ResNet =D { Cg l l D arXiv: 1512.03385

Continuum
Layer
Limit

-
' du' ) |
Neural ODE — cg( U ) arXiv: 1806.07366

dl. (Neural IPS 2018 best paper)




Gauge Covariant neural network Akio Tomiya

Neural ODE of Cov-Net = “gradient flow”

ResNet =D { Cg l l D arXiv: 1512.03385

Continuum
Layer
Limit

v dﬁ’(l‘)

Neural ODE — ?(7(0) arXiv: 1806.07366
d A (Neural IPS 2018 best paper)

Gauge—cov net U(l) ( é U(H'l) AT Y. Nagai arXiv: 2103.11965
l Continuum L ?

Neural ODE U,u (n) _ ?é U(t) “Gradient” flow
for Gauge-cov NN dt — ( J7; (I”l)) (not has to be gradient of S)

“Continuous stout smearing is the Wilson flow”

2010 M. Luscher




Akio Tomiya

Gauge covariant neural network

Short summary

: Continuum :
Symmetry Fixed parameter limit of layers How to Train
Convolution: Delta rule and
Conventional Convolution: Filtering ResNet: hackoro
neural network Translation (e.g Gaussian/ Neural ODE KPTOP
. Gradient opt.
Laplasian)

Gauge covariance Extended Delta

Gauge cov. net - : : « : . rule and
ATY. Nogai arXiv: 2103.11965 Translatlgn equ, Smearing Gradient flow backprop
90° rotation equiv /éradient opt.

/Re—usable stout
force subroutine
(Implementation is easy &
no need to use ML library)

Next, | show a demonstration



An application
Self-learning HMC



Application for the staggered in4d *“~*™

Problems to solve

arXiv: 2103.11965
Our neural network enables us to parametrize gauge symmetric action

covariant way. It can be used In variational ansatz in gauge theory.

eq SNN[UT = 8 e | UNSOOIU]

SNN[UT = S,

UNmU]

tag

Test of our neural network?

Can we mimic a different Dirac operator using neural net?

Artificial example for HMC:
Target action  S[U] = Sg[U] + Sf[Cb, Uim = 0-3],

ActioninMD  SplU1 = S, |U| + S¢[p, Up™[UT; my, = 0.4],

Q. Simulations with approximated action can be exact?
-> Yes! with SLHMC (Self-learning HMC)



SL MC = Exact algorithm with ML *°™"

SLHMC for gauge system with dynamical fermions

arXiv: 2103.11965 and reference therein

m Metropolis

Both use

1
HHMC=EZnZ+Sg+Sf

Non-conservation of H cancels since
the molecular dynamics is reversible

Metropolis E

Metropolis

1
— E: 2
H—E v/ +Sg+Sf[U]

1
— 2 NN
H_EZn + S+ STUNNUT]

Neural net approximated
fermion action but exact

Metropolis &

SLHMC works as an adaptive reweighting!



Application for the staggered in4d *“~*™

Lattice setup and question

arXiv: 2103.11965

Target Two color QCD (plaguette + staggered)
Algorithms SLHMC, HMC (comparison)
Parameter Four dimension, L=4, m = 0.3, beta = 2.7, Nf=4 (non-rooting)

Target action SIU] = Sg[U] + Sf[éb, Uim = 0-3],

For Metropolis Test

Action in MD _ NN : _

Observables Plaqguette, Polyakov loop, Chiral condensate (1/71//)

Code Full scr.atch,. , ﬁl_attlceucndl AT+ (in prep)

fU”y written in Julia lang' (But we added some functions on the public version)



Lattice QCD code

We made a public code in Julia Language

[ What iSjulié? 1.0pen source scientific language (Just in time compiler)
2.Fast as C/Fortran (sometime, faster), Productive as Python

3.Machine learning friendly (Julia ML packages + Python libraries w/ PyCall)
_ 4.Supercomputers support Julia y

(ﬁ LatticeQCD.jl (Official package) : Laptop/desktop/PC-cluster/Jupyter (Google Colab)\

SU(Nc)-heatbath/SLHMC/SU(Nc) Stout/(R)HMC/staggered/Wilson-Clover
Domain-wall/Measurements (Now updating to v1.0, MPI ver is ready)

-

1. Download Julia binary A
3 steps in 5 min 2. Add the package through Julia package manager
\_ 3. Execute! Y,

https://github.com/akio-tomiya/LatticeQCD. ||

SU(3), Quenched, L=4"4, Heatbath

065
o060} 6
§ 055} | 4
g 050
o 045}/ 2
040

0
0.450.500.550.600.650.70 5 10 15 20 25 00 01 02 03 04 05 06
Plaguette MC time |Polyakov loop|

FFFFFRFFFF X
&

O N B OO

Polyakov loop 53
g 05 [ 01} oo 82
9 04 ‘ [/ 00 o © ©° ® >
) [ [ 1. ° ® o1
. > | N 0.1 o° X
rameters in no time. Qo3 AT £ 02 ° Q of!
'''''''''''''''''''''''''''''''''''' S o2t | ! 0313, g° ©
" = . = A ° Q-1 |
S |/ 04| o0 &
Q01| 05 .. o |
e < 2|

! fol
5 10 15 20 25 -0.10.0 0.1 02 0304 05 5 10 15 20 25
MC time Re MC time



https://github.com/akio-tomiya/LatticeQCD.jl

Deta i IS (S ki p) Akio Tomiya

Results: Loss decreases along with the training

2) arXiv: 2103.11965

Loss function: [ [U] = 5 SolU, @1 — SIU, ¢1| , ~ -log(reweighting factor)

— mp = 0.4

e e
0 20 40 60 80 100
Training iteration history

Without training, e”(-L)<< 1, this means that candidate with approximated action
never accept.
After training, e”(-L) ~1, and we get practical acceptance rate!




Application for the staggered in4d *“~*™

Results are consistent with each other

2500 1

2000 1

1500 1

Count

1000 - ;

500 - ,

0.70
Plaquette

3000
25001 '

+ 2000 1 |

C

3

3 1500
10001

500 -

0

0.38 0.40 0.42

0.44 0.46

Chiral condensate

Future work: Domain-wall/Overlap SLHMC (?)

0.48

0.50

arXiv: 2103.11965

| HMC |
4000 + | SLHMC X
J
., 30001 1
C
S !
© 2000 -
}
1000 - ‘ s
T
O . . SPVETSSP S B ) b I" " ; ;
—-1.0 -0.5 0.0 0.5 1.0
Polyakov loop
Expectation value
Algorithm Observable Value
HMC Plaquette 0.7025(1)
SLHMC Plaquette 0.7023(2)
HMC |Polyakov loop| 0.82(1)
SLHMC |Polyakov loop| 0.83(1)
HMC Chiral condensate 0.4245(5)
SLHMC  Chiral condensate 0.4241(5)

Acceptance = 40%



Other architecture:
Flow based sample algorithm



Related WO rks Akio Tomiya

Gradient flow as a trivializing map

Trivializing map for lattice QCD has been demanded...

)= %[ [ H H H H dipy, € POy, ]

x€100 ye100 ze100 €100

~

¢ = F T(Cb) Flow equation (change variable)

If the solution satisfies S(F (¢)) + In det(Jacobian) = Z 45721 ,

n

M. Luscher arXiv:0907.5491
arxiv 1904.12072, 2003.06413, 2008.05456



Flow based sampling algorithm

Normalizing flow ~ Change of variables

Simplest example: Box Muller 7 = e—%(x2+y2)

Change {tan 0=vylx
of variables

O 0 27 1
1.2 1.2 1

[ de dy e 2% 777 =_[ d@JdZ
—00 =00 2 )y 0
Original integral: hard Easy

Point: Make problem easier with change of variables (make the measure flat)

RHS is flat measure 51 ~ (09271-)
—\We can sample like right eq. 52 ~ (O, 1)

We can reconstruct X = 7 COS 6 0 = 51

a “field config” x,y
for original theory

like right eq. )’ = r Sin 9 r = \/_2 log 52

A change of variable which D¢ge =Sl makes flat = Trivializing map




Related WO rks Akio Tomiya

Gradient flow as a trivializing map

Trivializing map for lattice QCD has been demanded...

)= %[ [ H H H H dipy, € POy, ]

x€100 ye100 ze100 r€100

~

¢ = F T(Cb) Flow equation (change variable)

If the solution satisfies S(F (¢)) + In det(Jacobian) = Z qlg,zl ,

o= [[ T T1 IT T o5+

x€100 ye100 z&100 r€100

It becomes Gaussian integral! Easy to evaluate!!

However, the Jacobian cannot evaluate easily, so it is not practical.
Life is hard.

M. Luscher arXiv:0907.5491
arxiv 1904.12072, 2003.06413, 2008.05456



Related WO rks Akio Tomiya

Flow based algorithm = neural net represented flow algorithm
MIT + Google brain 2019~

== < =
I I
split 7
\\‘\Za ’/ N\ \\‘Zb’///
o -1 o \/ [ )
I”‘ \\\‘ f Z l” ~\\\ \“77—’

: (2) .
:‘ Z I,' :‘ ¢ ',' <,e(_‘€,\' ( _ :)
\\\\\~_-"" ‘\\~~--—"’I couple h ‘—‘" T

4,/!\\
r(2) A Ps ( ¢)‘ 11\\ = /} (Q}
-1 -1 “ -1 -1 ‘
g] Y gl gl+l o« e gn /!\‘ /z\\
- - - @) ()
combine T -
(a) Normalizing flow between prior and output distributions [ “T 0y j
8

(b) Inverse coupling layer

FIG. 1: In (a), a normalizing flow is shown transforming samples z from a prior distribution r(z) to samples ¢ distributed
according to ps(¢). The mapping f~!(z) is constructed by composing inverse coupling layers g; ' as defined in Eq. (10) in
terms of neural networks s; and ¢; and shown diagrammatically in (b). By optimizing the neural networks within each coupling
layer, ps(¢) can be made to approximate a distribution of interest, p(¢).

Train a neural net as a “flow” ¢ = F(¢)
If it is well approximated, we can sample from a Gaussian
It can be done “Normalizing flow” (Real Non-volume preserving map)
Moreover, Jacobian is tractable!

arxiv 1904.12072‘ 2003.06413‘ 2008.05456



Related WO rks Akio Tomiya

Flow based algorithm = neural net represented flow algorithm
MIT + Google brain 2019~

=1 < =
I I
split 7
\Za/ \Zb/
-1 L)
", \‘ ( ) "l \‘I 4/!\
oz .9 e (=)
S S couple Hl T
N A,r/v'\\
r(z) ‘ p ,.(@‘» (=) o)
-1 -1 ” -1 -1
g] .o gi gi+l L g,l /z\ /z‘
- — - () (#)
combine N
(a) Normalizing flow between prior and output distributions “1(5) ;

(b) Inverse coupling layer

FIG. 1: In (a), a normalizing flow is shown transforming samples z from a prior distribution r(z) to samples ¢ distributed
according to ps(¢). The mapping f~!(z) is constructed by composing inverse coupling layers g; ' as defined in Eq. (10) in
terms of neural networks s; and ¢; and shown diagrammatically in (b). By optimizing the neural networks within each coupling
layer, ps(¢) can be made to approximate a distribution of interest, p(¢).

Their sampling strategy

sample gaussian — inverse trivializing map — QFT configurations
Tractable Jacobian (by even-odd strategy)

After sampling, Metropolis-Hastings test (Detailed balance)— exact!

arxiv 1904.120/2, 2003.06413, 2008.05456



Flow based sampling algorithm

Flow based ML for QFT MIT + Deepmind + ...

Dpe=1"019] o T | doe™" I [9]O[Flo]]

Original integral: hard Easy

Flow-based sampling algorithm

Trivial theory
(no kinetic term, no topology)

No auto-correlation
No correlation for points

“Cooling = change of variable”
via trained neural net
“un-trivializing map”

No auto-correlation

Approx.correlation for points g Metropolis-Hastings with

e_S/e_V((pi)J_l[qo]

Small auto-correlation
Correct correlations

Reject Reject
(Use left conf.) (Use left conf.)



Normalizing flow in Julia Akic Ad Tiya

We made a public code in Julia Language

GomalizingFlow.jl: A Julia package for Flow-based
sampling algorithm for lattice field theory

Akio Tomiya

Faculty of Technology and Science, International Professional University of Technology,
3-3-1, Umeda, Kita-ku, Osaka, 530-0001, Osaka, Japan

Satoshi Terasaki
AtelierArith, 980-0004, Miyagi, Japan

A public code for
Flow-based sampling

https://arxiv.org/abs/2208.08903

Abstract

GomalizingFlow.jl: is a package to generate configurations for quantum field alg O rlth m

theory on the lattice using the flow based sampling algorithm in Julia pro-

gramming language. This software serves two main purposes: to accelerate d b d
research of lattice QCD with machine learning with easy prototyping, and to n Ot O n |y 2 Ut aISO 3

provide an independent implementation to an existing public Jupyter note-
book in Python/PyTorch. GomalizingFlow.jl implements, the flow based
sampling algorithm, namely, ReaNVP and Metropolis-Hastings test for two
dimension and three dimensional scalar field, which can be switched by a
parameter file. HMC for that theory also implemented for comparison. This
package has Docker image, which reduces effort for environment construction.
This code works both on CPU and NVIDIA GPU.

Keywords: Lattice QCD, Particle physics, Machine learning, Normalizing
flow, Julia

arXi1v:2208.08903v1 [hep-lat] 18 Aug 2022

https://github.com/AtelierArith/GomalizingFlow.jl
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LQCD + Quantum galtorithm



M Otivation Akio Tomiya

Sign problem prevents using Monte-Carlo

e Monte-Carlo enables us to evaluate expectation values for “statistical
system”, like lattice QCD in imaginary time

N

conf

1 1
z' OlU]+ 0 < ) U, « P(U)==eWeR,
Z
conf

(OlU]) =

conf c

2000 = _|
| Great successes! 2 28
: —+Q =
==
1500—: | ay 5
R T B4 = Sign problem
[} 7 N T
= 1000 | N L 100}
= |h :
|_
500_' K —— experiment
4 == width
| o input
arXiv:0906.3599 o1 ¢ Qoo 0

1
Nuclei Net Baryon Density

e |f we turn on the baryon chemical potential y, Monte-Carlo methods do not

work because e 'Y becomes complex. This is no more probability. (sign
problem)

e Operator formalism does not have such problem! But it requires huge memory
to store quantum states, which cannot be realized even on supercomputer.

 Quantum states should be stored on quantum device (Feynman)



M Otivation Akio Tomiya

p = 0 is good for Classical, T=0 is good for Quantum

Classical machine: Lattice field theory calculations rely on

1 .
P(U) = Ee_S[U] det(D[U] + m)2 [ [R+ Since 1980 (M. Creutz)~

- This P(U) cannot be regarded as probability if p # 0 (sign problem)

Quantum machines can realize (any) unitary evolutions (Solovay Kitaev theorem),

_ifiy Phys.Rev.D 105 (2022) 9, 094503
Ul)=¢e"’ and references therein

- No problem for y#£0 because we can only use unitary gates (operators)
- “Short time evolution” (shallow circuit) is preferred for near-term devices

Classical Quantum
Computers Computers

Finite Density
Finite Temperature *

We need a method to calculate T>0 and p=0 for QCD
and for near-term quantum devices




Akio Tomiya

Summary of this talk

Hybrid = Quantum algorithm + machine learning

AT arXiv: 2205.08860

2.5 1.0
Fukushima , Hatsuda
Rept.Prog.Phys.74:014001,2011 2.0 - 0.8
A
2 Quark-Gluon Plasma
= | sQGP
L
g Critical 1.5 - L 0.6
= Point Vs S
N >
o\ - ~
) '\ Quarkyonic i
Hadronic Phase %u:‘ Matter ~ ___--CEEE 1.0 - L 0.4
="' A= SC
W -
Lieuid-Gas 1 , >
'O @ < ColorSuperconductors
7': CFL-K®, Crystalline CSC
Nuclear Superfluid  Meson supercurrent Baryon Chemical Potential us O . 5 - O . 2
Gluonic phase, Mixed phase
Broken
O . O I 1 1 1 1 1 1 O . O

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
u/g

| investigated T-mu phase diagram using a guantum algorithm & neural network
(B-VQE, No sign problem) for Schwinger model (toy model of QCD)



QFT with Hamiltonian
Hamiltonian vs Lagrangian

Operator formalism (This work)

H : Hamiltonian in QFT

Real time

Minkowski in MA{d+1} A/El

_ .—itH
Ult)=-¢ —

- Typical use case of quantum algorithm is for real-time. Unitary.
- Time evolution: Correlators (e.g. 2pt on light-cone), etc

- Main interest: (€2| O | ), where | Q) is the exact ground state
- Difficulty: State preparation for exact ground state of H



State preparation, VQE and Beta-VQE """

State preparation is hard
We are interested in expectation value with true ground state for Hamiltonian
(0) =(Q]0]LQ)
For the actual ground state H| Q) = E;| Q)

The exact ground state can be prepared using adiabatic state preparation = long
unitary evolution with gradually changing Hamiltonian

—1Ht —1H, . t/N ,—1H_ .. t/IN N
c NG (e kin e mass coe )
d B d o ] ZaZy 3 YaYs B a XoX; o Il ZaZy d Y>Ys B :E . ] ZaZs g YaYs B a XoXy o ] ZaZs 3 B T x.
"y, B 3 B d - mny, B i X1 X, B d Z\Zy - Yy, B i X1 X, d VAVA) - WY, B i X1 X, B | Z\Zy - Yy, B 3 T
0.0
-0.1
B Chakraborty, M
. Honda, T Izubuchi, Y
= —0.21 Kikuchi, AT
~03 Phys.Rev.D 105 (2022)
' 9, 094503
, , , , —0.41 i , , ,
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.5 1.0 1.5 2.0
6/2n g

BUT, Near term quantum devices are only capable to deal with simple (short) circuit!

Variational approaches help to evaluate the ground state to evaluate the expectation value
= Variational Quantum Eigen-solver (VQE), a quantum-classical hybrid algorithm



VQE and Beta VQE 1/2

Background: VQE is a variational method

e Quantum machine: Exact ground state |£2) preparation is hard. In particular, it is
difficult on near term devices

e \Variational method for a pure state with a short circuit (VQE, variation quantum
eigen-solver).

* Quantum/Classical hybrid algorithm, iterative. U, is a short circuit.

e Parametrized unitary circuit (~parametrized state | 0), 6: a set of parameters)

VQE: lterative approx Expactation value )
T 0, ® 100=15 | |0 conite
a (Hyy= Y (0] h6)
/7< . . -k .
U, hy, minimize (H'), tuning ¢
—| —X
— | —X
Tuned parameter /

 Systematic error since |0) = U [ ® |0)] # | Q) but cheap



QFT with Hamiltonian
Hamiltonian vs Lagrangian

Operator formalism (This work)

'H : Hamiltonian in QFT

g \Einite temperature/imaginary time
Euclid in SA1 x MAd

t- 7

;silZi(T — 1) ’ U(T) ~ e_TH
(00(7)) = Tr[O(0)O(7)p]

p = U(T)/Z@

- Thermal state in quantum system?
-> Density matrix formalism




DenSity matrix Akio Tomiya

unifies description of pure states and mixed states

Pure states: System is purely quantum

Ppure = |\P><\P| <0> = Tr[Oppure] — <\P |0 T)

Mixed states: States are classically mixed (= superposition)

Pmixed = Z W, | Wz)(% | (0) — Tr[Opmixed] — Z Wi<l//i | O | l//z>
. i
w; € R 4 represents probability to find a pure state |1//l-)

Thermal states (Grand-canonical):

1
pT,,M = —C T(H_MN) <0>T,M — TI'[O,OT’IM]

/

A Set of Lectures

s soox Classics

meiaternative approach TPQ: AT Yuki Nagai APLAT 2020)
Thermal quantum average in general |




DenSity matrix Akio Tomiya

Quantum version of probability distribution

(0) = Tr[Op]

General Properties of density matrix p

* |t unifies discretions of pure states and mixed states
e Normalized as Tr[p] = 1

e p can be regarded as quantum version of probability distribution p(x)

. eg)S=-— de p()log p(x) (Shannon entropy)
<—> S =-Tr[plogp] (Von-Neumann entropy)

* Distance between two density matrices = quantum relative entropy (next)



VQE and Beta VQE 2/2

Beta VQE is a variational method for mixed states

KL divergence for p = Kullback-Leibler Umegaki divergence (Pseudo-distance for p)

Classical ver: D(p | q) = J'dx p(x)log p(x)/g(x) (KL divergence)

* Relative entropy. Difference of two distributions (~distance)

* Positive definite, Used in machine learning

e D=0if and only if p, g are equal

e Quantum D(p, | p,) = Tr[p, logp, / P> (KL-Umegaki divergence ~ distance)
* Positive definite
« D=0if and only if p{, p, are equal

o Kullback-Leibler Umegaki divergence can be used for variational approaches

Ansatz for p?



VQE and Beta VQE Akio Tomiya

Beta VQE is a variational method for mixed states

J. -Guo Liu+ 1902.02663
*M. Germain+ 1502.03509

e Variational ansatz for thermal quantum system:

Po = Z¢[x] U9| x)(x (U, © = 60U ¢ (parameters)

—

o X = (X,Xy,X3, ", X, **+) , and

x;, € 10,1} : (roughly) fermion

I= _T_R_l_j 1 _ occupation .
hahihd R B -_Ix) =1x)®1x5) @ |x) & - : |
1 = RHEHRE Product state

Neural Variational (Easy to prepare)

network  quantum circuit
(Thermal) (Entanglement)




Beta VQE

Extended VQE for mixed states

Jin-Guo Liu+ 1902.02663

L 1 A ~
« We minimize £(B) = D(pq |pr,) —InZy, = Trpg In pg] + ?Tr[pe)(H — UN)]

. Variational bound: £ (®) > — log Zr,

» Advantage of beta VQE
* No sign problem, even with the chemical potential
 Bounded variational approximation

* Disadvantage
» Systematic error

e Need numerical resource if we use a classical machine



Akio Tomiya

Simulation results

Simulation setup (mostly skip)

e We apply beta-VQE for Schwinger model (= QED in 1+1d).
Toy model of QCD, confinement, chiral symmetry breaking

1 _/. . . _ 1
S = "dzx[ — ZFWF”” + 1//(1@ —gA — m)l//] <P H-= de — ipy (0, +igA Dy + mipy + EHZ

0.E =gy
e Staggered fermion

e Jordan-Wigner transformation. Open Boundary condition.
e g=1,Nx=(4,6),8,10, 1/T =[0.5-20.0], mu= [0-1.4], 4 lattice spacings 1/2a = [0.5-0.35]
e We do not take large volume limit but take continuum limit
e (Practically, Nx>10 cannot be calculated on our numerical resources)
e (My previous work shows data from Nx>12 are essential to take stable large volume limit though)

e Setup for beta VQE:

O
. @ o0
e Unitary part = SU(4) ansatz
e (lassical weight = Masked Auto-Encoder for Distribution Estimation (MADE) J u Ia

Training epoch is 500. Sampling = 5000 for classical distribution

 QObservables
e \Variational free energy (exact and variational one)
e (Translationally invariant) Chiral condensate
e Check point: Dependence of variational error on temperature and mu




Simulation results

Variational free energy is O(1), Nx=10

Akio Tomiya

11
AT. 2205.08860
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1.Mild dependence on p (not fatal)
2.Hard for T -> 0 (large deviation) as expected




Summary for T-mu

Akio Tomiya
2.5 AT. 2205.08860
Fukushima , Hatsuda
2.0 - 0.8 Rept.Prog.Phys.74:014001,2011
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We investigate T-p phase diagram for Schwinger model

Continuum extrapolation has been evaluated
(except for additive mass renormalization by 2206.05308)

The variational approach does not show difficulty for our parameter regime

Towards to go large volume, optimization of code, GPU version, tensor
network. (noise-free) real device!



Summary

MLPhYs Foundot on of Moch ne Leornlng Physics'

1.What and why QCD/lattice QCD? L comiombmeimiie

1.Problem: Long auto-correlation, Sign problem
2. Lattice QCD + Machine learning

1.Trainable smearing + SLHMC = adaptive reweighting
3. Lattice QCD + Quantum algorithm

1.Sign problem + non-unitary -> classical/quantum hybrid!

2.5 1.0
2.0 lo.s
1.5 - - 0.6
()]
N

(7)
dU,"(n

=g U () -
dt — |

ulg

Congratulations again, Onogi-san! o







Self-intrOdUCtion Akio Tomiya

Lattice QCD & Machine learning

What/who am 1?

| am a particle physicist, working on lattice QCD.
| want to apply machine learning + quantum alg. on it.

MLpa pers https://scholar.google.co.jp/citations?user=LKVqy_wAAAAJ

Detection of phase transition via convolutional neural networks
A Tanaka, A Tomiya

Journal of the Physical Society of Japan 86 (6), 063001  Phase transition detection with NN

Evidence of effective axial '(1) symmetry restoration at high temperature QCD
A Tomiya, G Cossu, S Aoki, H Fukaya, S Hashimoto, T Kaneko, J Noaki, ...

Physical Review D 96 (3), 034509, . . . .
Rxml anomaly at T>0 with Mobius Domain-wall fermions

Schwinger model at finite temperature and density with beta VQE
A Tomiya

arXiv preprint arXiv:2205.08860 Phase diagram via Quantum/Classical algorithm

Biography
2010 - 2015 : Osaka university (Master& PhD)
2015 - 2018 : Postdoc in CCNU (Wuhan, China)

2018 - 2021 : SPDR in RIKEN/BNL (Brookhaven, US)
2021 - : Faculty in IPUT Osaka

Akisori Tanaka
Aki Tomiya
K mot;
..... e
RH8:

wEDE -

.l Deep Learning KAKENHI (Grants-in-Aid for Scientific Research)
e W | cncooos W and Physics Pl: Grant-in-Aid for Transformative Research Areas (A)
MLPhYs Foundation of "Machine Learning Physics'
=5 . 4 3 ) o Grantin-Aid for Transformative Research Areas (A)

Grant-in-Aid for Early-Career Scientists
https:/cometscome.github.io/DLAP2020/ Cl: Grant-in-Aid for Scientific Research (C), etc 1




Deta i IS (S ki p) Akio Tomiya

Network: trainable stout (plag+poly)

arXiv: 2103.11965

(0) poly _ _ _
Structure of NN QfP(M — p‘()‘llq()zlaQ(n) + {/’?;))lyAOsOly(") (1= 4?, All p is weight
(Polyakov loop+plaq PootysVi (1), (u=1=1,2,3) O meas an loop operator

in the stout-type)
QY (n) = 2[ (n)]1a TA: Traceless, anti-hermitian operation

U D(n) = exp(Q(m) U (n)

2- layered stout

NN _ 772 (D
U U] =U;"(n) [Uu (”)[Uﬂ(”)” with 6 trainable parameters

Neural network
Parametrized action:

Action for MD is built by
gauge covariant NN

SlU1 = S,|U| + S¢|, UpN UL my, = 0.4],

2
Invariant under,

SH[Ua ¢] - S[U’ ¢]
rot, transl, gauge trf.

b

: 1
Loss function: L(U] = >

Training strategy: 1.Train the network in prior HMC (online training+stochastic gr descent)
2.Perform SLHMC with fixed parameter

Gauge covariant neural network and full QCD simulation



Deta i IS (S ki p) Akio Tomiya

Results: Loss decreases along with the training

arXiv: 2103.11965
Intuitively, e”(-L) is understood as

Boltzmann weight or reweighting factor.

1 2
Loss function: LU = 5 SolU, ¢1 = S[U, ¢1] ,

Prior HMC run (training) Training history

1\ 10 — mh=0.4
(‘)C] 0« 60— naLgé ), ?

Hl [T rrl‘—)(l)
OLy(D) _ 9Ly(D) Sy ¢
au)gL—l) 85’9 d’lU(L 1) _l 40 -

m _QRCZU

u'm 60 -

Q): sum of un-traced loops

C: one U removed Q

20 -
A: A polynomial of U. (Same object in stout)

0 20 40 60 80 100
MD time (= training steps)
Without training, e/(-L)<< 1,
this means that candidate with approximated action
never accept.
After training, e”(-L) ~1, and we get
practical acceptance rate!

We perform SLHMC with these values!

Gauge covariant neural network and full QCD simulation



Gauge Covariant neural network Akio Tomiya

Training can be done with (extended) back propagation

AT Y. Nagai arXiv: 2103.11965
Gauge inv. loss function can be constructed by gauge invariant actions

SSN[U1= S [UEN(H)[U]] S: gauge action or fermion action

f: mean-square for example,

Loss function | [U] =f (SNN[U ]) mini-batch

(c.f. Behler-Parrinello type neural net)

Training: We can use “gradient descent” (also “Adam” (adaptive-momentum) is applicable)
OL,[U]

Repeat update 9(1) — H(l)
2,210,

(until converge)

0" is parameters in [-th layer

n

100 - —

0.75 1
0.50

0.25

Example of
Gradient descent ¢ °%

-0.25

-0.50

-0.75 A

—100 T L T T T
-1.0 -0.8 -0.6 -0.4 -0.2 0.0

Gauge covariant neural network and full QCD simulation



Gauge Covariant neural network Akio Tomiya

Training can be done with (extended) back propagation

AT Y. Nagai arXiv: 2103.11965
Gauge inv. loss function can be constructed by gauge invariant actions

SSN[U1= S [UEN(H)[U]] S: gauge action or fermion action

Loss function Lé?[ Ul=f ( SNN[ U] ) f: mean-square for example,

mini-batch
(c.f. Behler-Parrinello type neural net)

Training: We can use “gradient descent” (also “Adam” (adaptive-momentum) is applicable)
OL,[U]
000
The second term requires the chain rule for matrix fields, we developed extended delta rule:
oL JU]l oL of oSN ou+h gz+D
000 of OSNN gUU+D) g7+ 9HO)

This matrix derivative is common to the stout force
(namely well known)

Repeat update 9(1) — H(l)

(until converge) 0" is parameters in [-th layer

n

Gauge covariant neural network and full QCD simulation



Simulation results

Continuum extrapolation for Nx = 8, 10

Continuum limit with a polynomial ansatz AT. 2205.08860
: o
it looks good So far
Nx =8 Nx =10
' 1.0
1.04 = i ammmmmmmmmm— oo oo —
0.8 -
0.8
o / o
3 06 — S 0.6 1
= - =~ Exact at yu/g=0 2 I —-—= Exact at u/g=0
= —— Wwg=0.0 = ! —— Wg=0.0
2 0.4 Wg=0.2 S 0.4 - H - Wwg=0.2
—+— wg=0.4 o , —+— Wwg=0.4
—+— Wwg=0.6 ' —+— Wwg=0.6
0.2 —— Wg=0.8 0.2 7 —— W/g=0.8
—+— wg=1.0 —— wg=1.0
0.0 A ! - Wg=14 0.0 - ! — W/g=1l.4
00 25 50 75 100 125 150 175 20.0 0.0 25 50 75 100 125 150 175 20.0
T s

*(1 did not include additive mass shift (Ross Dempsey+ arXiv: 2206.05308).
| thank to Takis Angelides (DESY) and Etsuko Itou (RIKEN) for letting me know this important reference!)

We use Nx = 10 results for the phase diagram



VQE and Beta VQE 2/2

Beta VQE is a variational method for mixed states

J. -Guo Liu+ 1902.02663
*M. Germain+ 1502.03509

e Variational method for mixed states: Variational method on p

Po = 2p¢[?] U | XWX |U, ©=0U ¢ (parameters)

{x}

e X = (X5 X9y X3, **, Xy, ---)T, and x;, € {0,1} : (roughly) fermion occupation

e | X)) =1x)Q®|x) ® |x;3) ® --- : easy to prepare

. Ue| 7): parametrized pure states, similar to the conventional VQE

« pyl X ]: Classically approximated distribution for a configuration of x,

Neural network (MADE”) is used. ¢ = parameters
This can generate configurations of x



MAD E? Akio Tomiya

(masked) Auto-encoder for binary variable distribution

« MADE (neural network) mimics joint probability distribution e.g.
p(x{, X5, X3) , whose input is binary array (x;, x5, x3), x; = 0, 1

HEIEEE AL EIR
O|5|e| 7] 1]1]3.8|0]w
BRI IR
|| A7 014 8] 7]

)
S, Eﬂﬂlllllll
KO
ﬂ!ﬂ!lllllﬂ

HEEAROHEAEE
=[5 [3[8]7[[o]3]5]
EEERHHGB0E

Reconstructed MNIST (Binarized)

Auto-encoder with a mask -> Generative model for binary array
(Please ask me later in detail)



Beta VQE

Extended VQE for mixed states

Jin-Guo Liu+ 1902.02663

1 1 NN VQE

. We approximate p = —e A by po = 3" p,[F] Uy | T)(F| U
{x}

. {0V, » TrlpgOl = ) p,[¥1 (X |UjOU,| )

{x}
. - .
» Quantum machine can store a state U, | x) (test wave function)

« Classical machine can sample thermal distribution from pd)[?] (neural net)

» All parameters are tuned such that minimizing D(pg | p)

e QOptimization of parameters is done with a optimizer (as in machine learning)



M Otivation Akio Tomiya

Sign problem prevents using Monte-Carlo

e Monte-Carlo enables us to evaluate expectation values for “statistical
system”, like lattice QCD in imaginary time

N

conf

1 1
z' OlU]+ 0 < ) U, « P(U)==eWeR,
Z
conf

(OlU]) =

conf c

2000 = _|
| Great successes! 2 28
: —+Q =
==
1500—: | ay 5
R T B4 = Sign problem
[} 7 N T
= 1000 | N L 100}
= |h :
|_
500_' K —— experiment
4 == width
| o input
arXiv:0906.3599 o1 ¢ Qoo 0

1
Nuclei Net Baryon Density

e |f we turn on the baryon chemical potential y, Monte-Carlo methods do not

work because e 'Y becomes complex. This is no more probability. (sign
problem)

e Operator formalism does not have such problem! But it requires huge memory
to store quantum states, which cannot be realized even on supercomputer.

 Quantum states should be stored on quantum device (Feynman)
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p = 0 is good for Classical, T=0 is good for Quantum

Classical machine: Lattice field theory calculations rely on

1 .
P(U) = Ee_S[U] det(D[U] + m)2 [ [R+ Since 1980 (M. Creutz)~

- This P(U) cannot be regarded as probability if p # 0 (sign problem)

Quantum machines can realize (any) unitary evolutions (Solovay Kitaev theorem),

_ifiy Phys.Rev.D 105 (2022) 9, 094503
Ul)=¢e"’ and references therein

- No problem for y#£0 because we can only use unitary gates (operators)
- “Short time evolution” (shallow circuit) is preferred for near-term devices

Classical Quantum
Computers Computers

Finite Density
Finite Temperature *

We need a method to calculate T>0 and p=0 for QCD
and for near-term quantum devices
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Summary of this talk

Hybrid = Quantum algorithm + machine learning

AT arXiv: 2205.08860

2.5 1.0
Fukushima , Hatsuda
Rept.Prog.Phys.74:014001,2011 2.0 - 0.8
o A
2 Quark-Gluon Plasma
= 1.5 - - 0.6
=
>
, ~
Quarkyonic .
\ Matter ~ ___--=EEE 1.0 - - 0.4
‘ ! -~ ColorSuperconductors
)7: CFL-KY, Crystalline CSC
Nuclear Superfluid  Meson su percurren t Baryon Chemical Potential us 05 — 02
Gluonic phase, Mixed phase
Broken
O-O I 1 1 1 1 1 1 O-O

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
u/g

| investigated T-mu phase diagram using a guantum algorithm & neural network
(B-VQE, No sign problem) for Schwinger model (toy model of QCD)



QFT with Hamiltonian
Hamiltonian vs Lagrangian

Operator formalism (This work)

H : Hamiltonian in QFT

Real time

Minkowski in MA{d+1} A/El

_ .—itH
Ult)=-¢ —

- Typical use case of quantum algorithm is for real-time. Unitary.
- Time evolution: Correlators (e.g. 2pt on light-cone), etc

- Main interest: (€2| O | ), where | Q) is the exact ground state
- Difficulty: State preparation for exact ground state of H



State preparation, VQE and Beta-VQE """

State preparation is hard
We are interested in expectation value with true ground state for Hamiltonian
(0) =(Q]0]LQ)
For the actual ground state H| Q) = E;| Q)

The exact ground state can be prepared using adiabatic state preparation = long
unitary evolution with gradually changing Hamiltonian

—1Ht —1H, . t/N ,—1H_ .. t/IN N
c NG (e kin e mass coe )
d B d o ] ZaZy 3 YaYs B a XoX; o Il ZaZy d Y>Ys B :E . ] ZaZs g YaYs B a XoXy o ] ZaZs 3 B T x.
"y, B 3 B d - mny, B i X1 X, B d Z\Zy - Yy, B i X1 X, d VAVA) - WY, B i X1 X, B | Z\Zy - Yy, B 3 T
0.0
-0.1
B Chakraborty, M
. Honda, T Izubuchi, Y
= —0.21 Kikuchi, AT
~03 Phys.Rev.D 105 (2022)
' 9, 094503
, , , , —0.41 i , , ,
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.5 1.0 1.5 2.0
6/2n g

BUT, Near term quantum devices are only capable to deal with simple (short) circuit!

Variational approaches help to evaluate the ground state to evaluate the expectation value
= Variational Quantum Eigen-solver (VQE), a quantum-classical hybrid algorithm



VQE and Beta VQE 1/2

Background: VQE is a variational method

e Quantum machine: Exact ground state |£2) preparation is hard. In particular, it is
difficult on near term devices

e \Variational method for a pure state with a short circuit (VQE, variation quantum
eigen-solver).

* Quantum/Classical hybrid algorithm, iterative. U, is a short circuit.

e Parametrized unitary circuit (~parametrized state | 0), 6: a set of parameters)

VQE: lterative approx Expactation value )
T 0, ® 100=15 | |0 conite
a (Hyy= Y (0] h6)
/7< . . -k .
U, hy, minimize (H'), tuning ¢
—| —X
— | —X
Tuned parameter /

 Systematic error since |0) = U [ ® |0)] # | Q) but cheap



QFT with Hamiltonian
Hamiltonian vs Lagrangian

Operator formalism (This work)

'H : Hamiltonian in QFT

g \Einite temperature/imaginary time
Euclid in SA1 x MAd

t- 7

;silZi(T — 1) ’ U(T) ~ e_TH
(00(7)) = Tr[O(0)O(7)p]

p = U(T)/Z@

- Thermal state in quantum system?
-> Density matrix formalism




DenSity matrix Akio Tomiya

unifies description of pure states and mixed states

Pure states: System is purely quantum

Poure = | EN(P | (0) = Tt{Oppuee] = (¥10]¥)

Mixed states: States are classically mixed (= superposition)

Pmixed = Z Wi | l/jl><% | <0> — Tr[Opmixed] — Z Wz<l/jl | O | %>
] i

o w; represents probability to find a pure state |y)
l\II‘-
N— Thermal states (Grand-canonical):

pT,,M — Ee_%(ﬁ_ﬂﬁ) <0>T,M — TI'[O,OT’IM]

{ Thermal-quantum average in general A

e

s soox Classics



DenSity matrix Akio Tomiya

Quantum version of probability distribution

(0) = Tr[Op]

General Properties of density matrix p

* |t unifies discretions of pure states and mixed states
e Normalized as Tr[p] = 1

e p can be regarded as quantum version of probability distribution p(x)

. eg)S=-— de p()log p(x) (Shannon entropy)
<—> S =-Tr[plogp] (Von-Neumann entropy)

* Distance between two density matrices = quantum relative entropy (next)



VQE and Beta VQE 2/2

Beta VQE is a variational method for mixed states

KL divergence for p = Kullback-Leibler Umegaki divergence (Pseudo-distance for p)

Classical ver: D(p | q) = [dx p(x)log p(x)/g(x) (KL divergence)

* Relative entropy. Difference of two distributions (~distance)

* Positive definite, Used in machine learning

e D=0if and only if p, g are equal

e Quantum D(p, | p,) = Tr[p, logp, / P> (KL-Umegaki divergence ~ distance)
* Positive definite
« D=0if and only if p{, p, are equal

o Kullback-Leibler Umegaki divergence can be used for variational approaches

Ansatz for p?



VQE and Beta VQE 2/2

Beta VQE is a variational method for mixed states

J. -Guo Liu+ 1902.02663
*M. Germain+ 1502.03509

e Variational method for mixed states: Variational method on p

Po = 2p¢[?] U | XWX |U, ©=0U ¢ (parameters)

{x}

e X = (X5 X9y X3, **, Xy, ---)T, and x;, € {0,1} : (roughly) fermion occupation

e | X)) =1x)Q®|x) ® |x;3) ® --- : easy to prepare

. Ue| 7): parametrized pure states, similar to the conventional VQE

« pyl X ]: Classically approximated distribution for a configuration of x,

Neural network (MADE”) is used. ¢ = parameters
This can generate configurations of x



MAD E? Akio Tomiya

(masked) Auto-encoder for binary variable distribution

« MADE (neural network) mimics joint probability distribution e.g.
p(x{, X5, X3) , whose input is binary array (x;, x5, x3), x; = 0, 1

HEIEEE AL EIR
O|5|e| 7] 1]1]3.8|0]w
BRI IR
|| A7 014 8] 7]

)
S, Eﬂﬂlllllll
KO
ﬂ!ﬂ!lllllﬂ

HEEAROHEAEE
=[5 [3[8]7[[o]3]5]
EEERHHGB0E

Reconstructed MNIST (Binarized)

Auto-encoder with a mask -> Generative model for binary array
(Please ask me later in detail)



Beta VQE

Extended VQE for mixed states

Jin-Guo Liu+ 1902.02663

| Ao N o
 Wo sppronimatep = e K10y, = 35 7 U NI
{X}

. {0V, » TrlpgOl = ) p,[¥1 (X |UjOU,| )

{x}
. - .
» Quantum machine can store a state U, | x) (test wave function)

« Classical machine can sample thermal distribution from pd)[?] (neural net)

» All parameters are tuned such that minimizing D(pg | p)

e QOptimization of parameters is done with a optimizer (as in machine learning)



Beta VQE 4/4

Extended VQE for mixed states

Jin-Guo Liu+ 1902.02663

C : 1 A ~
« We minimize the loss functionZ(®) = D — In Z = Tr[pg In pg] + ?Tr[p@(H — uN)]

. Variational bound: £ (®) —logZ,;, >0 e 1
M= T 'l_j
I R FHR e+ F

* We use SU(4) ansatz for each 2 qubits for U, /

* Advantage of beta VQE
* No sign problem, even with the chemical potential
* Bounded variational approximation

* Disadvantage
e Systematic error

e Need numerical resource if we use a classical machine
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Simulation results

Simulation setup (mostly skip)

e We apply beta-VQE for Schwinger model (= QED in 1+1d).
Toy model of QCD, confinement, chiral symmetry breaking

1 _/. . . _ 1
S = "dzx[ — ZFWF”” + 1//(1@ —gA — m)l//] <P H-= de — ipy (0, +igA Dy + mipy + EHZ

0.E = guyy’y
e Staggered fermion

e Jordan-Wigner transformation. Open Boundary condition.
e g=1,Nx=(4,6),8,10, 1/T =[0.5-20.0], mu= [0-1.4], 4 lattice spacings 1/2a = [0.5-0.35]
e We do not take large volume limit but take continuum limit
e (Practically, Nx>10 cannot be calculated on our numerical resources)
e (My previous work shows data from Nx>12 are essential to take stable large volume limit though)

e Setup for beta VQE:

e Unitary part = SU(4) ansatz

e (Classical weight = Masked Auto-Encoder for Distribution Estimation (MADE)
Training epoch is 500. Sampling = 5000 for classical distribution

 QObservables
e \Variational free energy (exact and variational one)
e (Translationally invariant) Chiral condensate
e Check point: Dependence of variational error on temperature and mu




Simulation results

Variational free energy is O(1), Nx=10

(Variational energey- Eexact) %

(Variational energey- Eexact) %

101'_

100 -

10—1 -

-~ mu0.0,b0.1,w0.5,nx10
~——— mu0.0,b0.1,w0.45,nx10
—— mu0.0,b0.1,w0.4,nx10
-~ mu0.0,b0.1,w0.35,nx10

Ry e

0 100 200 300 400 500
Epoch

102 .

101 N

100 .

= mu0.0,b20.0,w0.5,nx10
~——— mu0.0,b20.0,w0.45,nx10
—— mu0.0,b20.0,w0.4,nx10
—— mu0.0,b20.0,w0.35,nx10
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(Variational energey- Eexact) %

(Variational energey- Eexact) %

101_: ........................................ mu1.4,b0.1,w0.5,nx10
] ~—— mul.4,b0.1,w0.45,nx10
~— mul.4,b0.1,w0.4,nx10
- mul.4,b0.1,w0.35,nx10
100':
10-1 4
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102 ~
1 ~— mul.4,b20.0,w0.5,nx10
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107 -
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Akio Tomiya

AT. 2205.08860

1.Mild dependence on pu (not breaking)

2.Hard for T -> 0 (large deviation) as expected
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Simulation results

Continuum extrapolation for Nx = 8, 10

Continuum limit with a polynomial ansatz AT. 2205.08860

it looks good So far”

Nx =8 Nx =10
: 1.0 -
1.04 = i ammmmmmmmmm— oo oo e,
0.8 = 0.8 -
75. >& § 0_6 i
L_SJ 0.6 - == Exact at u/g:O '\_5; I[ - == Exact at |J/g=0
,>§ —+— wg=0.0 = h —+— wg=0.0
S 04 Wg=0.2 S 0.4 1 - Wg=0.2
—— Wwg=0.4 - | —— Wg=0.4
—+— Wwg=0.6 4 —+— Wwg=0.6
0.2 —— Wwg=0.8 021 —+— wg=0.8
—t+— wg=1.0 ! —t+— wg=1.0
0.0 A ! - Wg=14 0.0 - ! — W/g=1l.4
00 25 50 75 100 125 150 17.5 20.0 00 25 50 75 100 125 150 17.5 20.0
al/T aglT

*(1 did not include additive mass shift (Ross Dempsey+ arXiv: 2206.05308).
| thank to Takis Angelides (DESY) and Etsuko Itou (RIKEN) for letting me know this important reference!)

We use Nx = 10 results for the phase diagram



Summary for T-mu

Akio Tomiya
2.5 AT. 2205.08860
Fukushima , Hatsuda
2.0 - 0.8 Rept.Prog.Phys.74:014001,2011
()1, A
2 Quark-Gluon Plasma
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We investigate T-p phase diagram for Schwinger model

Continuum extrapolation has been evaluated (except for additive mass
renormalization by 2206.05308)

The variational approach does not show difficulty for our parameter regime

Towards to go large volume, optimization of code, GPU version, tensor
network. (noise-free) real device!






QFT with Hamiltonian

Same hamiltonian

Akio Tomiya

H : Hamiltonian for QFT)

Real time

Finte temperature

To Euclid (t = 1)

Operator formalismU(t) — e_itH «

(=it " Ul)=e

To Minkowski (T — 1)

R (00(0) = (QITO0)00) | Q) |

|Q) ~ lim U(7) | 0)

Z = J@zp@weiSM

SM = J dt[ddx FM(x, 1)

(00(z)) = THO0)O(@)p]

’,-' Fermion has Anti-PBC for imaginary time direction.
t This is necessary to connect get trace formula
% in the operator formalism

w(it+ 1/T, x)=—y(r, x)




Simulation results

Variational free energy is O(1), Nx=10

Akio Tomiya

~1/a Approx Exact

pu/g\9/T |Nz|w/g|lL ipan —In Z |Diff (%) ~1/a  Approx ExactAT' 2205.08860
0.0/0.1| 4 [0.5 | -27.779 |-27.781| 0.00804 1.4(0.1| 4 | 0.5 | -28.021 [-28.023| 0.00697
0.0/0.1| 4 [0.35( -27.807 |-27.808| 0.005 1.4 (0.1 4 |0.35] -27.989 [-27.991| 0.00755
0.0/ 0.1 [10]0.5 | -70.686 [-70.718| 0.0459 1.4(0.1 10| 0.5 || -70.842 |-70.874| 0.0453
0.0(0.1(10(0.35( -71.744 |-71.765| 0.0302 1.4 (0.1 110|0.35( -71.742 |-71.763| 0.0291
0.0/05|4[0.5| -5.792 |-5.802 | 0.185 1.4(05|14 |05 | -6.784 |-6.789 | 0.0609
0.0/0.5| 4 [0.35| -5.885 |-5.891 | 0.105 1.410.5| 4 |0.35| -6.644 |-6.647 | 0.0327
0.0/0.5|10(0.5 || -17.133 | -17.25 | 0.68 1.4(0.5|10| 0.5 || -17.989 [-18.104| 0.636
0.0/ 0.5|10(0.35(| -18.849 |-18.934| 0.448 1.4 0.5 [10]0.35( -19.445 |-19.534| 0.456
0.0 {10.0( 4 [ 0.5 | -1.748 | -1.75 | 0.161 1.4 (10.0| 4 | 0.5 || -3.708 | -3.71 | 0.0728
0.0 110.0 4 |10.35]|] -1.829 |-1.829 | 0.0184 1.4 {10.0| 4 |0.35|| -3.63 |-3.669 1.07
0.010.0/10| 0.5 || -8.218 |-8.341 1.48 1.4 {10.0| 10| 0.5 || -10.067 (-10.243| 1.71
0.0 110.0| 10 [0.35(| -9.98 |-10.03 | 0.496 1.4 110.0{10|0.35( -11.763 |-11.862| 0.837
0.0/20.0| 4 [0.5 | -1.492 | -1.739 14.2 1.4 {20.0| 4 | 0.5 || -3.673 |-3.681 | 0.218
0.0 {20.0| 4 [0.35] -1.653 | -1.806 | 8.46 1.4 {20.0| 4 |0.35]| -3.621 |-3.669 1.31
0.0/20.0|10| 0.5 || -8.202 | -8.328 1.51 1.4 {20.0|/ 10| 0.5 || -10.028 [-10.224| 1.92
0.0 120.0| 10 [0.35(| -9.955 |-10.006| 0.509 1.4 {20.0| 10 |0.35(| -11.699 [-11.862| 1.37

1.Mild dependence on [
2.Hard for T -> 0 (large deviation) as expected
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Variational ansatz

J. -Guo Liu+ 1902.02663

& - FE-EHR

The general gate consists of 15 single qubit gates and 3 CNOT gates.
Each two qubit unitary is parametrized by 15 parameters in the rotational gates, which
parametrizes the SU(4) group.




VQE and Beta VQE 1/2

Background: VQE is a variational method

* Quantum machine: Exact ground state preparation is hard. In particular, it is
difficult on near term devices

e \Variational method for a pure state with a short circuit (VQE, variation quantum
eigen-solver).

e Quantum/Classical hybrid algorithm, iterative
e Parametrized unitary circuit (~parametrized state | 8), 6: a set of parameters)

e |0) = lA](é’)( 10),10), | 0)3---), and U(0) is a short circuit (entanglement +
rotations)

e If(B|H|0) =0, |0) ~|Q), where | Q) is the exact ground state
= Variational approach for quantum system



VQE and Beta VQE (skip)

Beta VQE is a variational method for mixed states

J. -Guo Liu+ 1902.02663

e \Variational method for mixed states: Variational method on p "M. Germain+ 1502.03509
. Pe = Zp(p[?] U | XWX |U, ©=80U ¢ (parameters)
{x}

—

o X = (X{,Xy,X3, ", Xp, .+)T and x, € 10,1} : (roughly) fermion excitation

e U,| x): parametrized pure states, similar to the conventional VQE

. p¢[7]: Classically approximated distribution for a configuration of x,

Neural network (MADE”) is used. ¢ = parameters

« Minimizing D(pg |p§’;f‘°t), we get approximated a set of states (= thermal)

e Shifted one (by a constant) is used in practice:

1 n n
Z(©) = D(pg | pri™) — In Z = Trlpg In pe] + ?Tr[p@(H — uN)]

const
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The two language problem and solution?

Akio Tomiya



The two language problem and solution?

Programs for machine learning are usually implemented in Python

LatticeQCD is in C++ (+CUDA)

Two different languages used = “2 (programming) language problem”

Use of one language is better for productivity

 Python + LQCD: GPT for Grid, PyBridge++ for Bridge++, PyQCD


https://akio-tomiya.github.io/julia_in_physics/

The two language problem and solution?

 Programs for machine learning are usually implemented in Python

e LatticeQCD is in C++ (+CUDA)

« Two different languages used = “2 (programming) language problem”
« Use of one language is better for productivity

 Python + LQCD: GPT for Grid, PyBridge++ for Bridge++, PyQCD

 Julia language* could be a solution of the problem

O
O o0
« High performance as C++, Write like Python Ju I Ia

« NASA uses Julia &&. Works on supercomputers

 Machine learning, GPU and MPI friendly (Flux.jl, CUDA.jl, MPL.jl etc)

. LatticeQCD.jl, AT & Y. Nagai (updating to 1.0): $3<LatticeQCD.jl
MPI-Parallel, stout smearing, domain-wall, staggered, (RIHMC, improved gauge
actions, SU(Nc), gauge-covariant-neural net, ILDG support, etc...

101 * introduction: https://www.youtube.com/c/TheduliaLanguage/playlists, https://akio-tomiya.github.io/julia in physics/ (japanese)
Akio Tomiya



https://akio-tomiya.github.io/julia_in_physics/

Beta VQE 2/4

Extended VQE for mixed states

Jin-Guo Liu+ 1902.02663

. How can we realize pg =~ p for p = Ee_T

* Minimize Kullback-Leibler—-Umegaki divergence (pseudo-distance)

p
. D(pg|p) = Tr[pgIn 7(9] = Tr[pg In pgl — Trlpg In p]

* Relative entropy for density matrices (Classical ver. is called KL div.)

» This is bounded D(pg | p) > 0 and saturated iff pg = p

* |n practice, we minimize shifted one,

1 N
Z(©) = D(pglp) — InZ = Tr[pgIn pg] + ?Tr[p@(H — UN)]

const
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|

We can define, a loss function, -Z(©) = D(pel|p) Pru = Z—e‘%(ﬁ‘”f’ )
T
- Pe
D(pellp) = Tr [pe log —], (24)
M pT,y,
= Tr [pe log pe] — Tt pe log pr,]; (25)
. 1 18 R
= Tr [pe log pe] — Tr [pe log ——e~ 7 H=+#N)], (26)
! ZT,p,
1 A N
= Trpe log pe] + Tt |pe log Zr,,.| + = Tr [pe(H — uN)], (27)
1 A N
= Tr |pe log pe] + Tr [pe]log Zr,, + = Tr [pe(H — pNN); (28)
1 A N
= Tr [pe log pe] + log Z7,,, + AT lpe(H — uN)). (29)
(const in ©)
The last line follows because pg is normalized.
In practice, we use,
. 1 . .
Z(8) = Z(0) —log Zr,, = Tr[pe log pe| + Tt [pe(H — uN)]. (30)
Namely,
1
Z(©) = Tr[pe log pe] + =Tt [pe ], (31)

T

103
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Extended VQE for mixed states

Jin-Guo Liu+ 1902.02663

1 N
. Z(0) = TrlpgIn pg] + 7Tr[p@(H — uN)]

_ Trlpglogpel = ) py(X)log py(X)

{x’}
e We need two derivatives
0 0

—ZL(0) = Z py(X)[log p,(X")] : Classical

a¢ a¢ (%) p: a neural network
-> gradient descent

0 Z(0) L9 (X |UIZU,| %°)]: Quant
s — X X )] Quantum
00 T 00 07" ¢

REINFORCE algorithm



MADE: Masked Auto-encoder for Distribution Estimation
1502.03509

| (mostly) skip this section in the seminar

105



arXiv: 1502.03509

Summary of MADE

(simple) Neural network for probability estimation

 MADE = Masked Auto-encoder for Distribution Estimation
e Auto-encoder is a neural network

* |t can mimic a joint distribution of binary variables (0, 1)
o (Xq,X,,X3,X,) is distributed as p(x;, Xy, X3, X,) = p[ X |
It is categorized as a generative model (as the normalizing flow)

* |t is correctly normalized



arXiv: 1502.03509

Basics (skip)

Product rule in the probability theory

» A configuration of variables (x;, x,, X3, x,) is distributed as
p(x19x29 x39x4) = p[ X ]

* Probability distribution is normalized.

* For blnary varlables

1 = Z Z Z Zp(xl,xz,x3,x4) = Zp¢[x]

x1=0 x,=0 x3=0 x,=0 (X}



arXiv: 1502.03509

Basics (skip)

Product rule in the probability theory

p(x19 Xz)
p(xy)

. definition of the conditional probability is p(x, | x;) =

« Equivalently, p(x, x,) = p(x;)p(x, | x;) : Product rule
 We can generalize to more than 2 variables

p(xla xza x3)
. p(x3 |x1,x2) = S p(xq, Xy, x3) = p(x3 |x1aX2)P(x2 |x1)p(x1)
p(xlaxZ)

o p(Xy, X, X3, X4) = pX)p(Xy | x)p O3 | X1, X)p(X4 | X1, X5, X3)

4
. We abbreviate this as P(X{, Xy, X3, Xy) = HP(Xk|x<k)
k=1



arXiv: 1502.03509

Bernoulli process (skip)

un-fair coin

* A (un-)fair coin, which takes face for a probability p, Tail for 1-p

* This process is called “Bernoulli trial” in Math

 Let us denote it as Bernoulli(p)



arXiv: 1502.03509

Basics (skip)

Product rule in the probability theory

* Neural network (NN) mimics

p(x1, Xy, X3) = p(x))p(x, | x))p(x3 ] X1, X5), whose input is binary
array (x,X,,X3): 3 correlated coins

 We can draw a sample using X; ~ y; & p(x;)
» How can we construct X, ~ y, & p(x, | x;)

* input only depends on X;
» How can we construct X; ~ y; & p(x3 | x{, X))

* input only depends on X, X,
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Auto-encoder (skip)

Auto-encoder ~ (un normalized) flow

A1 V1

—E[x] = le- logy; + (1 —x)log(1 —y,)
% Y2

e—E[x] — y_—xi(l _ yi)—(l—xi)
X3 Y3 H l

Z e—E[X] # 1 Not-normalized
x}
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Auto-regressive property (skip)

Product rule

yi=p; =1, y=pl,=1[x), y3=plz=1]x,x,)
— plx; = 0)=1 — ¥, plx, = O|X1) =1 — Y P(x3 = O|x1,x2) =1 — )3

— Yy =px;=1]x_p) p;=0[x_)=1-y,

4
p(-xla X9, X3, x4) = Hp(xk | x<k)
k=1

4
— —log p(x, X5, X3, %) = — Z log p(x; | x 1)
k=1
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MADE (skip)

Masked auto-encoder for density estimation

X @ / 1 Xy~ ¥y = plry | x, x3)
X @:: Yo X~y R pn)
X3 @\ i X3~ y3 R pls|x)

Assign numbers on node:
Input& output node = assign
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MADE (skip)

Masked auto-encoder for density estimation

V1 Xy~ y; = plx; [ x,x3)

Y2 Xy ~ Yy R p(X,)

X3 e\ E e Y3 X3 ~ y3 & p(xz | x,)
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MADE (skip)

Masked auto-encoder for density estimation
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MADE (skip)

Masked auto-encoder for density estimation

OO OO
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MADE (skip)

Masked auto-encoder for density estimation

(1
7 (O o O
J0 O
X Q X ~
3 Q Q e Y3 X3 ~ y3 & p(xs[xp)
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MADE (skip)

Masked auto-encoder for density estimation

Xy~ ¥y =~ plxg|x,x3)
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MADE (skip)

Masked auto-encoder for density estimation

We can draw a set of sample (X}, X,, X3) from p,,(x;, X, x3) where ¢ is network param.



