Is N_c=2 large?

Norikazu Yamada (KEK / SOKENDAI)

Refs. Otake and NY, JHEP 06 (2022) 044
Kitano, Matsudo, NY, Yamazaki, PLB822, 136657 (2021)
Kitano, NY, Yamazaki, JHEP 02 (2021) 073
Kitano, Suyama, NY, JHEP 09 (2017) 137

$4d SU(N_c)$ and $2d CP^{N-1}$

 $4d SU(N_c) YM$

$$\mathcal{L} = \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} - i\theta q$$

$$q(x) = \frac{g^2}{64\pi^2} \epsilon_{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma}$$

$2d CP^{N-1}$

$$\mathcal{L} = \frac{N}{2g} \overline{D_{\mu} z} D_{\mu} z - i\theta q$$

$$z_{i} \in \mathbb{C} \ (i = 1, \dots, N) \text{ with } \overline{z}_{i} z_{i} = 1$$

$$D_{\mu} = \partial_{\mu} + iA_{\mu} \ , \quad A_{\mu} = i\overline{z}\partial_{\mu} z$$

$$q(x) = \frac{1}{2\pi} \epsilon_{\mu\nu} \partial_{\mu} A_{\nu} = \frac{i}{2\pi} \epsilon_{\mu\nu} \overline{D_{\mu} z} D_{\mu} z$$

- e.g.) asymptotically free, dynamical mass, instanton, 1/N expandable
- ightharpoonup 2d CP^{N-1} is good testing ground for 4d $SU(N_c)$ YM

$4d SU(N_c)$ and $2d CP^{N-1}$

 $4d SU(N_c) YM$

$$\mathcal{L} = \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} - i\theta q$$

$$q(x) = \frac{g^2}{64\pi^2} \epsilon_{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma}$$

$2d CP^{N-1}$

$$\mathcal{L} = \frac{N}{2g} \overline{D_{\mu} z} D_{\mu} z - i\theta q$$

$$z_{i} \in \mathbb{C} \ (i = 1, \dots, N) \text{ with } \overline{z}_{i} z_{i} = 1$$

$$D_{\mu} = \partial_{\mu} + iA_{\mu} \ , \quad A_{\mu} = i\overline{z}\partial_{\mu} z$$

$$q(x) = \frac{1}{2\pi} \epsilon_{\mu\nu} \partial_{\mu} A_{\nu} = \frac{i}{2\pi} \epsilon_{\mu\nu} \overline{D_{\mu} z} D_{\mu} z$$

- e.g.) asymptotically free, dynamical mass, instanton, 1/N expandable
- ightharpoonup 2d CP^{N-1} is good testing ground for 4d $SU(N_c)$ YM

 θ dependence of vacuum energy density

Vacuum energy density $f(\theta)$

$$e^{-Vf(\theta)} = \frac{Z(\theta)}{Z(0)}$$

where

$$Z(\theta) = \int \mathcal{D}U e^{-S + i\theta Q}$$

$$Q = \int d^4x \, q(x)$$

Vacuum energy density $f(\theta)$

$$e^{-Vf(\theta)} = \frac{Z(\theta)}{Z(0)}$$

where

$$Z(\theta) = \int \mathcal{D}U e^{-S + i\theta Q}$$

$$Q = \int d^4x \, q(x)$$

In both theories,

$$Q \in \mathbb{Z} \Rightarrow f(\theta) = f(\theta + 2\pi)$$

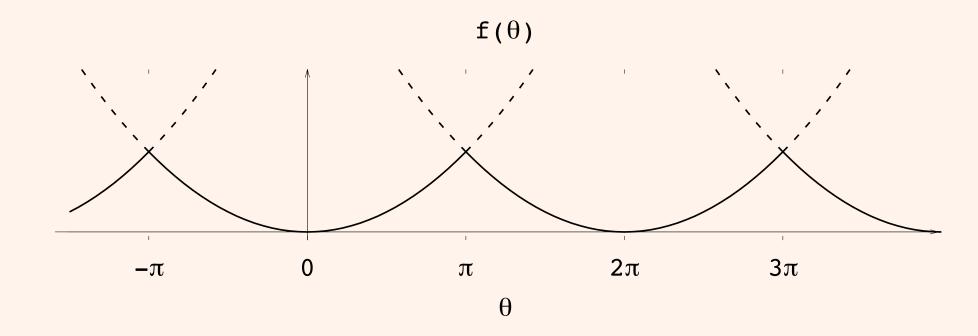
 $S \text{ is CP even } \Rightarrow f(\theta) = f(-\theta)$

$$f(\pi - \theta') = f(\pi + \theta')$$

Expected θ dependence: large- N_c vs instanton

Large N_c [Witten (1980, 1998)]

$$\Rightarrow f(\theta) = \chi/2 \min_{k \in \mathbb{Z}} (\theta + 2\pi k)^2 + O(1/N_c^2)$$

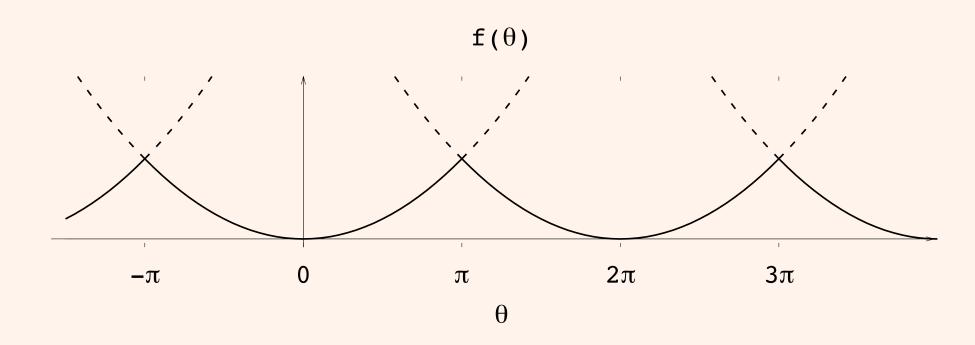


- many branches
- spontaneous CPV (1st order PT) at $\theta = \pm (2n + 1)\pi$
- order parameter $\left. df(\theta)/d\theta \right|_{\theta=\pi} = -i \langle q(x) \rangle_{\theta=\pi}$

Expected θ dependence: large- N_c vs instanton

Large N_c [Witten (1980, 1998)]

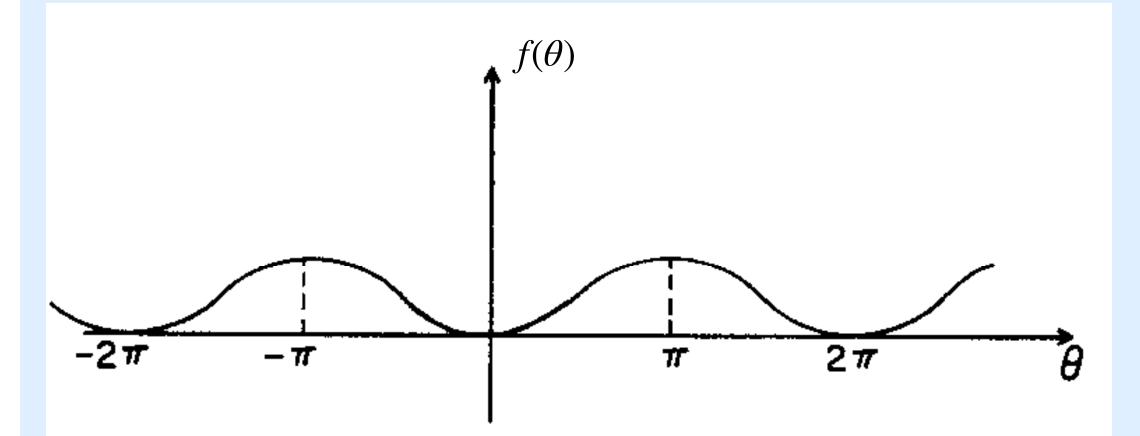
$$\Rightarrow f(\theta) = \chi/2 \min_{k \in \mathbb{Z}} (\theta + 2\pi k)^2 + O(1/N_c^2)$$



- many branches
- spontaneous CPV (1st order PT) at $\theta = \pm (2n + 1)\pi$
- order parameter $\left. df(\theta)/d\theta \right|_{\theta=\pi} = -i \langle q(x) \rangle_{\theta=\pi}$

Dilute instanton gas approximation (DIGA)

$$\Rightarrow f(\theta) = \chi(1 - \cos \theta)$$

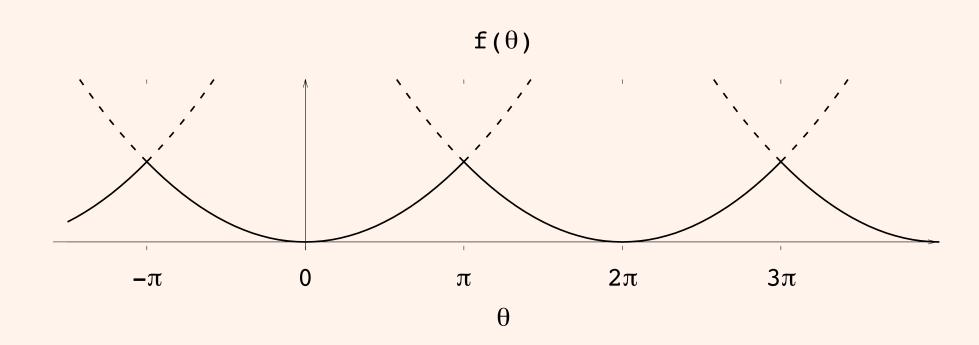


- a single branch
- smooth everywhere

Expected θ dependence: large- N_c vs instanton

Large N_c [Witten (1980, 1998)]

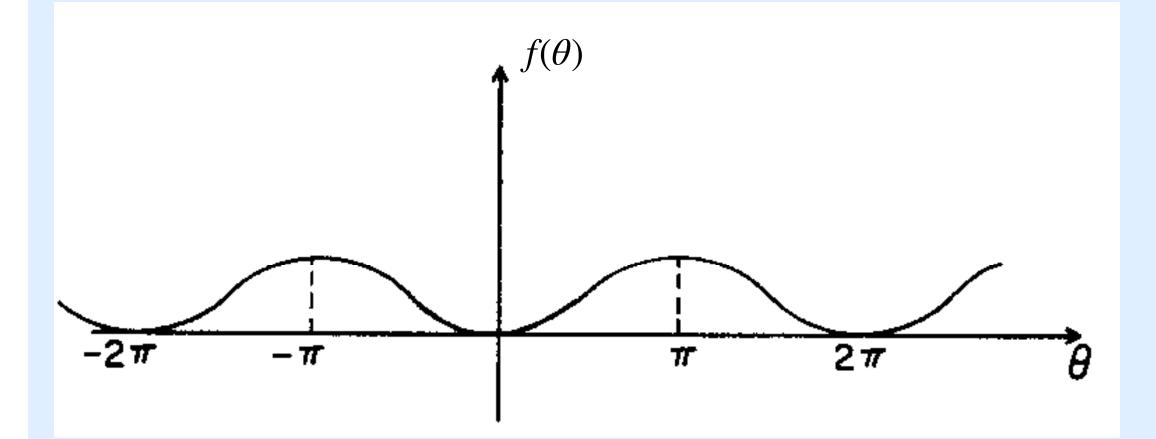
$$\Rightarrow f(\theta) = \chi/2 \min_{k \in \mathbb{Z}} (\theta + 2\pi k)^2 + O(1/N_c^2)$$



- many branches
- spontaneous CPV (1st order PT) at $\theta = \pm (2n + 1)\pi$
- order parameter $\left. df(\theta)/d\theta \right|_{\theta=\pi} = -i \langle q(x) \rangle_{\theta=\pi}$

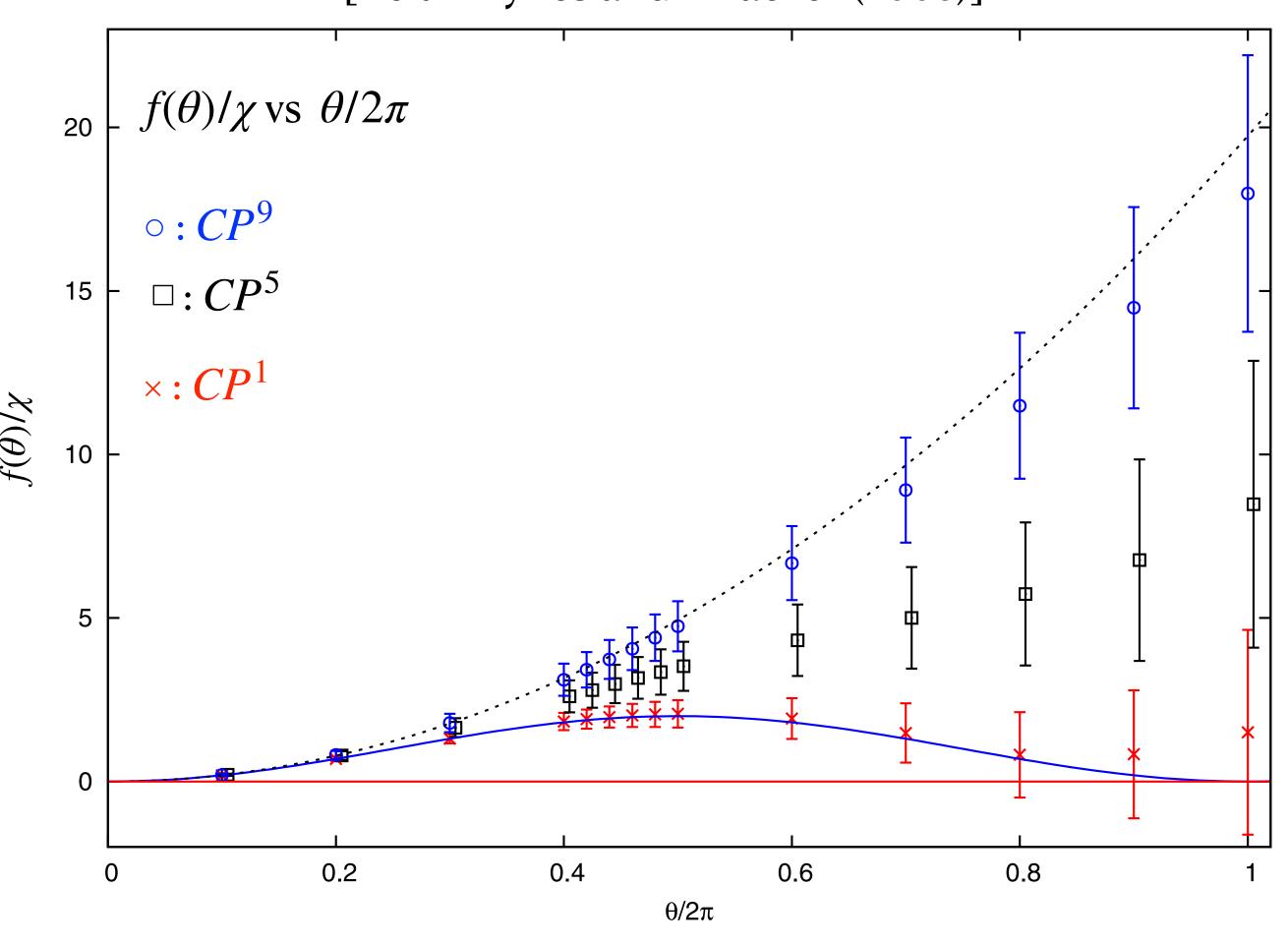
Dilute instanton gas approximation (DIGA)

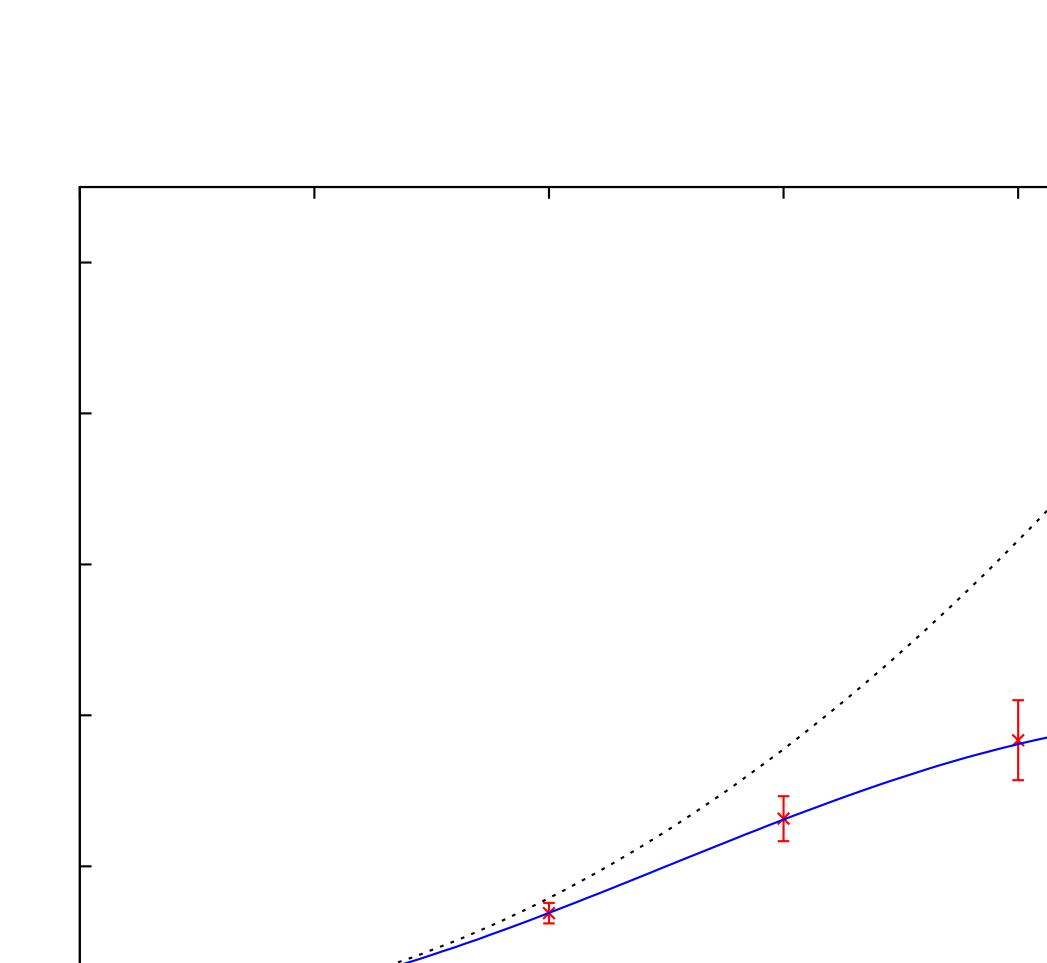
$$\Rightarrow f(\theta) = \chi(1 - \cos \theta)$$

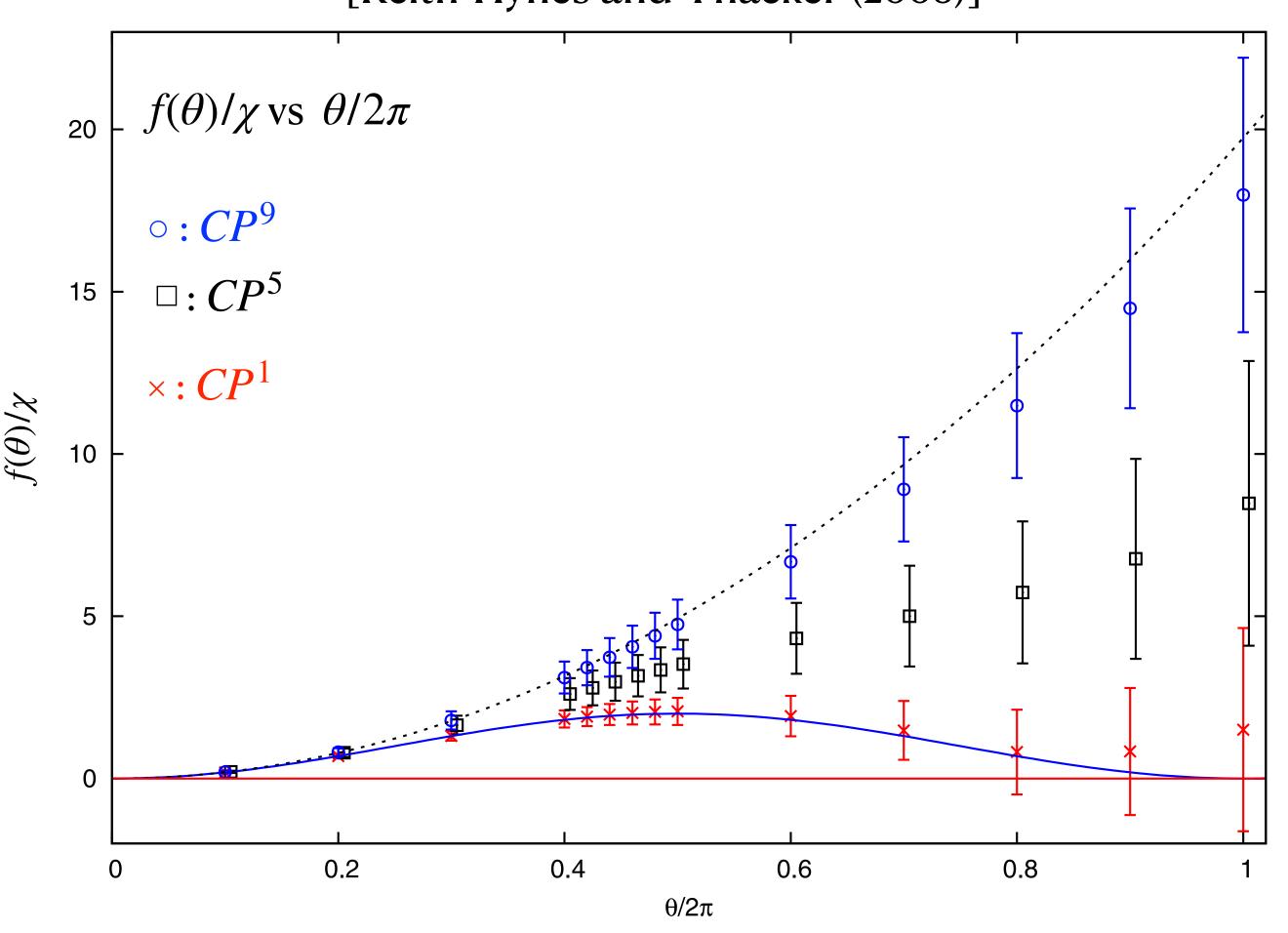


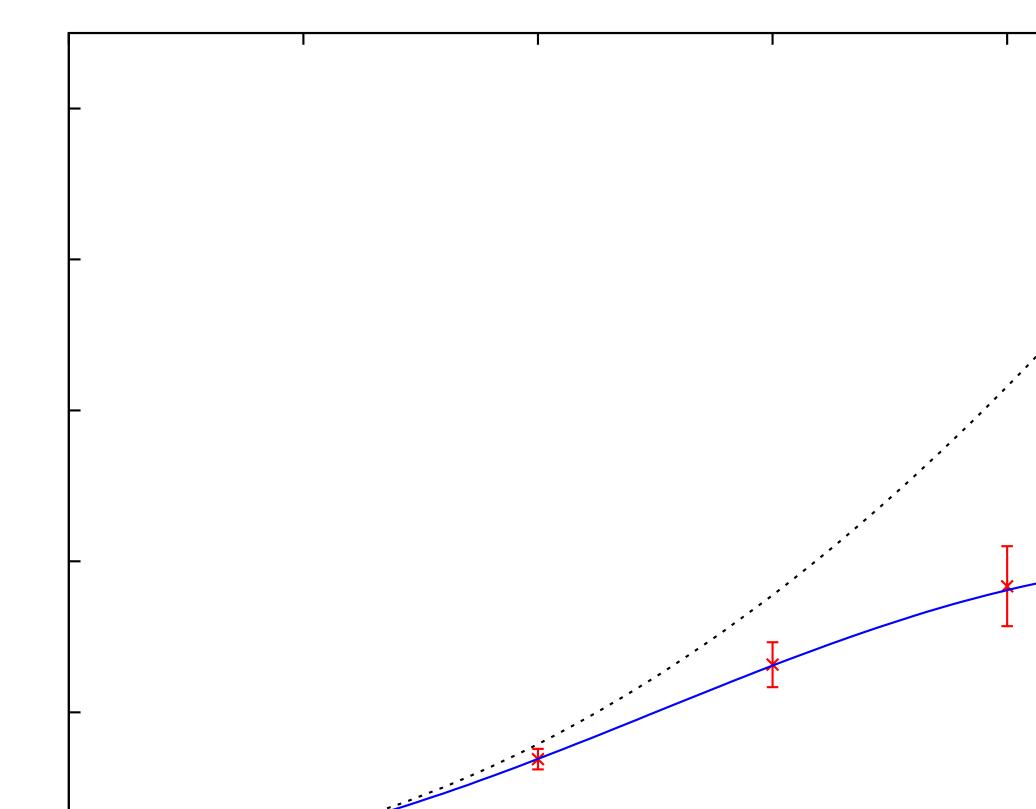
- a single branch
- smooth everywhere

Significant difference in $df(\theta)/d\theta$ around $\theta = \pi$

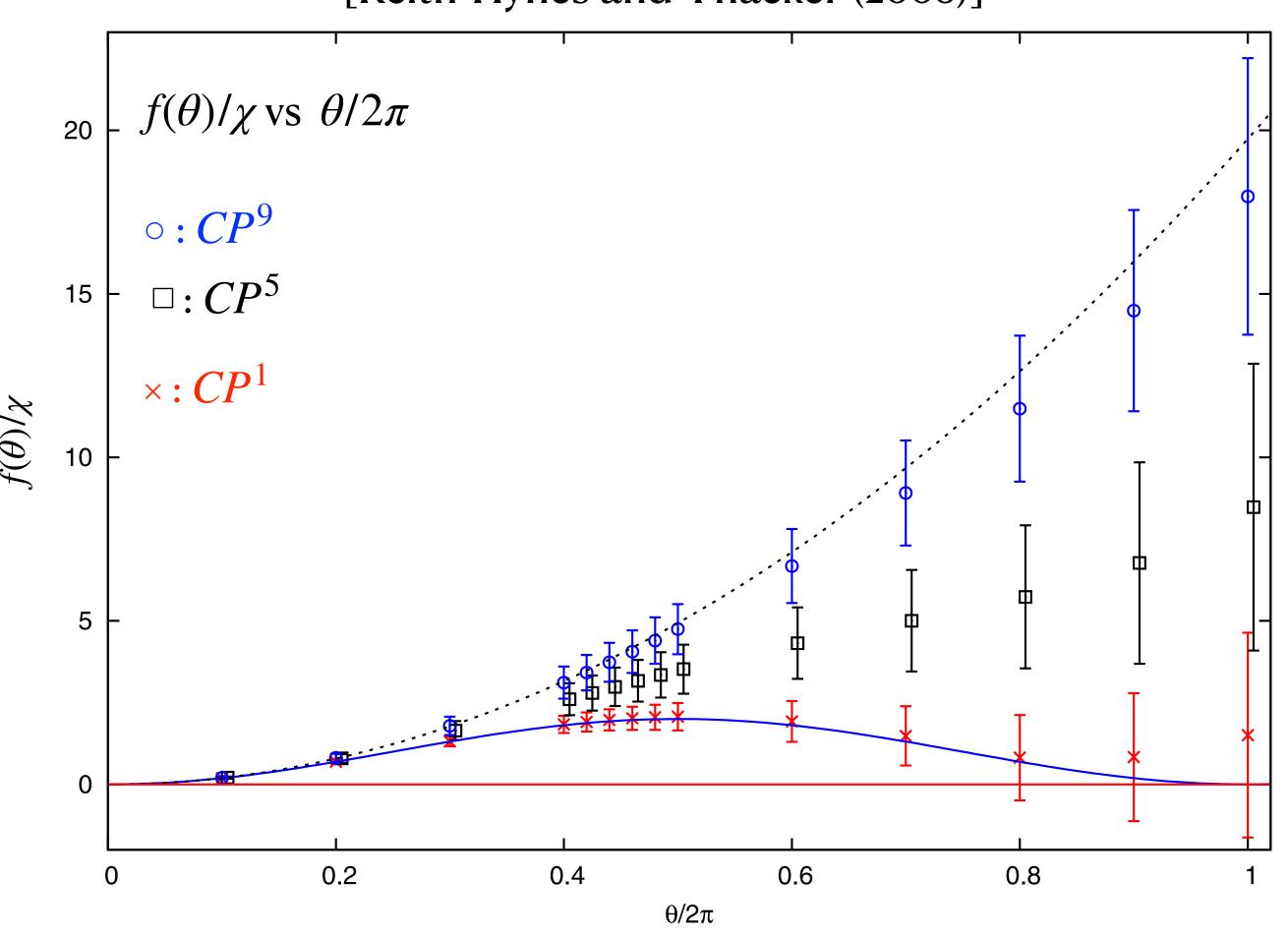






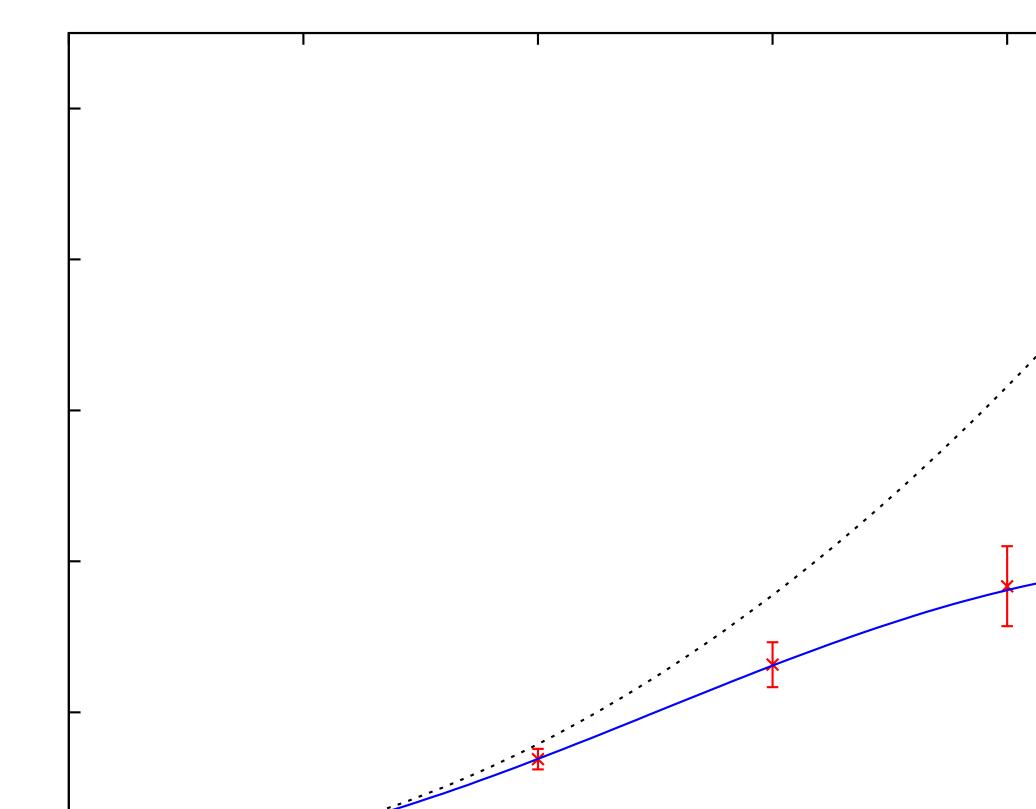


[Keith-Hynes and Thacker (2008)]

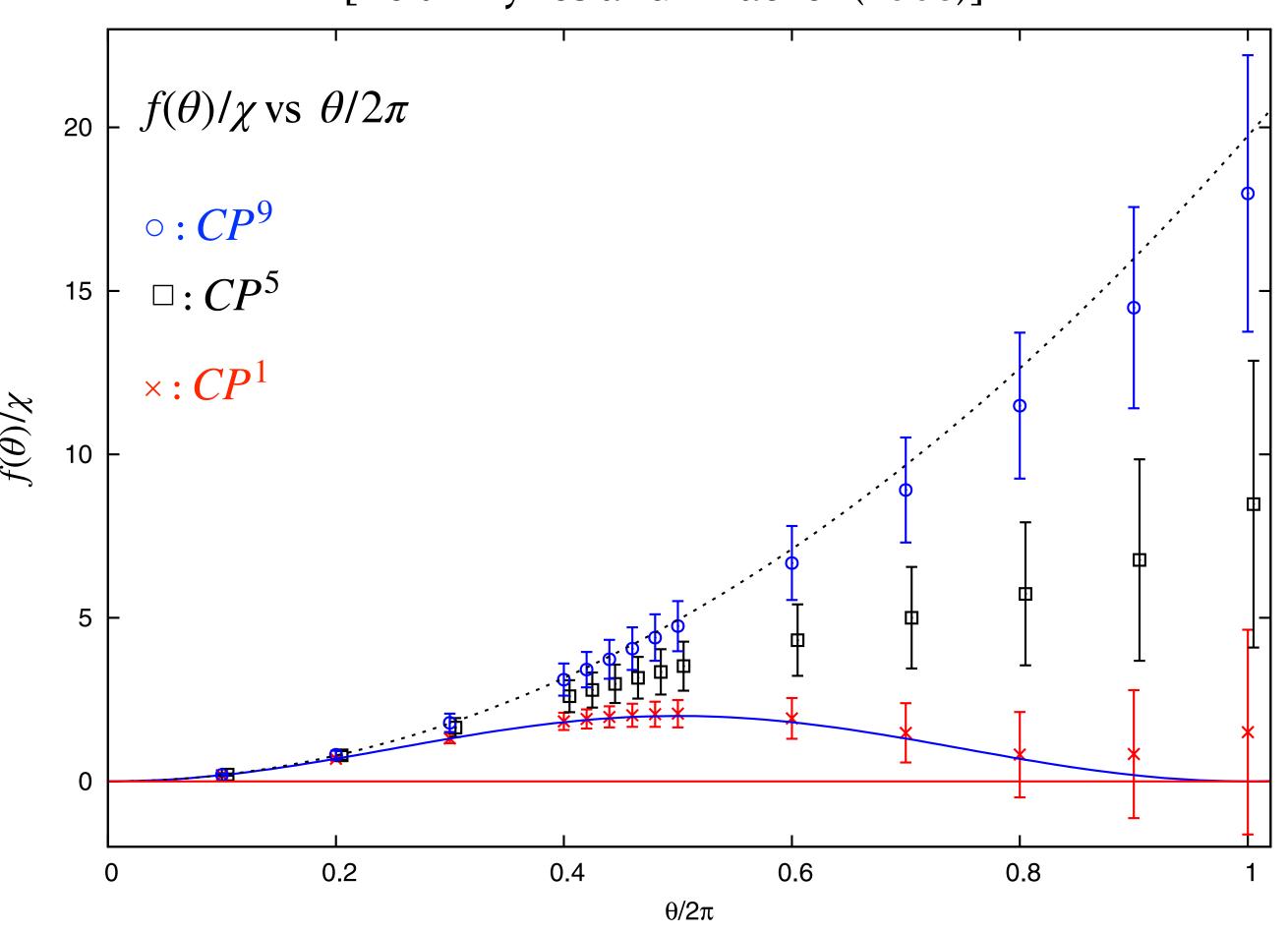


N-1=9, 5, 1 were studied.

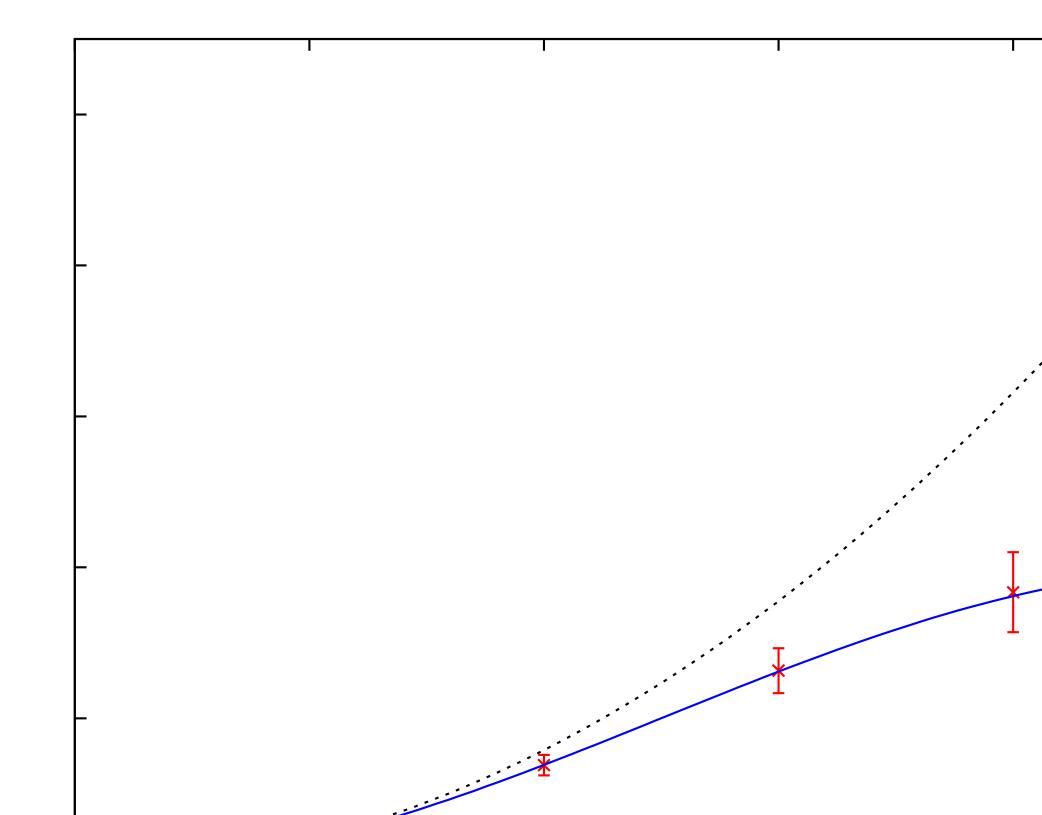
• $f(\theta)/\chi$ decreases as N decreases.



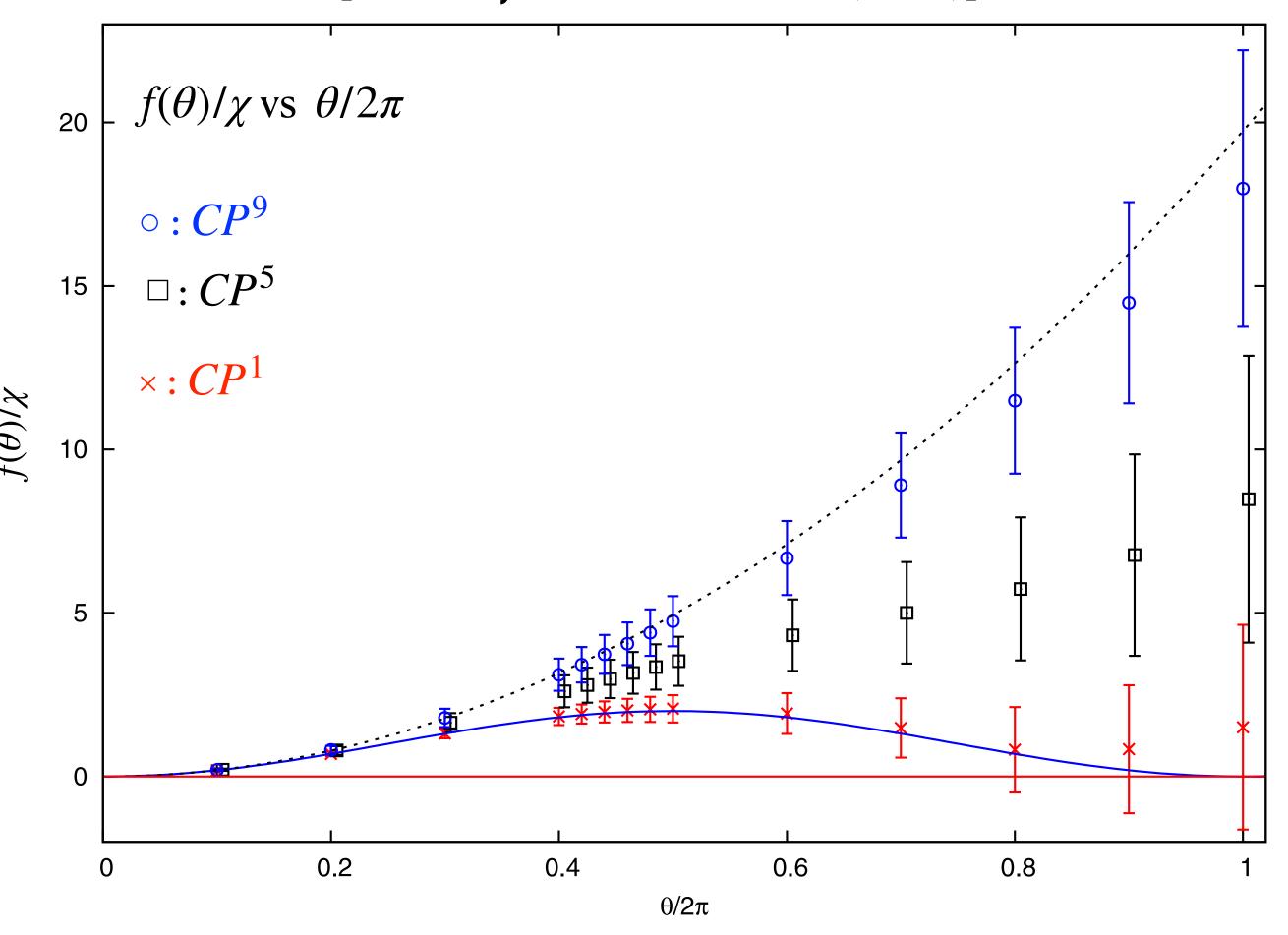
[Keith-Hynes and Thacker (2008)]



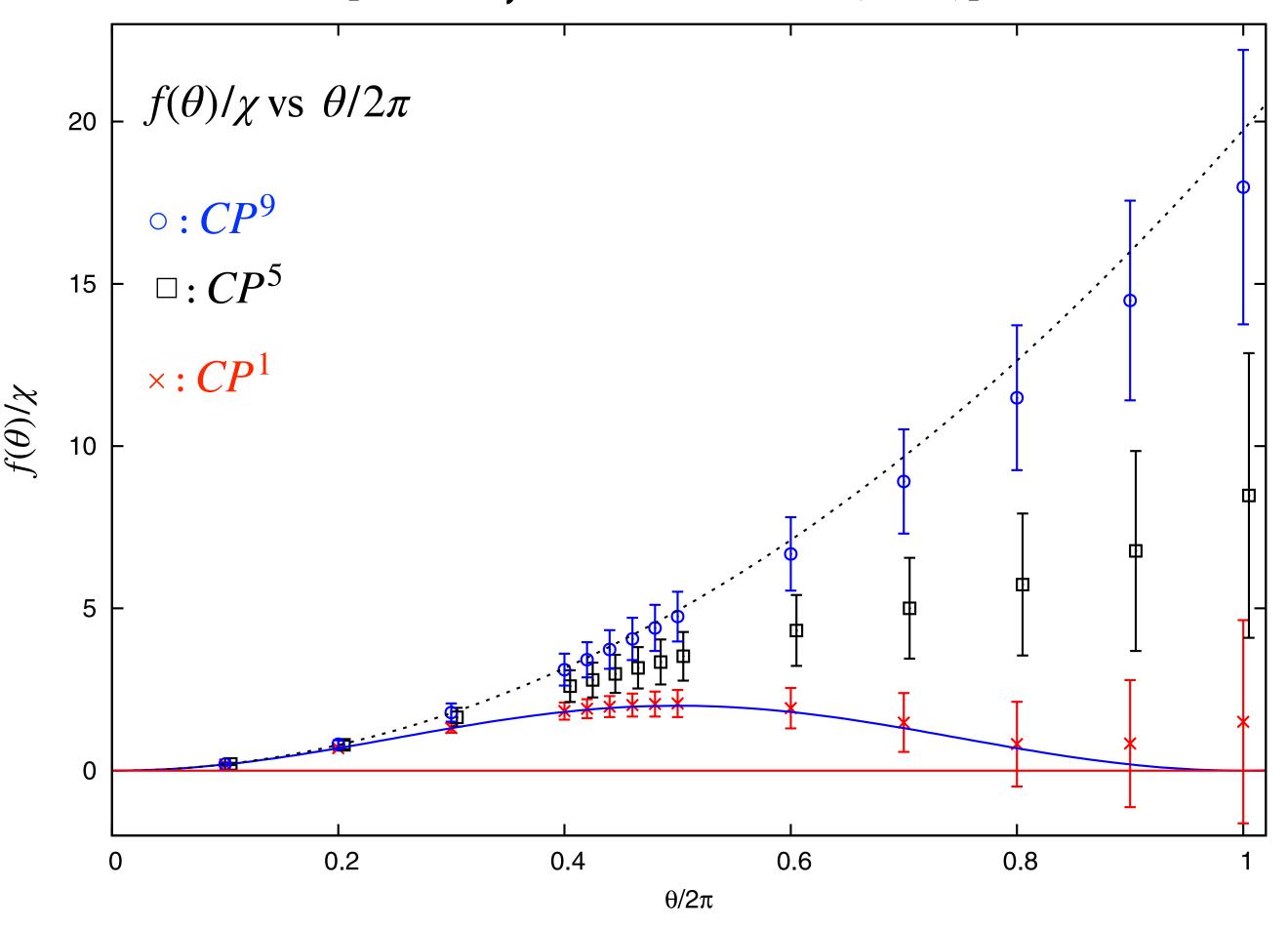
- $f(\theta)/\chi$ decreases as N decreases.
- CP^9 consistent with large N



[Keith-Hynes and Thacker (2008)]

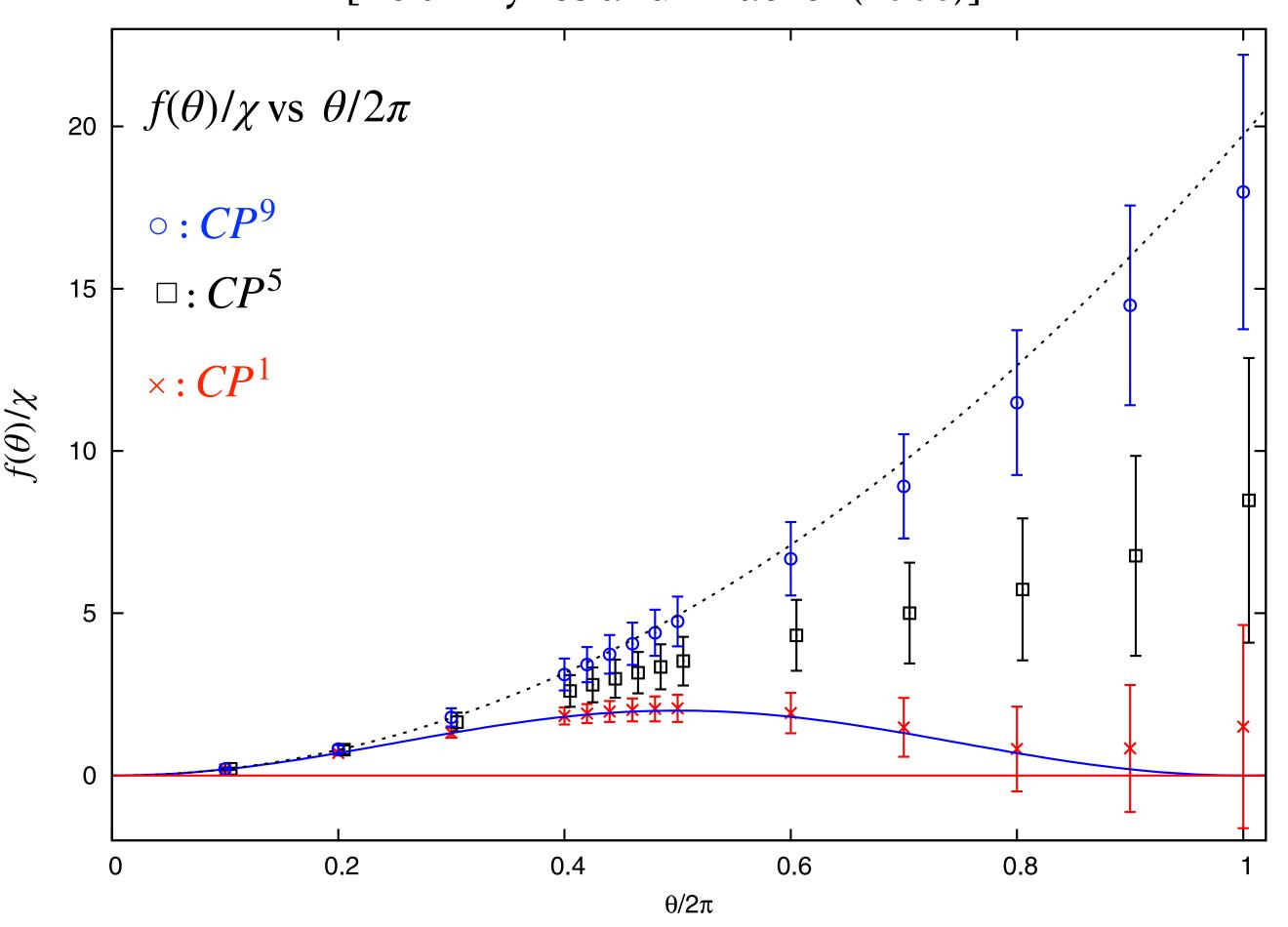


- $f(\theta)/\chi$ decreases as N decreases.
- CP^9 consistent with large N
- CP^9 and CP^5 shows CPV at $\theta = \pi$.



- $f(\theta)/\chi$ decreases as N decreases.
- CP^9 consistent with large N
- CP^9 and CP^5 shows CPV at $\theta = \pi$.
- CP^1 consistent with the DIGA

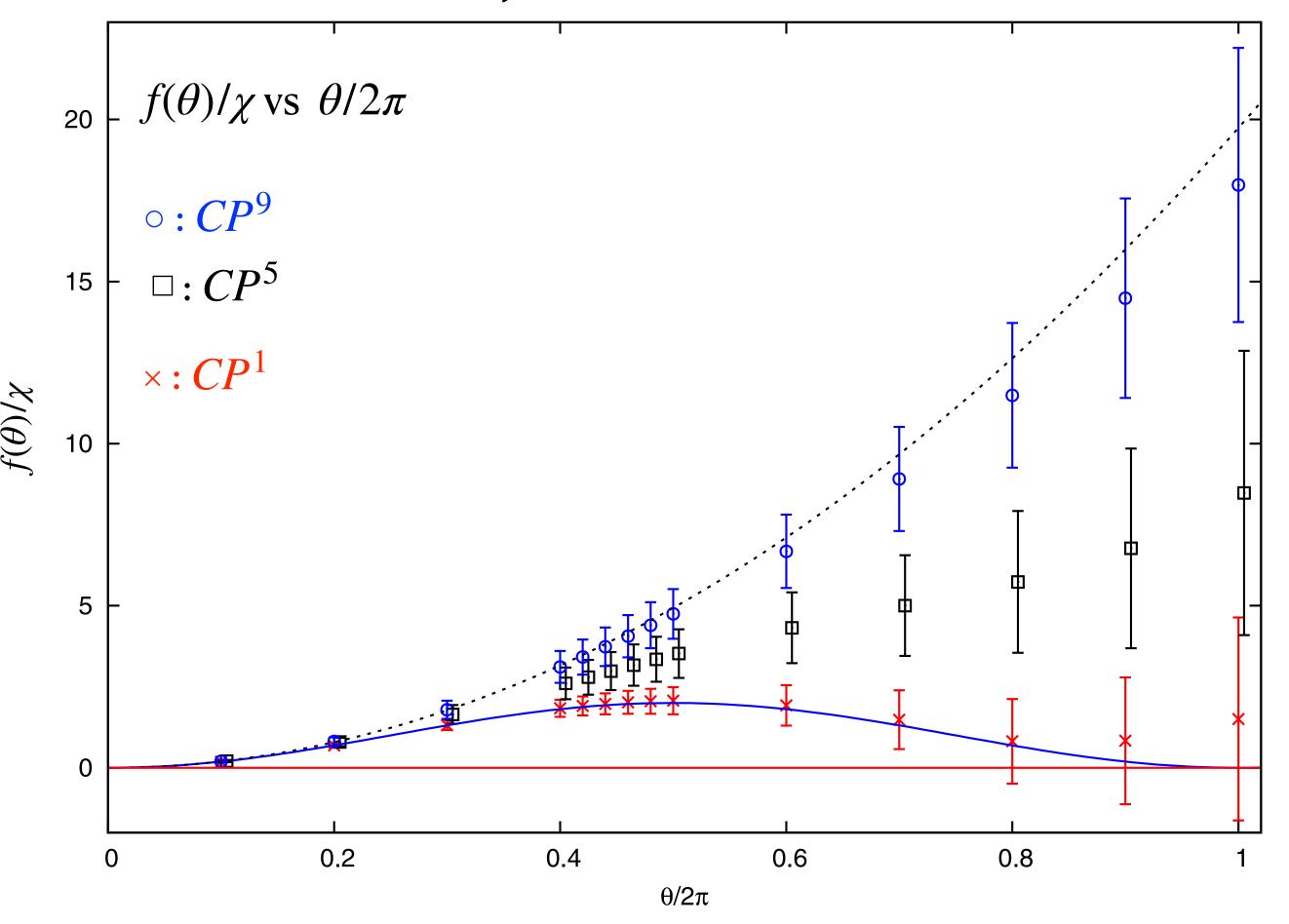
[Keith-Hynes and Thacker (2008)]



- $f(\theta)/\chi$ decreases as N decreases.
- CP^9 consistent with large N
- CP^9 and CP^5 shows CPV at $\theta = \pi$.
- CP^1 consistent with the DIGA

$$f(\theta) = \chi(1 - \cos \theta)$$

[Keith-Hynes and Thacker (2008)]



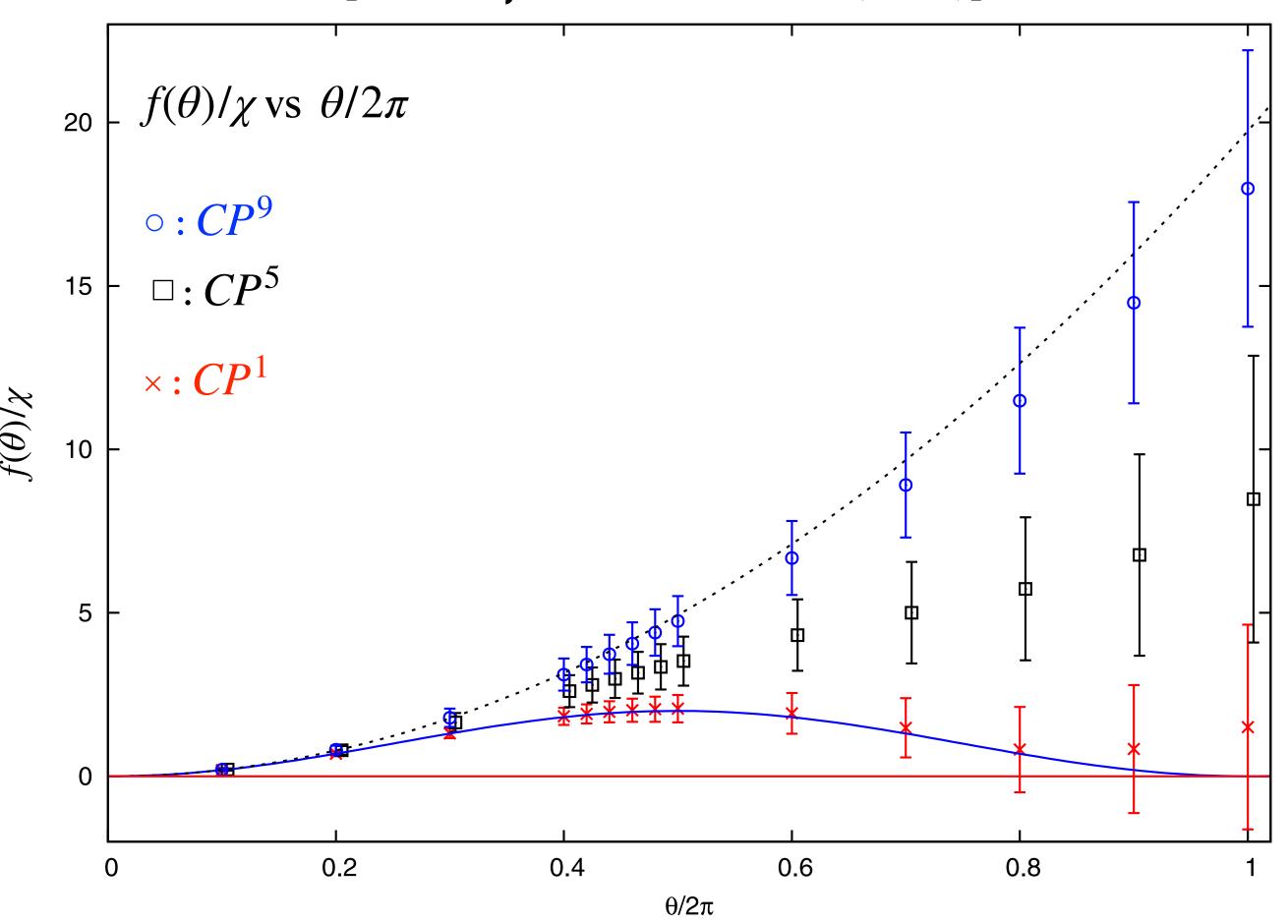
N-1=9, 5, 1 were studied.

- $f(\theta)/\chi$ decreases as N decreases.
- CP^9 consistent with large N
- CP^9 and CP^5 shows CPV at $\theta = \pi$.
- CP^1 consistent with the DIGA $f(\theta) = \chi(1 - \cos \theta)$

 CP^1 (i.e. N=2) is not large-N like,

and gapless and no CPV at $\theta = \pi$.

[Keith-Hynes and Thacker (2008)]



N-1=9, 5, 1 were studied.

- $f(\theta)/\chi$ decreases as N decreases.
- CP^9 consistent with large N
- CP^9 and CP^5 shows CPV at $\theta = \pi$.
- CP^1 consistent with the DIGA $f(\theta) = \chi(1 - \cos \theta)$

 CP^1 (i.e. N=2) is not large-N like,

and gapless and no CPV at $\theta = \pi$.

Lattice calculations of $f(\theta)$ in 4d SU(N)

$$\mathcal{L}_{\theta} = \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} - i\theta q$$

- Direct simulation X→ sign problem
- Taylor expansion around $\theta = 0$

$$f(\theta) = \frac{\chi}{2} \theta^2 (1 + b_2 \theta^2 + b_4 \theta^4 + \cdots)$$

• Determine each coefficient on the lattice by

$$\chi = \frac{\langle Q^2 \rangle_{\theta=0}}{V}$$

$$b_2 = -\frac{\langle Q^4 \rangle_{\theta=0} - 3\langle Q^2 \rangle_{\theta=0}^2}{12\langle Q^2 \rangle_{\theta=0}}$$

$$b_4 = \frac{\langle Q^6 \rangle_{\theta=0} - 15\langle Q^2 \rangle_{\theta=0}\langle Q^4 \rangle_{\theta=0} + 30\langle Q^2 \rangle_{\theta=0}^3}{360\langle Q^2 \rangle_{\theta=0}}$$

$$\vdots$$

If DIGA works,
$$f(\theta) = \chi(1 - \cos \theta) \Rightarrow b_2 = -\frac{1}{12}$$
, ...

First two coefficients for $N_c \ge 3$

 $\chi/\sigma^2 = C_{\infty} + \frac{c_2}{N_c^2} + O(1/N_c^4)$ 0.04 0.01 N=8 N=6 N=5*N*=3 0.02 0.08 0.04 0.06 0.10 0.12 [Review by Vicari and Panagopoulos (2018)]

First two coefficients for $N_c \ge 3$

[Review by Vicari and Panagopoulos (2018)]

$$\chi/\sigma^{2} = C_{\infty} + \frac{c_{2}}{N_{c}^{2}} + O(1/N_{c}^{4})$$

$$0.04$$

$$0.03$$

$$0.02$$

$$0.01$$

$$0.08$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

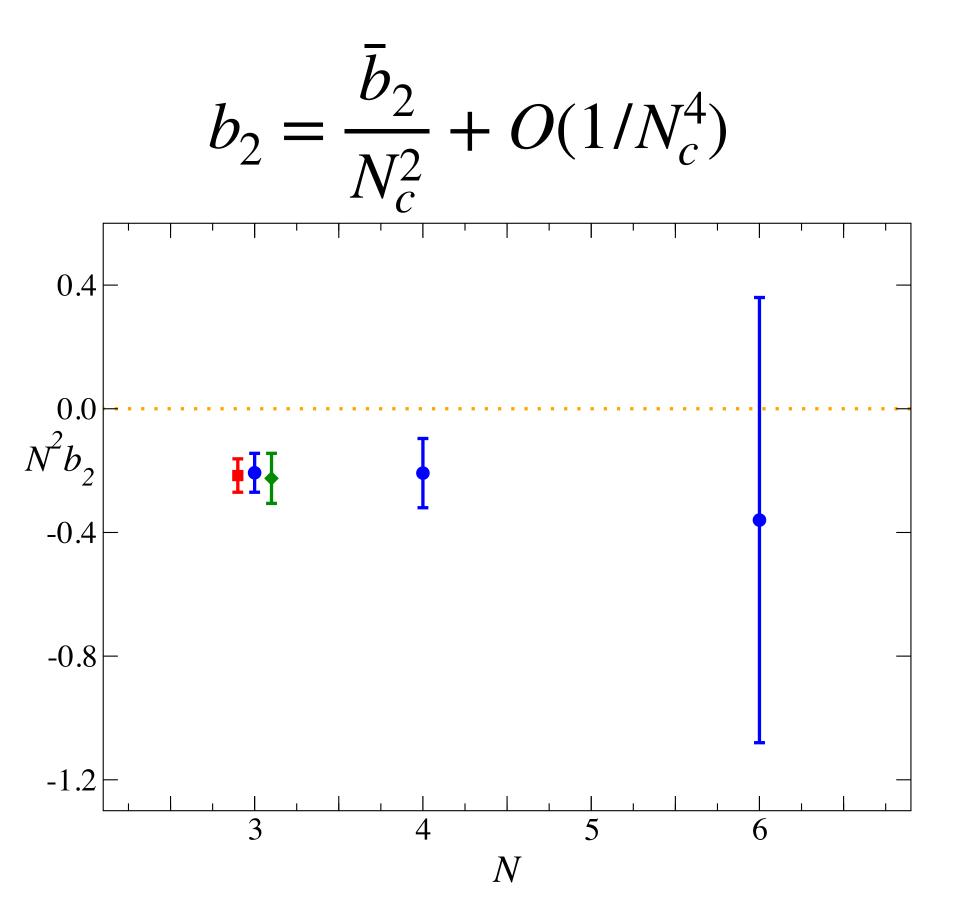
$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$



First two coefficients for $N_c \ge 3$

[Review by Vicari and Panagopoulos (2018)]

$$\chi/\sigma^{2} = C_{\infty} + \frac{C_{2}}{N_{c}^{2}} + O(1/N_{c}^{4})$$

$$0.04$$

$$0.03$$

$$0.02$$

$$0.01$$

$$N=8 \quad N=6 \quad N=5$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.02$$

$$0.04$$

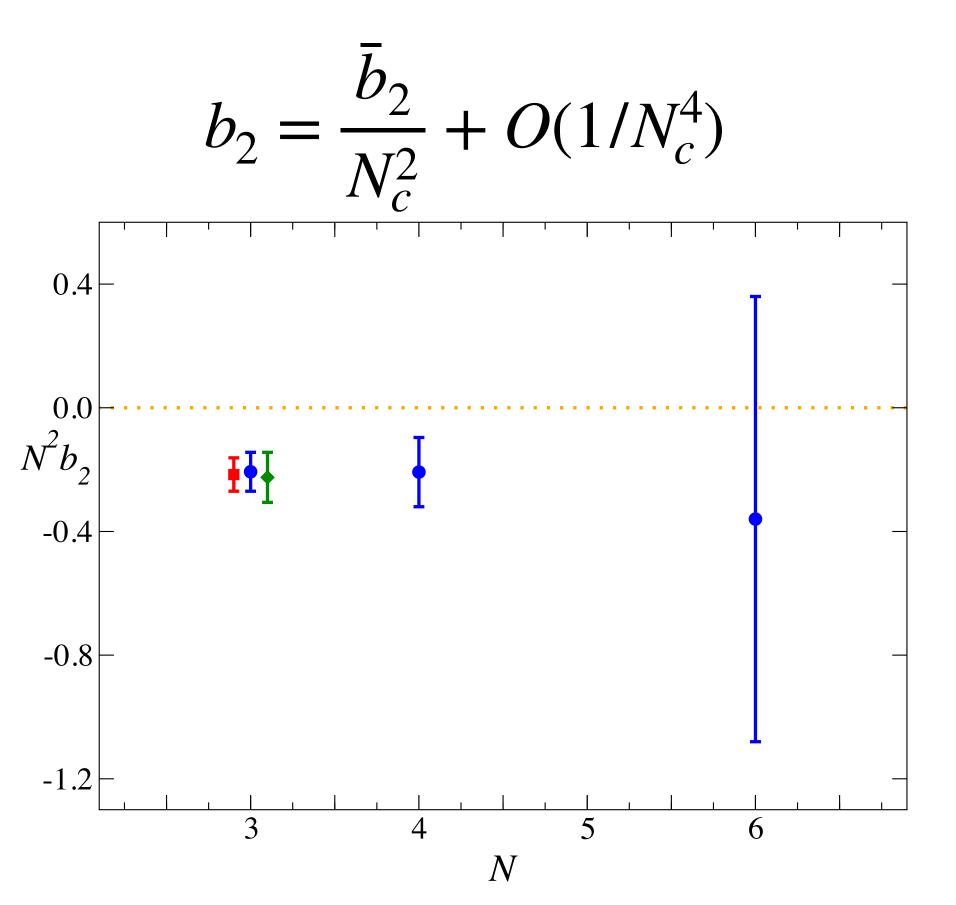
$$0.06$$

$$0.08$$

$$0.10$$

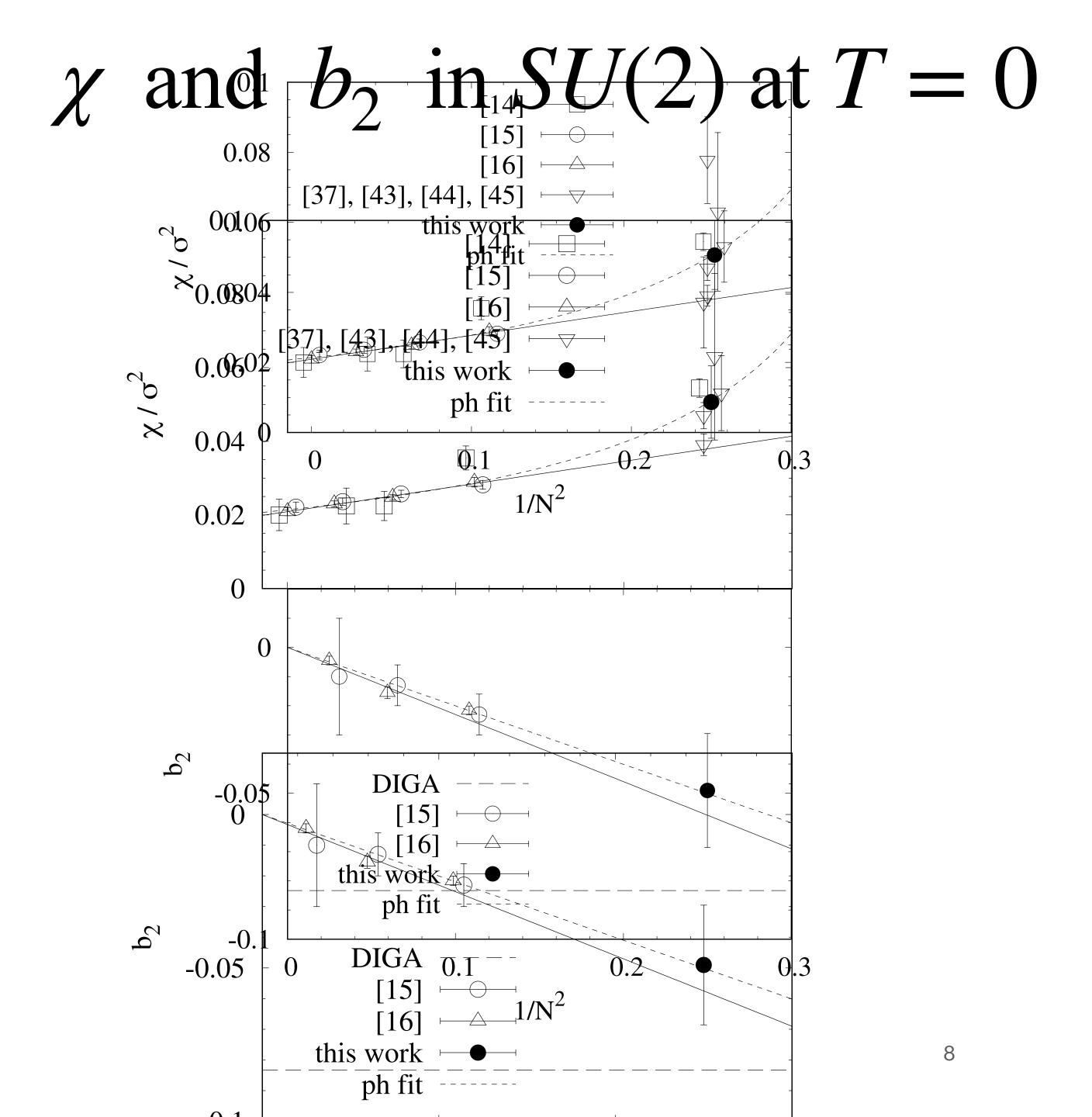
$$0.12$$

$$1/N^{2}$$



These behavior looks smooth \Rightarrow Nothing special happens down to $N_c = 3$

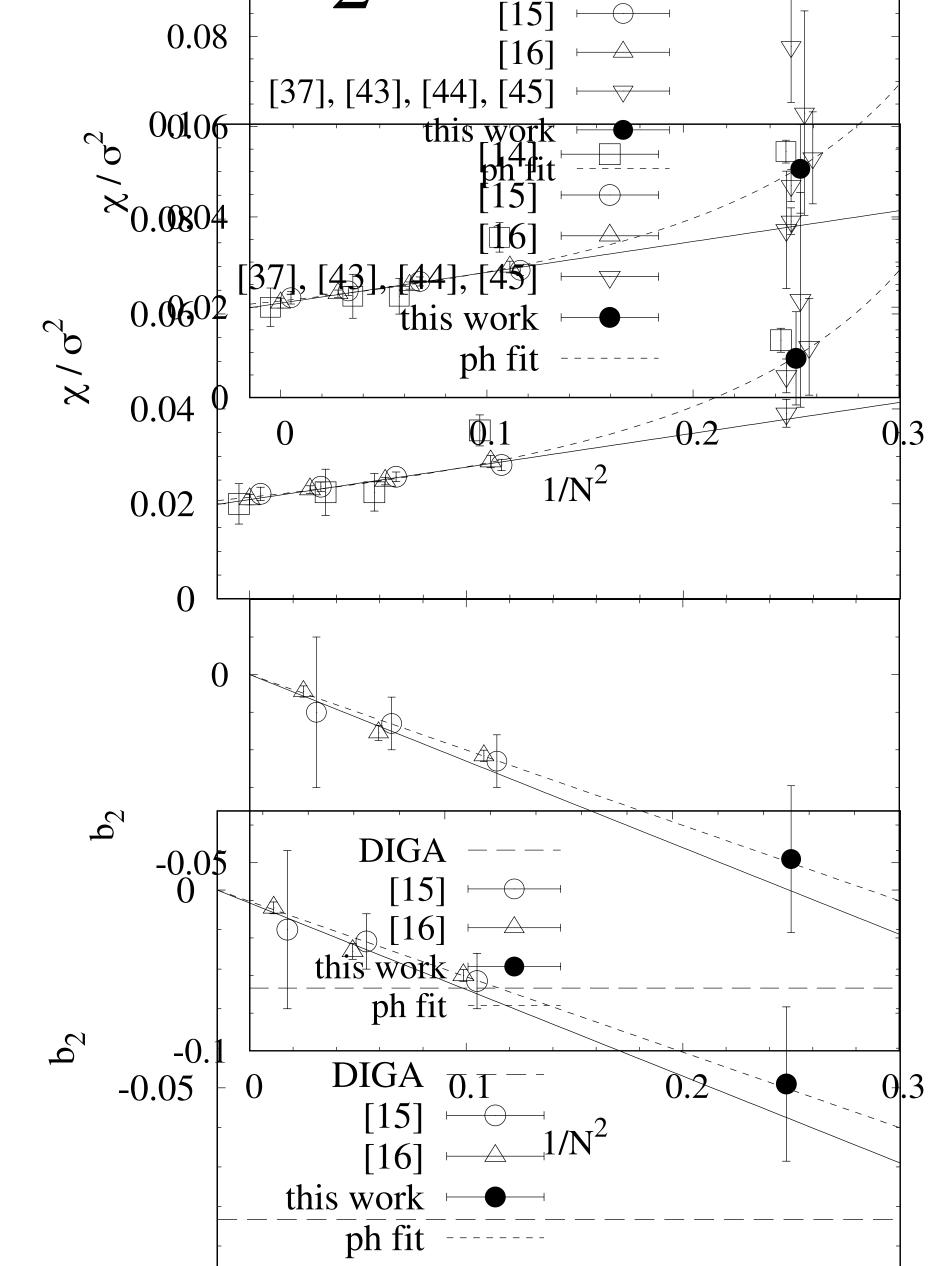
How about $N_c = 2$?



[Kitano, NY, Yamazaki (2021)]

 $\chi \text{ and } b_2 \text{ in } SU(2) \text{ at } T = 0$

[Kitano, NY, Yamazaki (2021)]

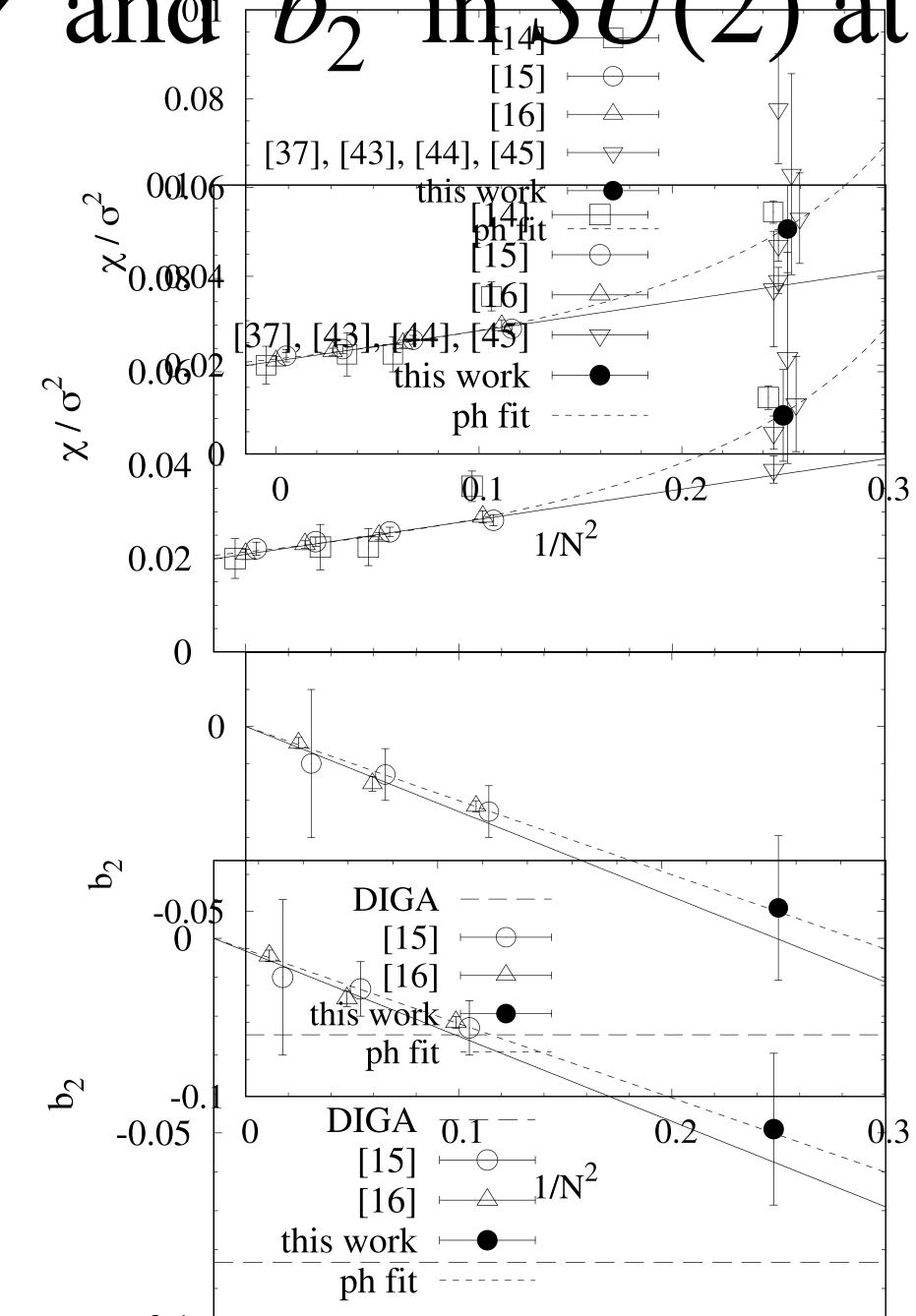


• Still smoothly connected down to $N_c=2$

 $\chi \text{ and } b_2 \text{ in } SU(2) \text{ at } T = 0$

[Kitano, NY, Yamazaki (2021)]

- Still smoothly connected down to $N_c=2$
- $b_2 \neq -\frac{1}{12}$ (i.e. not instanton-like)



[Kitano, NY, Yamazaki (2021)]

$\chi \text{ and } b_2 \text{ in } SU(2) \text{ at } T = 0$

this work

 $\overline{\text{DIGA}}$ 0.1

this work —

ph fit -----

 $[15] \stackrel{\text{O.1}}{\longleftarrow} 1/N^2$ $[16] \stackrel{\text{O.1}}{\longleftarrow} 1/N^2$

0

-0.05

-0.**1** -0.05

 \mathbf{b}_2

- Still smoothly connected down to $N_c=2$
- $b_2 \neq -\frac{1}{12}$ (i.e. not instanton-like)

Speculation:

SU(2) YM belongs to large N_c class and CPV takes places at $\theta = \pi$.

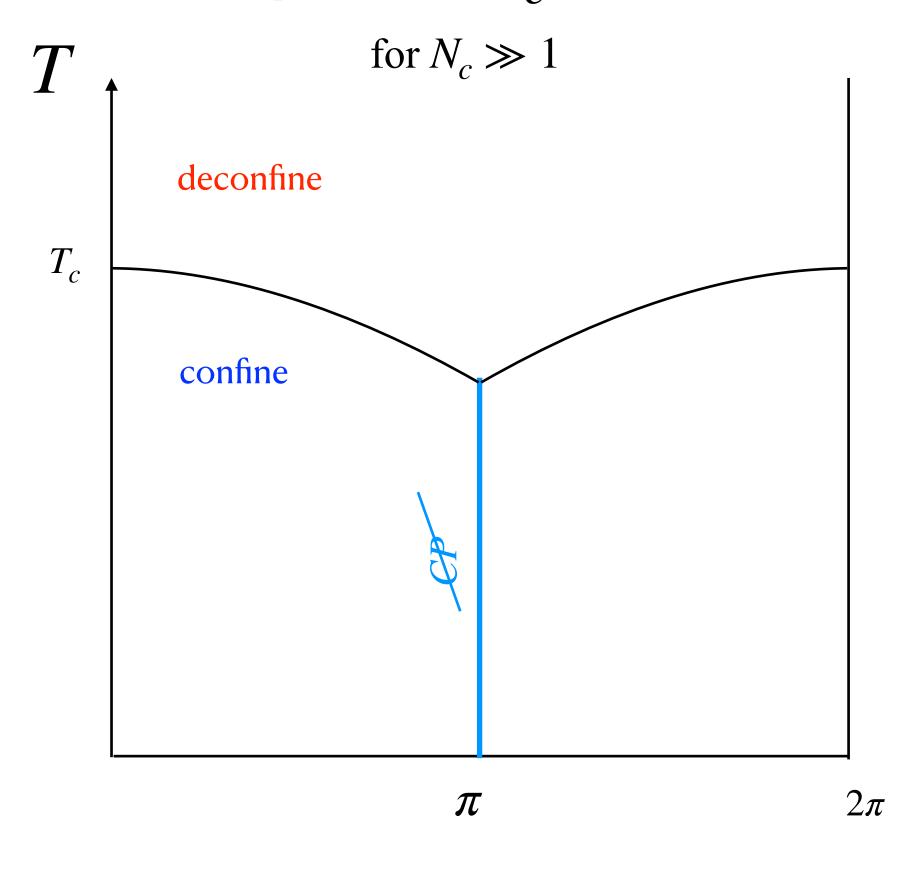
Conjectured θ -T phase diagram

- θ -vacuum undergoes CPV at $\theta = \pi$ when $N_c \gg 1$.
- Above T_c , instanton calc. \Rightarrow no CPV at $\theta = \pi$. [Frison, Kitano, Matsufuru, Mori and NY(2016)]
- "For general N_c , CP has to be broken at $\theta = \pi$ if the vacuum is in the confining phase." [Gaiotto, et al.(2017)], [Kitano, Suyama, NY(2017)]
- $T_c(\theta)$ is available for SU(3) around $\theta = 0$. [D'Elia, Negro(2012, 2013)], [Otake, NY (2022)]
- Numerical evidences and our speculation \Rightarrow CPV for $N_c \ge 2$ [Kitano, NY, Yamazaki(2021)]

Conjectured θ -T phase diagram

- θ -vacuum undergoes CPV at $\theta = \pi$ when $N_c \gg 1$.
- Above T_c , instanton calc. \Rightarrow no CPV at $\theta = \pi$. [Frison, Kitano, Matsufuru, Mori and NY(2016)]
- "For general N_c , CP has to be broken at $\theta = \pi$ if the vacuum is in the confining phase." [Gaiotto, et al.(2017)], [Kitano, Suyama, NY(2017)]
- $T_c(\theta)$ is available for SU(3) around $\theta = 0$. [D'Elia, Negro(2012, 2013)], [Otake, NY (2022)]
- Numerical evidences and our speculation \Rightarrow CPV for $N_c \ge 2$ [Kitano, NY, Yamazaki(2021)]

$4d SU(N_c) YM$



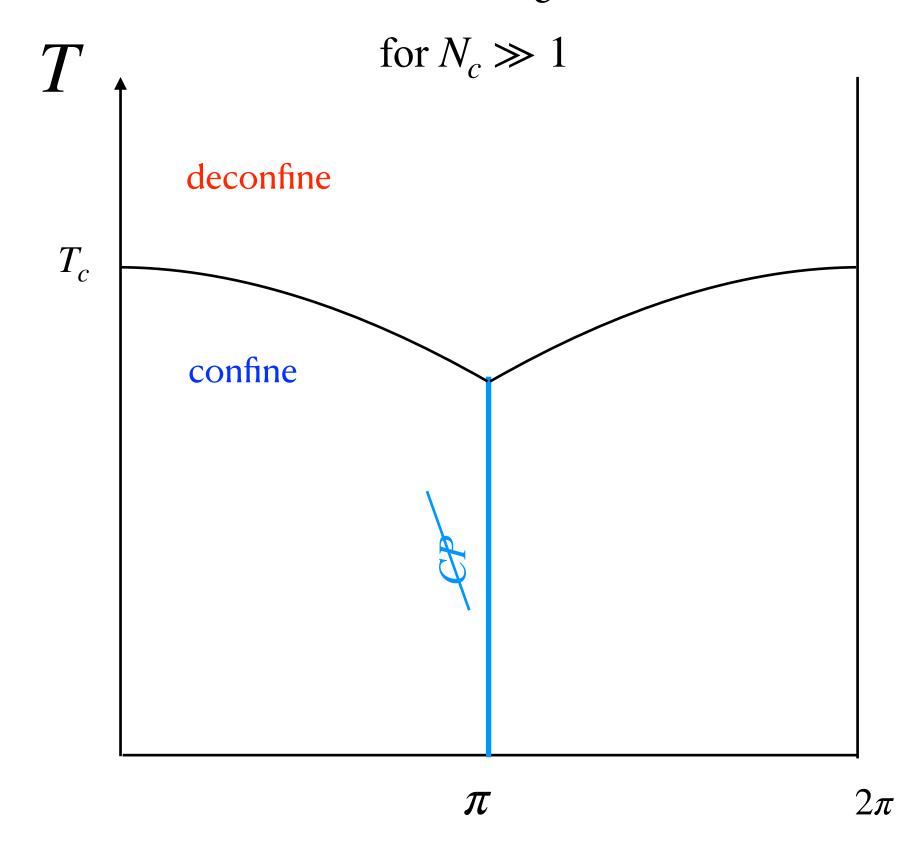
Conjectured θ -T phase diagram

- θ -vacuum undergoes CPV at $\theta = \pi$ when $N_c \gg 1$.
- Above T_c , instanton calc. \Rightarrow no CPV at $\theta = \pi$. [Frison, Kitano, Matsufuru, Mori and NY(2016)]
- "For general N_c , CP has to be broken at $\theta = \pi$ if the vacuum is in the confining phase." [Gaiotto, et al.(2017)], [Kitano, Suyama, NY(2017)]
- $T_c(\theta)$ is available for SU(3) around $\theta = 0$. [D'Elia, Negro(2012, 2013)], [Otake, NY (2022)]
- Numerical evidences and our speculation \Rightarrow CPV for $N_c \ge 2$ [Kitano, NY, Yamazaki(2021)]

We want to check whether SU(2) is large N_c -like.

⇒ How to avoid the sign problem?

$4d SU(N_c) YM$



 θ

Sub-volume method

does not rely on any expansions

Replace
$$Q$$
 with $Q_{\text{sub}} = \sum_{x \in V_{\text{sub}}} q(x) \notin \mathbb{Z}$

where $V_{\text{sub}} = l^4$ is a sub-volume.

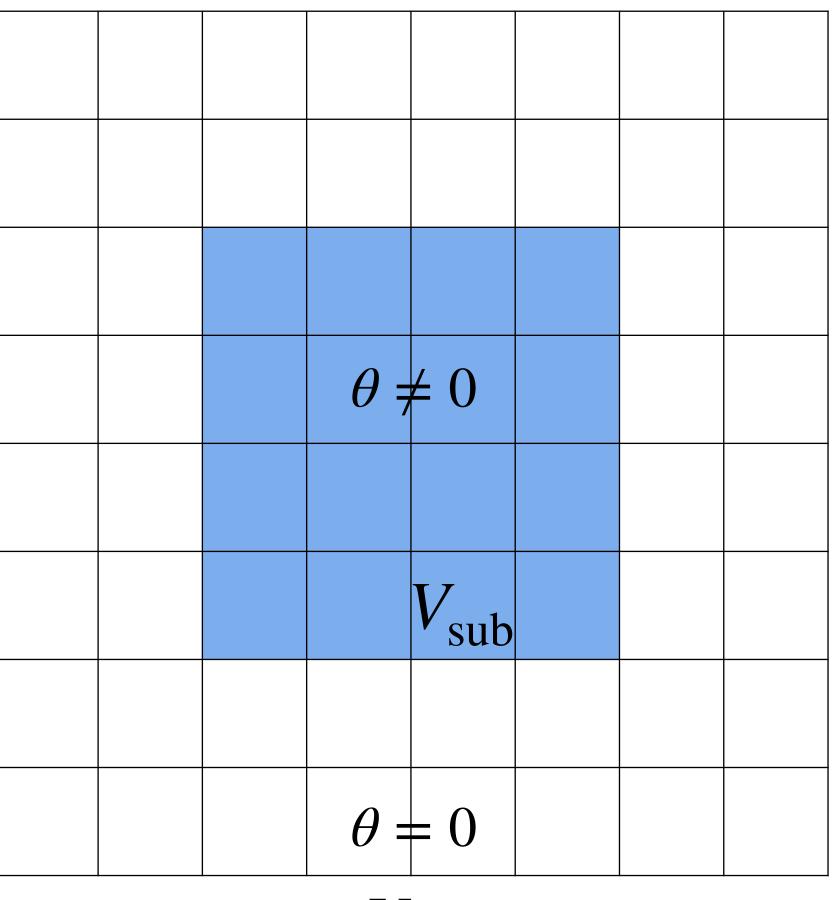
$$e^{-V_{\text{sub}}f_{\text{sub}}(\theta)} = \frac{Z_{\text{sub}}(\theta)}{Z(0)} = \frac{1}{Z(0)} \int \mathcal{D}U \ e^{-S+i\theta Q_{\text{sub}}} = \langle e^{i\theta Q_{\text{sub}}} \rangle$$

$$f_{\text{sub}}(\theta) = -\frac{1}{V_{\text{sub}}} \ln \langle \cos(\theta Q_{\text{sub}}) \rangle$$

$$f(\theta) = \lim_{V_{\text{sub}} \to \infty} f_{\text{sub}}(\theta) = \lim_{l \to \infty} \left\{ \frac{f(\theta)}{l} + \frac{s(\theta)}{l} + O(1/l^2) \right\}$$

[Kitano, Matsudo, NY, Yamazaki (2021)]

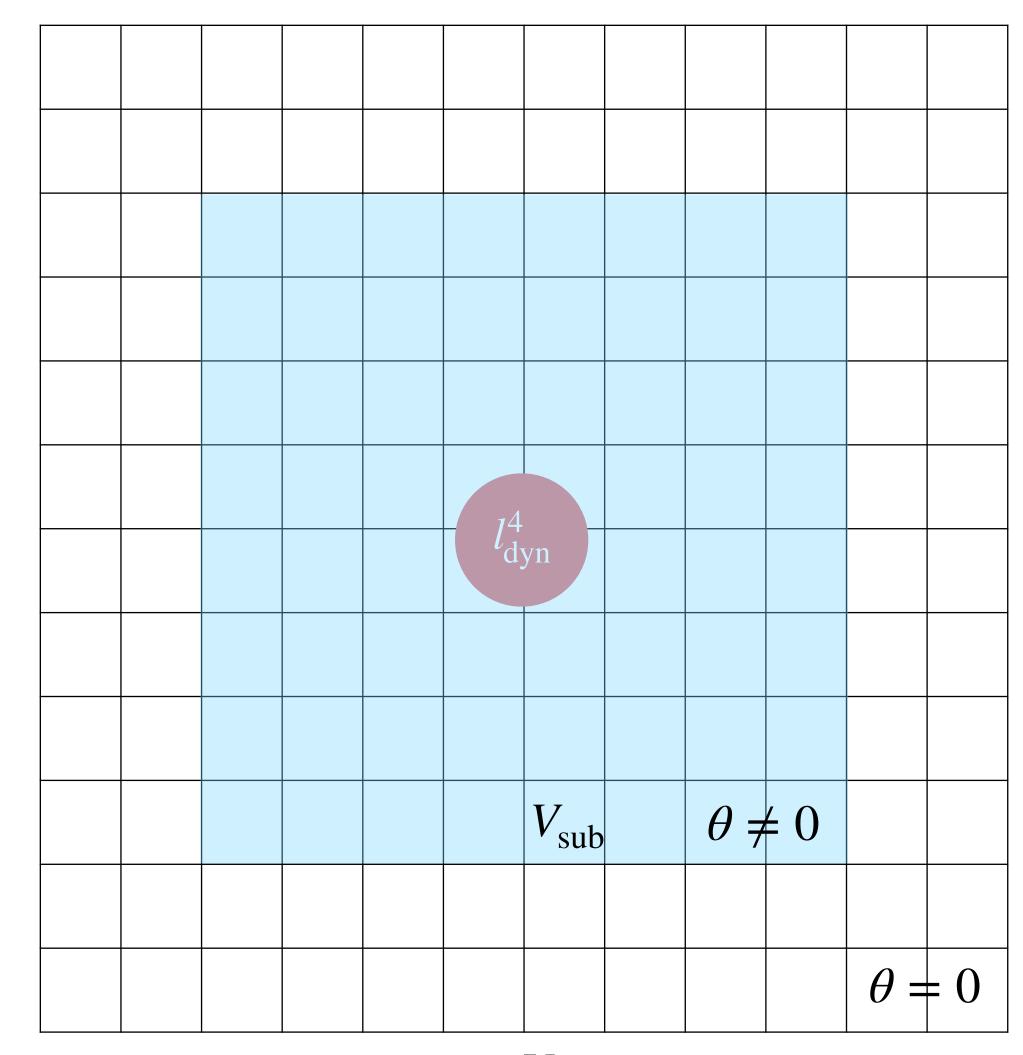
c.f. [Keith-Hynes and Thacker (2008)]



Some remarks on the sub-volume method

What is the suitable range for $V_{\rm sub}$?

- $V_{\text{sub}} \gg l_{\text{dyn}}^4$ (l_{dyn} : dynamical length scale)
- •As long as $V_{\rm sub}\gg l_{\rm dyn}^4$, $f_{\rm sub}(\theta)$ is expected to show a scaling behavior, $f_{\rm sub}(\theta)=f(\theta)+\frac{s(\theta)}{l}+O(1/l^2)$.
- •As $V_{\mathrm{sub}} \to V_{\mathrm{full}}$, finite size effects may appear. $\Rightarrow V_{\mathrm{sub}} \ll V_{\mathrm{full}}$.



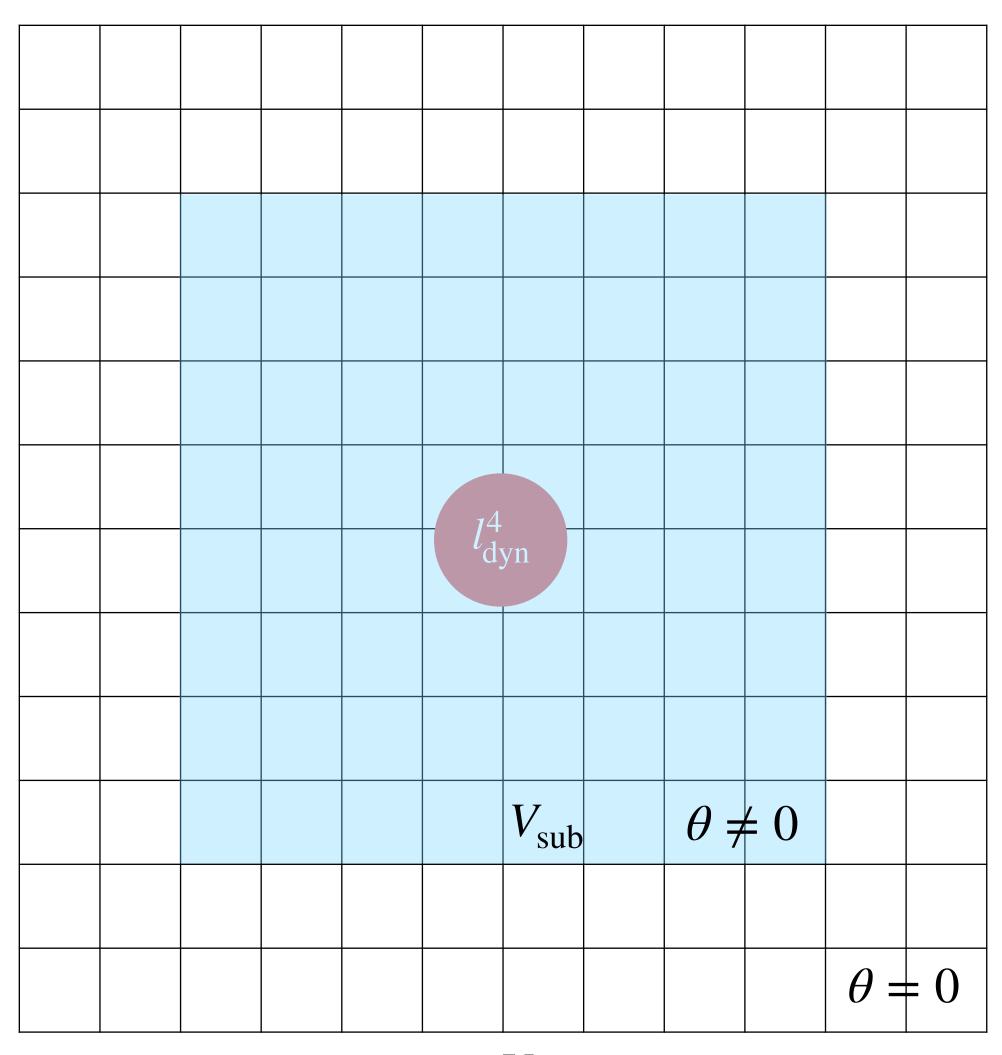
 $V_{
m full}$

Some remarks on the sub-volume method

What is the suitable range for V_{sub} ?

- $V_{\text{sub}} \gg l_{\text{dyn}}^4$ (l_{dyn} : dynamical length scale)
- As long as $V_{\rm sub}\gg l_{\rm dyn}^4$, $f_{\rm sub}(\theta)$ is expected to show a scaling behavior, $f_{\rm sub}(\theta)=f(\theta)+\frac{s(\theta)}{l}+O(1/l^2)$.
- •As $V_{\mathrm{sub}} \to V_{\mathrm{full}}$, finite size effects may appear. $\Rightarrow V_{\mathrm{sub}} \ll V_{\mathrm{full}}$.

$$l_{\rm dyn}^4 \ll V_{\rm sub} \ll V_{\rm full}$$



 $V_{
m full}$

Lattice parameters and observables

 $\cdot SU(2)$ YM by Symanzik improved gauge action

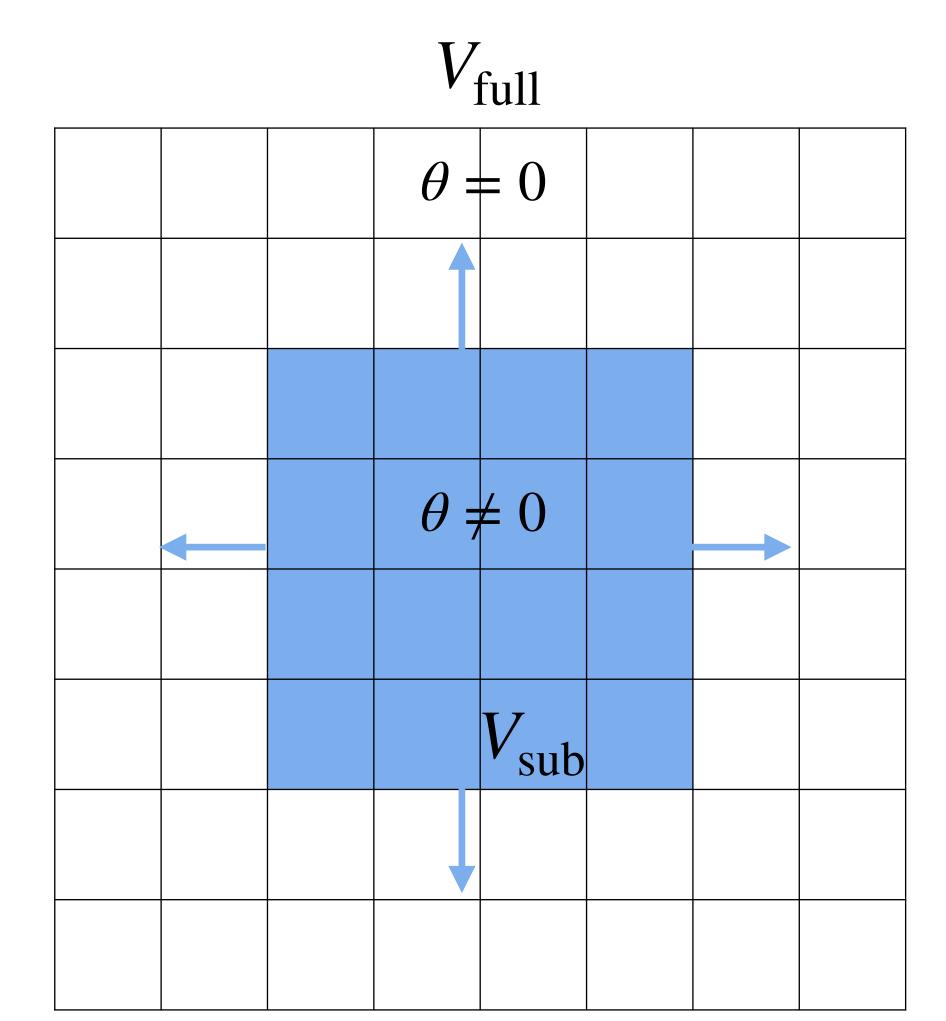
$$\beta = \frac{4}{g^2} = 1.975 \text{ [cf. } 1/(aT_c) = 9.50]$$

$$V_{\text{full}} = 24^3 \times \{48, 8, 6\} \ (T = 0, 1.2T_c, 1.6T_c)$$

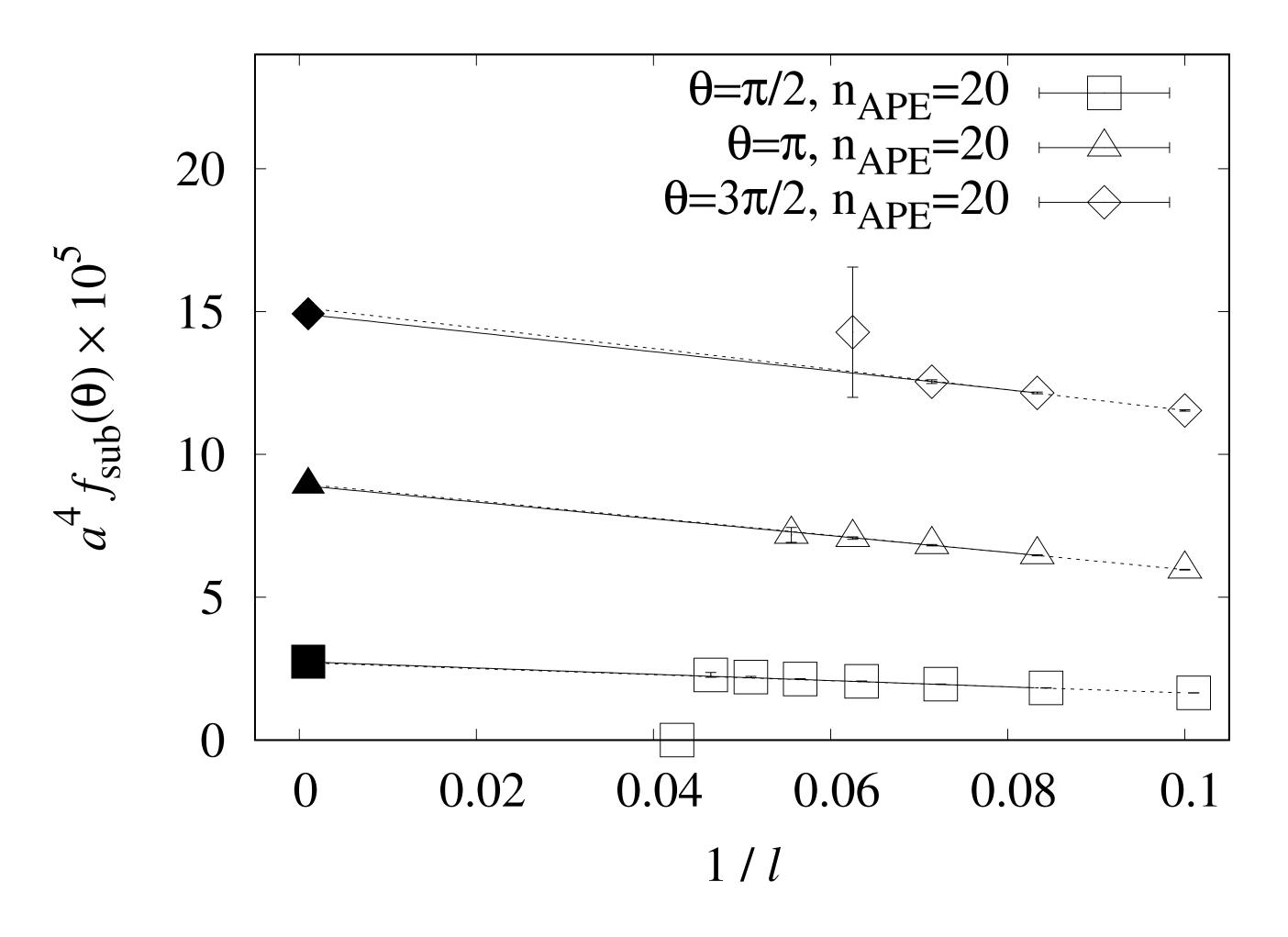
- · Periodic boundary conditions
- *# of configs = { 68000, 5000, 5000 }
- $\cdot V_{\text{sub}} = l^4 \text{ for } T=0 \text{ and } V_{\text{sub}} = l^3 \times N_T \text{ for finite } T$
- · After applying APE smearing, we estimate

$$\checkmark f(\theta) = -\lim_{V_{\text{sub}} \to \infty} \frac{1}{V_{\text{sub}}} \ln\langle \cos(\theta Q_{\text{sub}}) \rangle$$

$$\checkmark \frac{df(\theta)}{d\theta} = \lim_{V_{\text{sub}} \to \infty} \frac{1}{V_{\text{sub}}} \frac{\langle Q_{\text{sub}} \sin(\theta Q_{\text{sub}}) \rangle}{\langle \cos(\theta Q_{\text{sub}}) \rangle}$$



$l \rightarrow \infty \lim at T = 0$

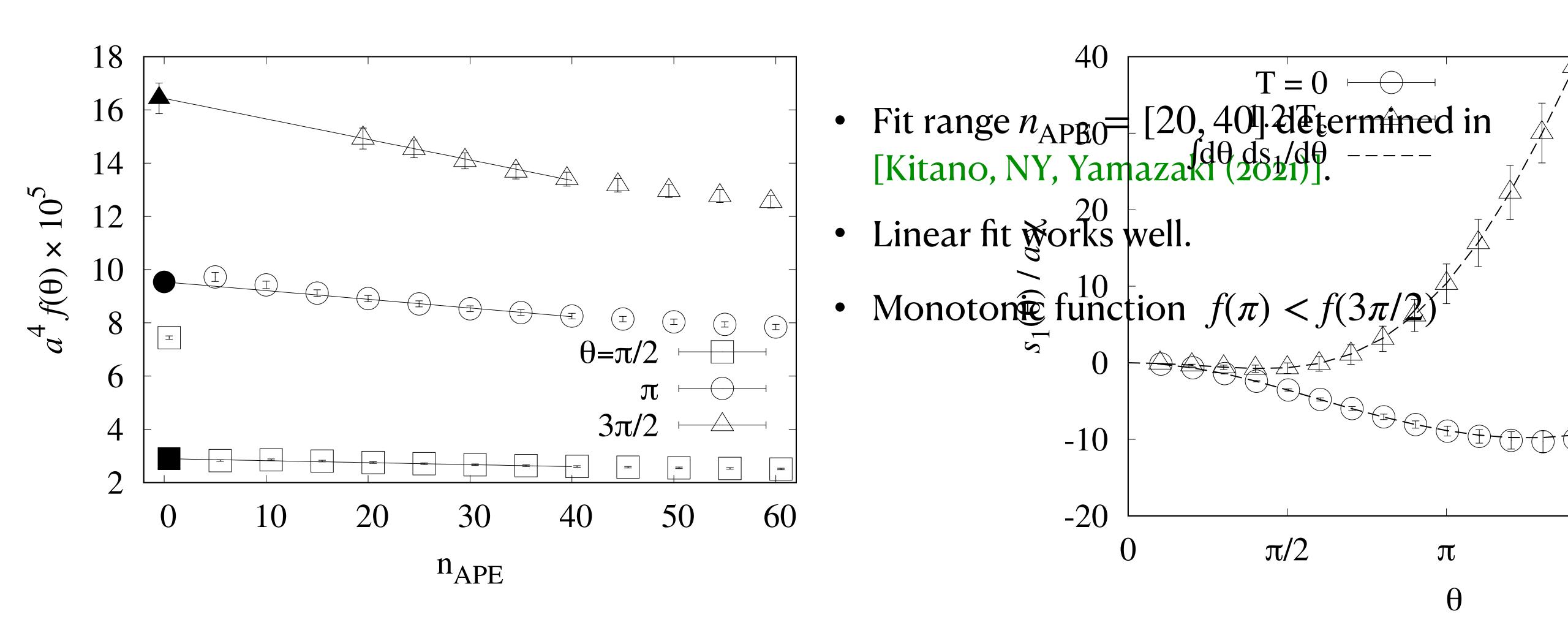


- $V_{\text{sub}} = l^4 \text{ with } l \in \{10, 12, \dots, 20\}$
- Linear extrapolation with

$$f_{\text{sub}}(\theta) = f(\theta) + \frac{as(\theta)}{l}$$

works well.

$n_{APE} \rightarrow 0 \lim at T = 0$

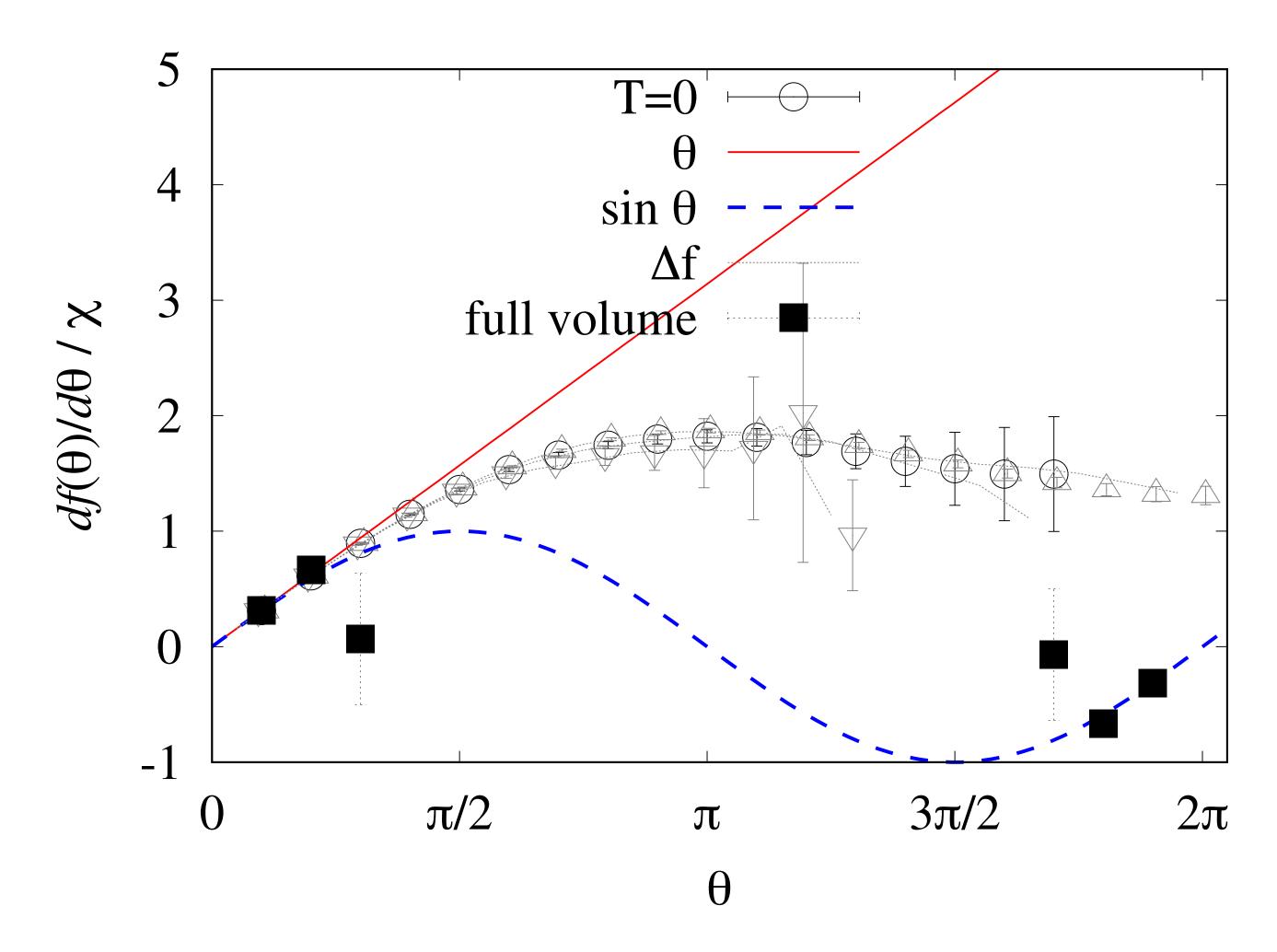


θ dependence of $f(\theta)$ at T=0



- Succeed to calculate up to $\theta \sim 3\pi/2$
- Monotonically increasing function
- Inconsistent with DIGA
- Numerical consistency with $\int d\theta \frac{df}{d\theta}$

$\frac{df(\theta)}{d\theta} = 0$ $\frac{df(\theta)}{d\theta} = 0$ $3\pi/2$

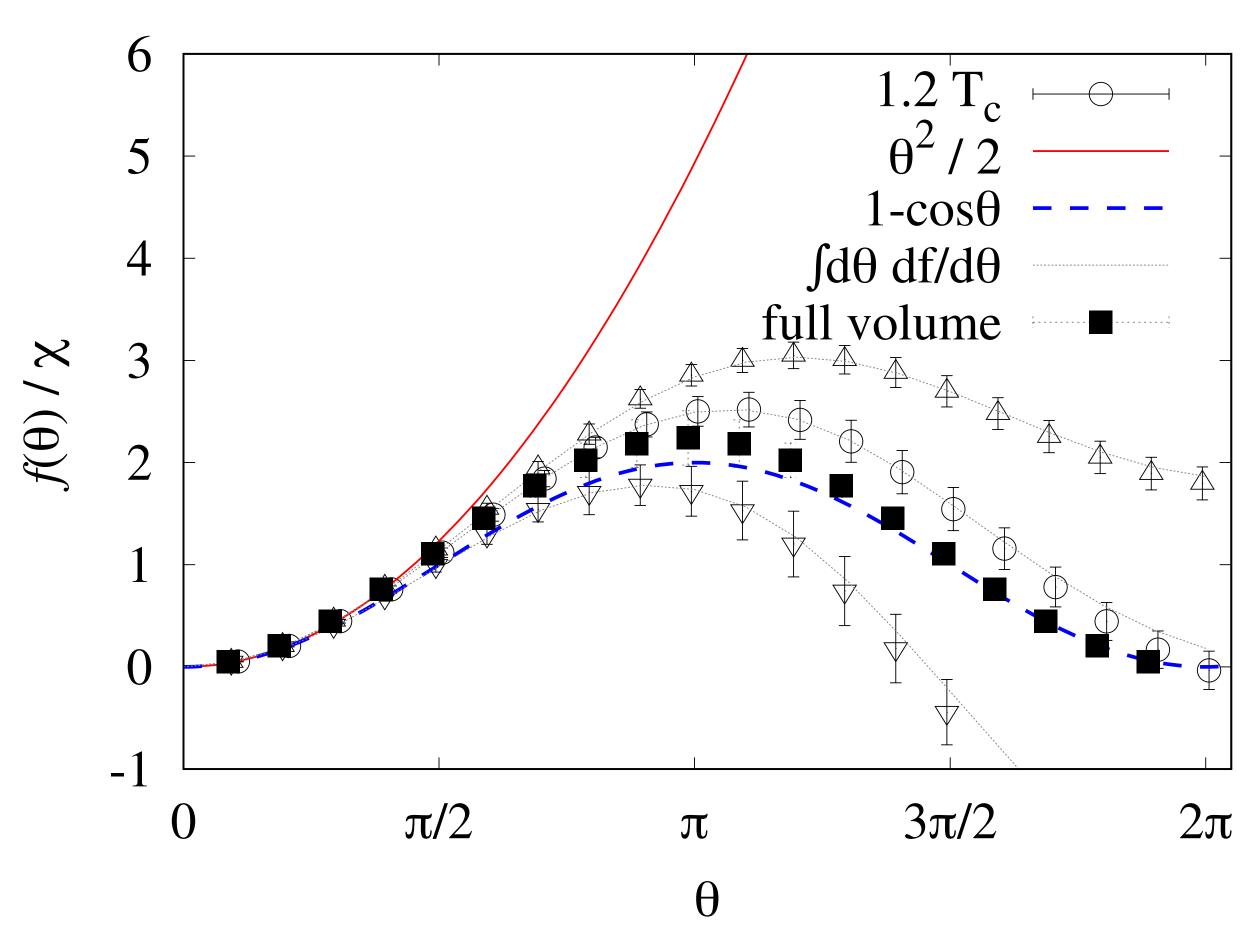


• Order parameter is non-zero

$$\left. \frac{df(\theta)}{d\theta} \right|_{\theta=\pi} = -i \langle q(x) \rangle_{\theta=\pi} \neq 0$$

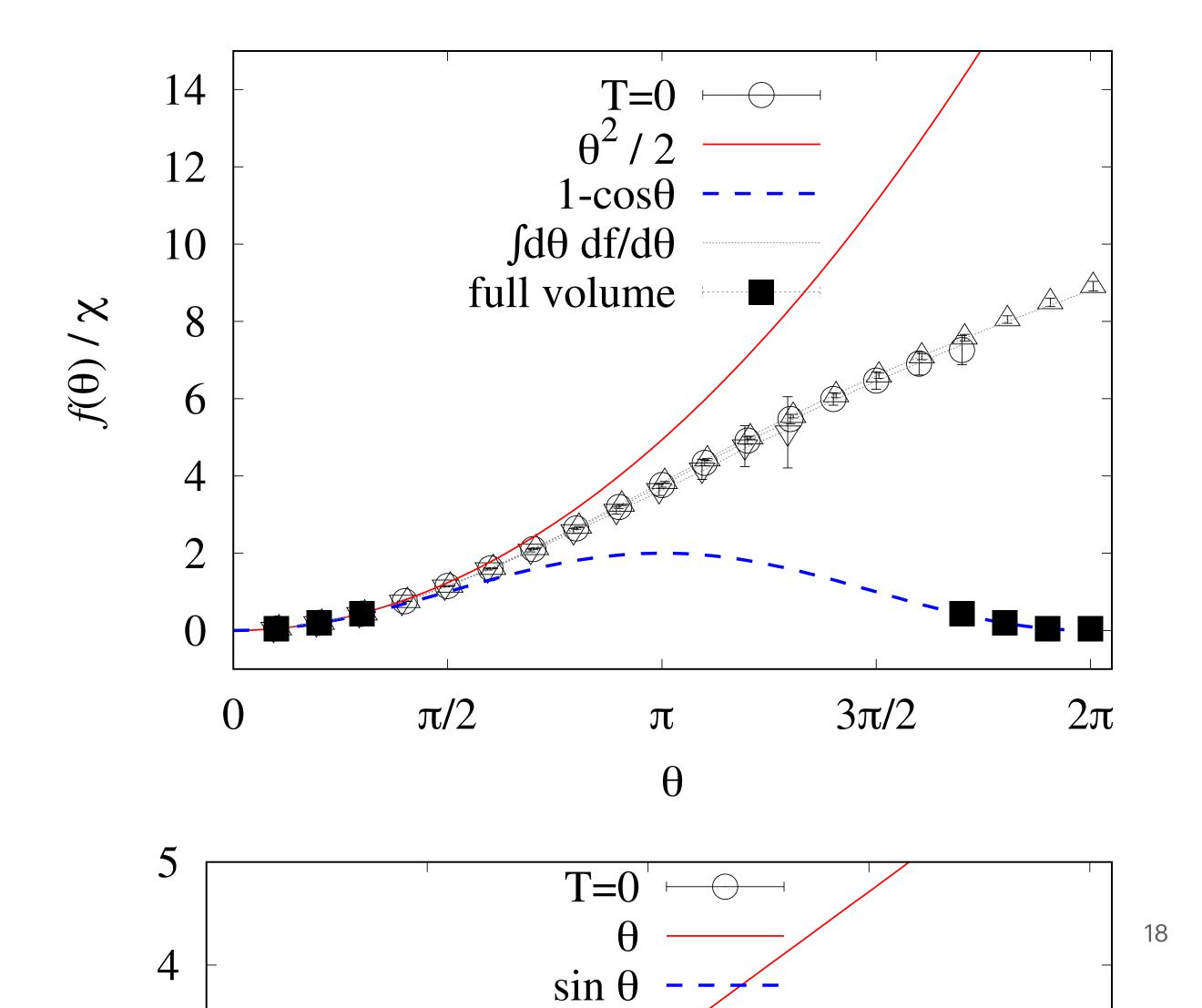
 \Rightarrow spontaneous CPV at $\theta = \pi$

θ dependence of $f(\theta)$ at $T = 1.2T_c$

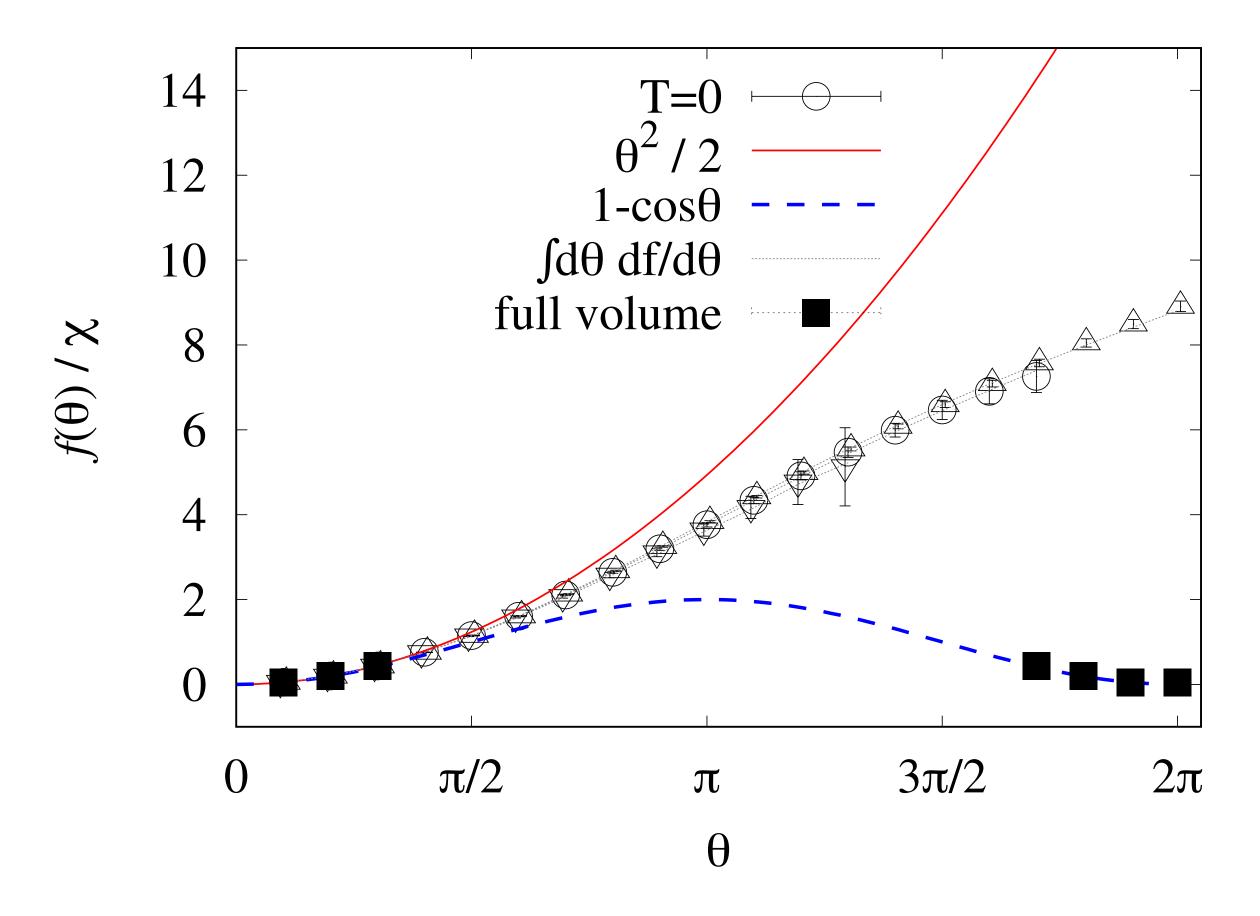


- Large uncertainty due to ambiguity of the scaling region
- Within large uncertainty, consistent with the DIGA
- Similar results at $T = 1.6 T_c$

$$f(\pi - \theta) = f(\pi + \theta)?$$

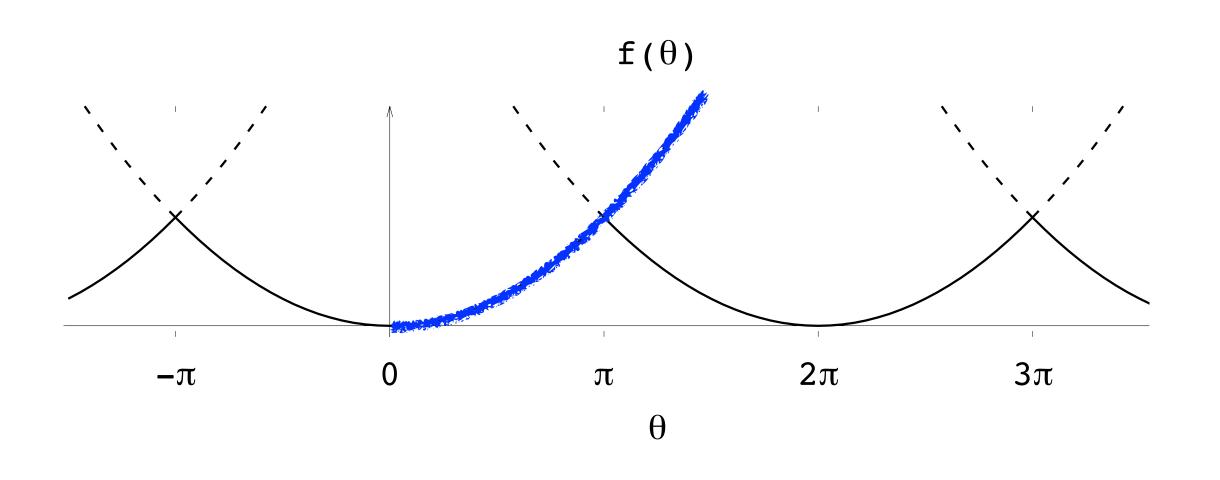


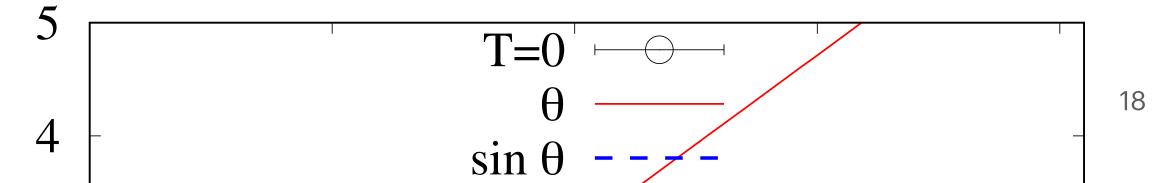
$$f(\pi - \theta) = f(\pi + \theta)?$$



Interpretation:

Sub-volume method sticks to the original branch even after passing through the transition point.



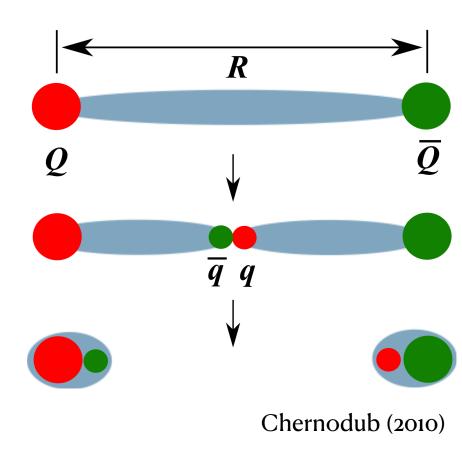


$$f(\pi - \theta) = f(\pi + \theta)? \text{ (Cont'd)}$$

- Similar experience in the the static potential on the dynamical configs, where "string breaking" is expected to occur at large separation but ...
 - ⇒ Nothing but overlap problem

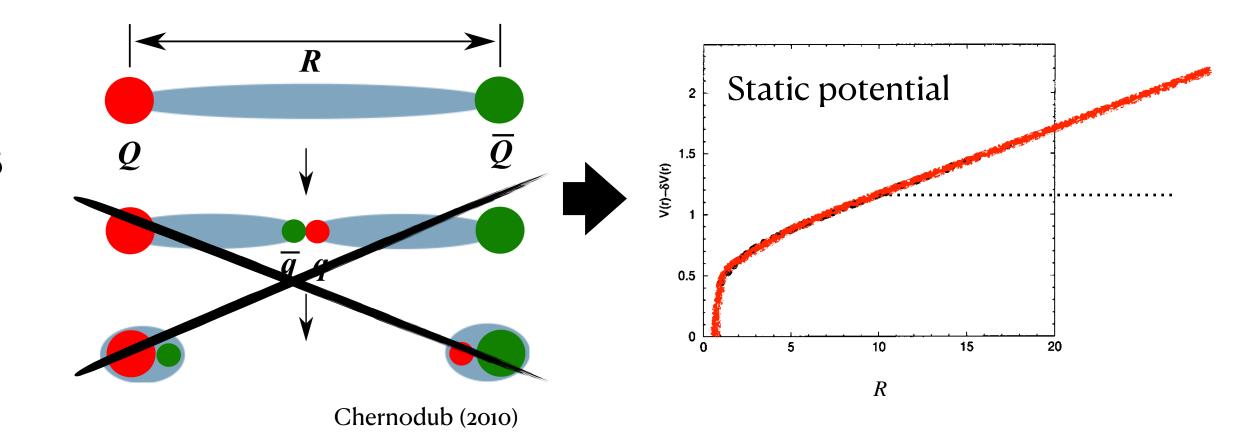
$$f(\pi - \theta) = f(\pi + \theta)?$$
(Cont'd)

- Similar experience in the the static potential on the dynamical configs, where "string breaking" is expected to occur at large separation but ...
 - ⇒ Nothing but overlap problem



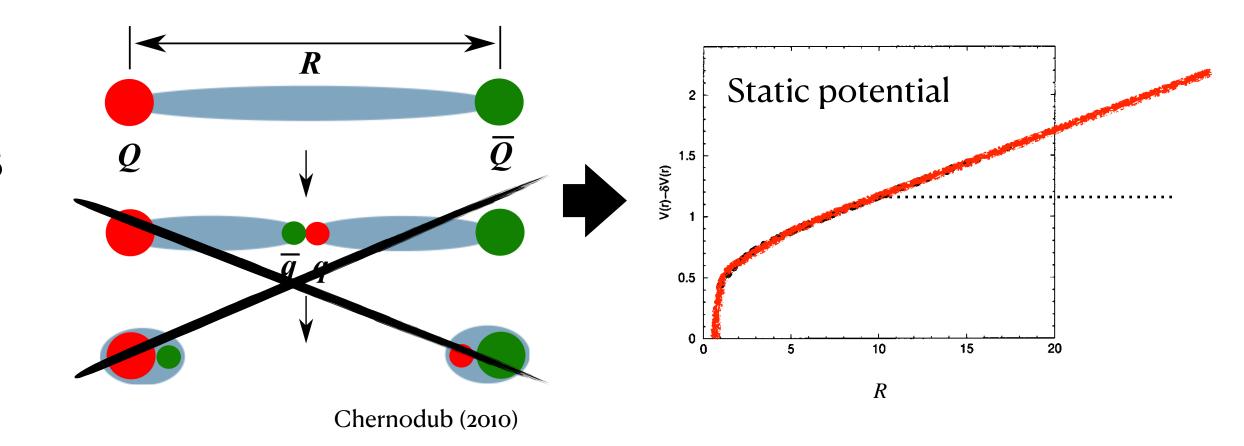
$$f(\pi - \theta) = f(\pi + \theta)?$$
(Cont'd)

- Similar experience in the the static potential on the dynamical configs, where "string breaking" is expected to occur at large separation but ...
 - ⇒ Nothing but overlap problem



$$f(\pi - \theta) = f(\pi + \theta)?$$
(Cont'd)

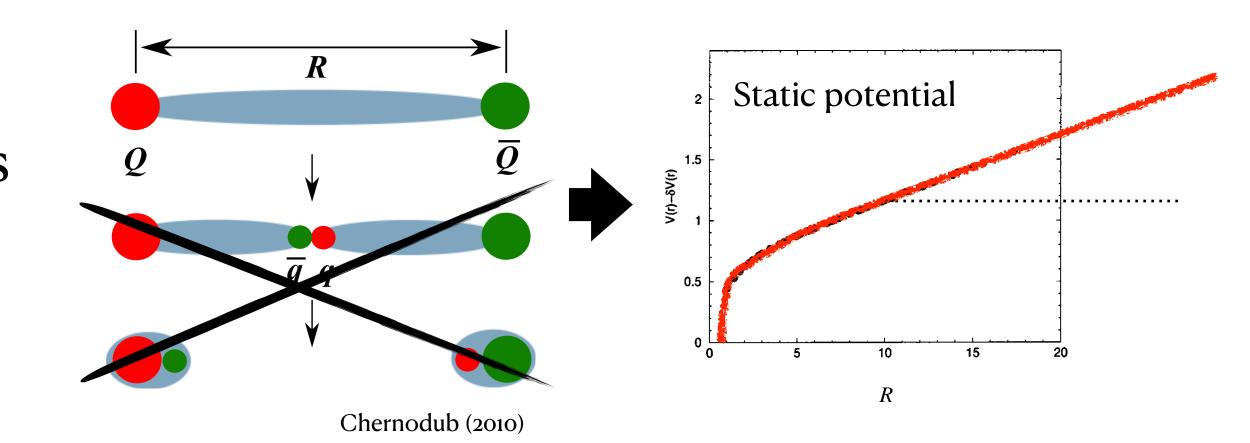
- Similar experience in the the static potential on the dynamical configs, where "string breaking" is expected to occur at large separation but ...
 - ⇒ Nothing but overlap problem



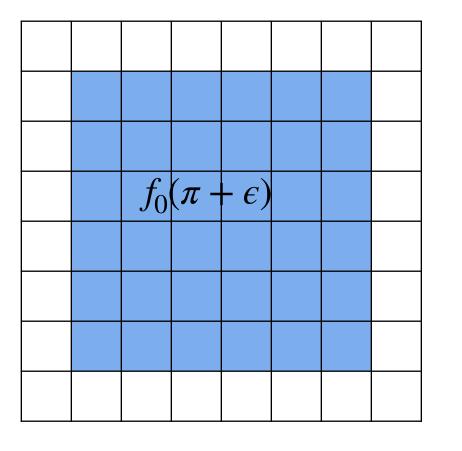
• In the present case, the expected transition is the one from domain to a baglike object although we couldn't see it ...

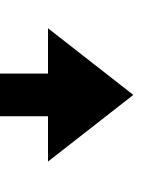
$$f(\pi - \theta) = f(\pi + \theta) ? (Cont'd)$$

- Similar experience in the the static potential on the dynamical configs, where "string breaking" is expected to occur at large separation but ...
 - ⇒ Nothing but overlap problem

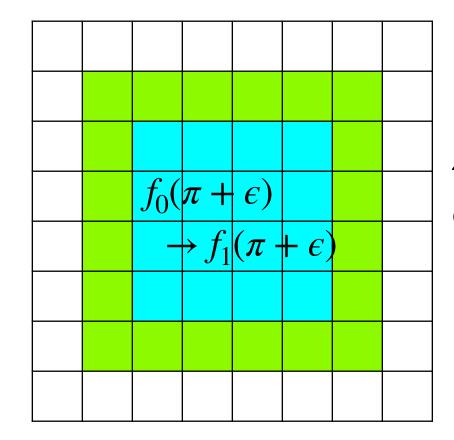


• In the present case, the expected transition is the one from domain to a baglike object although we couldn't see it ...





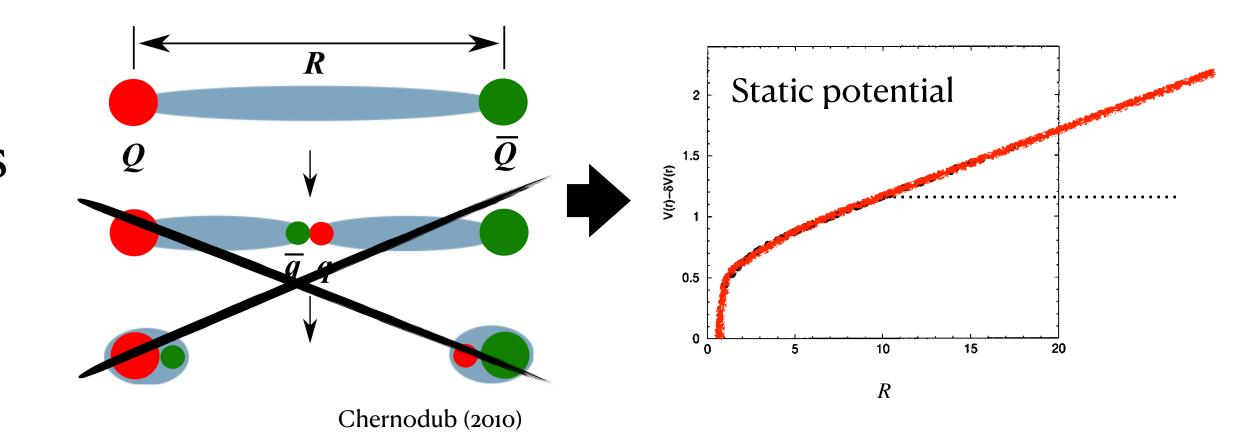
19



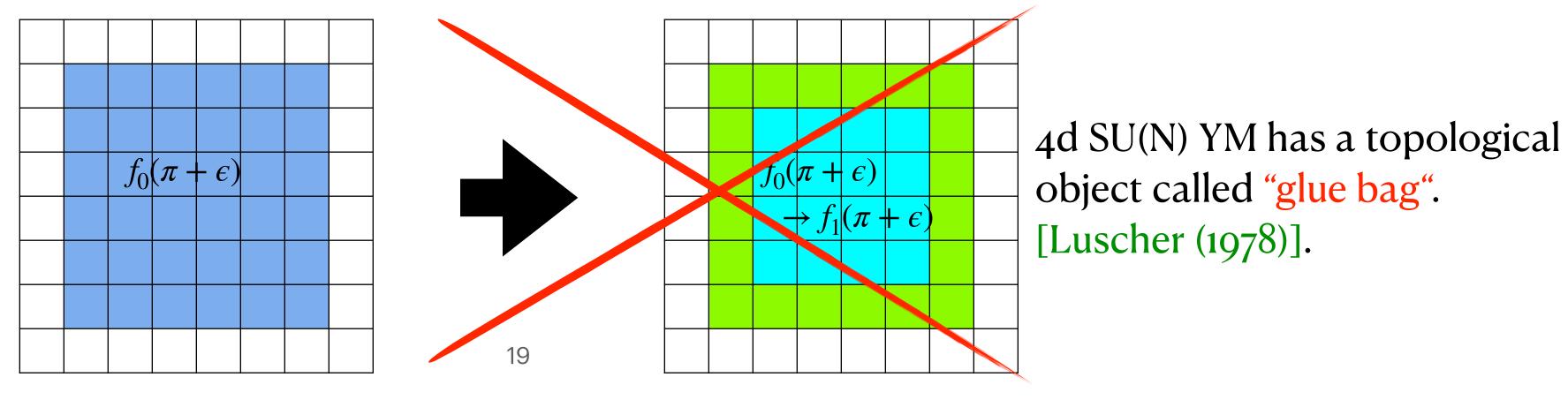
4d SU(N) YM has a topological object called "glue bag". [Luscher (1978)].

$$f(\pi - \theta) = f(\pi + \theta)?$$
(Cont'd)

- Similar experience in the the static potential on the dynamical configs, where "string breaking" is expected to occur at large separation but ...
 - ⇒ Nothing but overlap problem

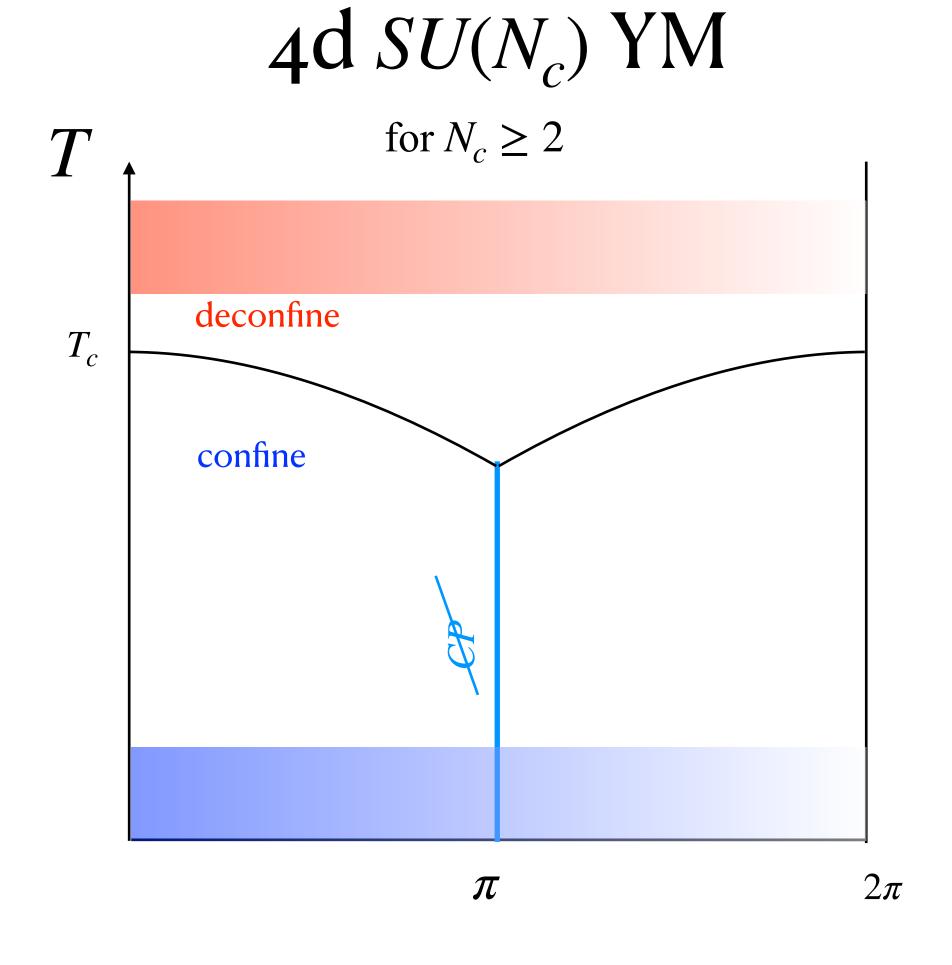


• In the present case, the expected transition is the one from domain to a baglike object although we couldn't see it ...



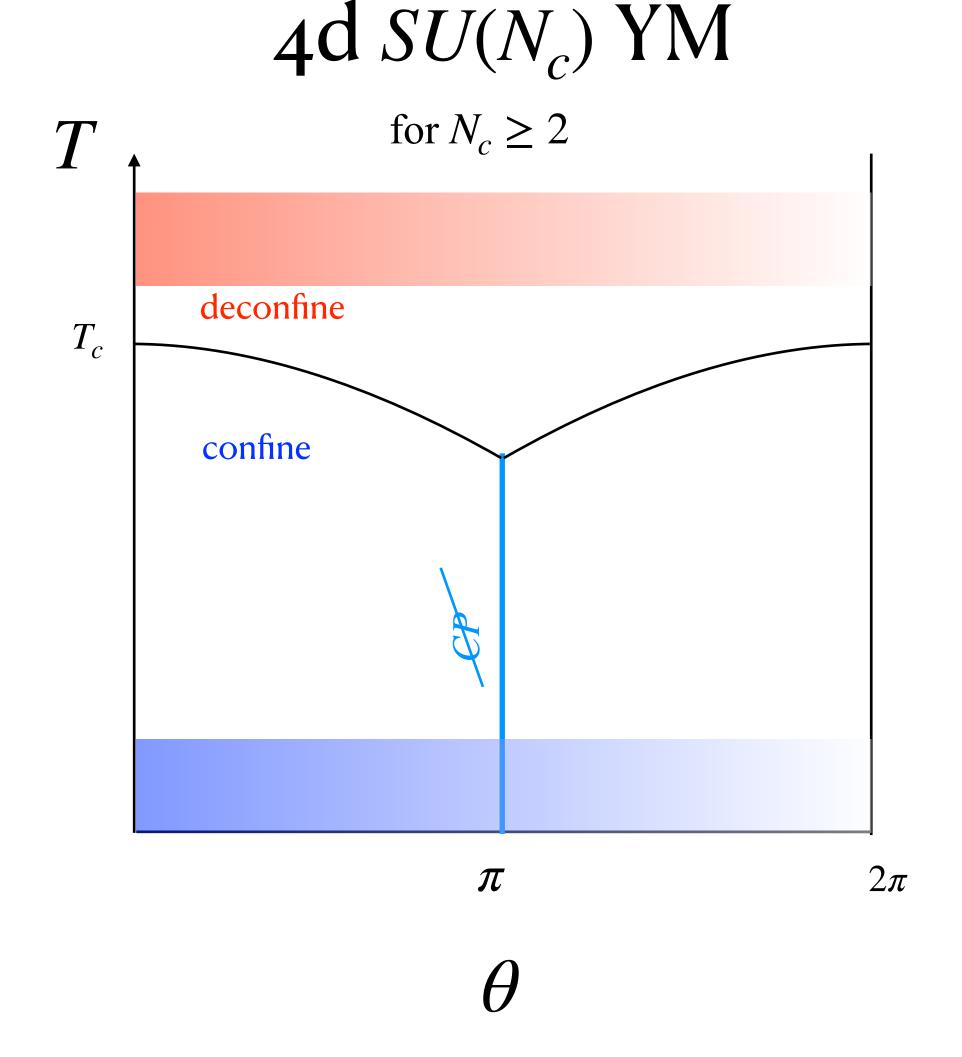
• We have developed a sub-volume method to calculate $f(\theta)$ up to $\theta \sim O(1)$.

- We have developed a sub-volume method to calculate $f(\theta)$ up to $\theta \sim O(1)$.
- Our result for the order parameter suggests spontaneous CPV at $\theta = \pi$ for the vacuum of 4d SU(2) YM.



- We have developed a sub-volume method to calculate $f(\theta)$ up to $\theta \sim O(1)$.
- Our result for the order parameter suggests spontaneous CPV at $\theta = \pi$ for the vacuum of 4d SU(2) YM.

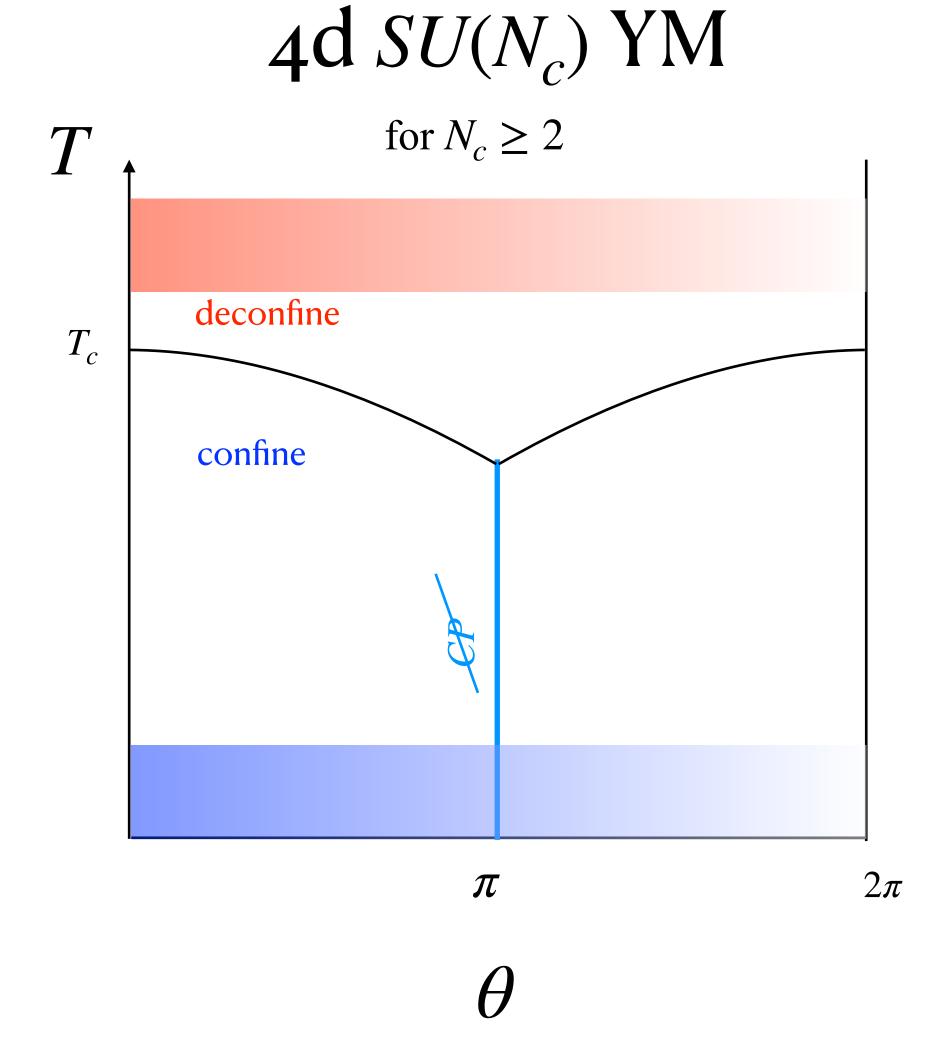
 \Rightarrow SU(2) YM belongs to large N class (not like CP^1 model).

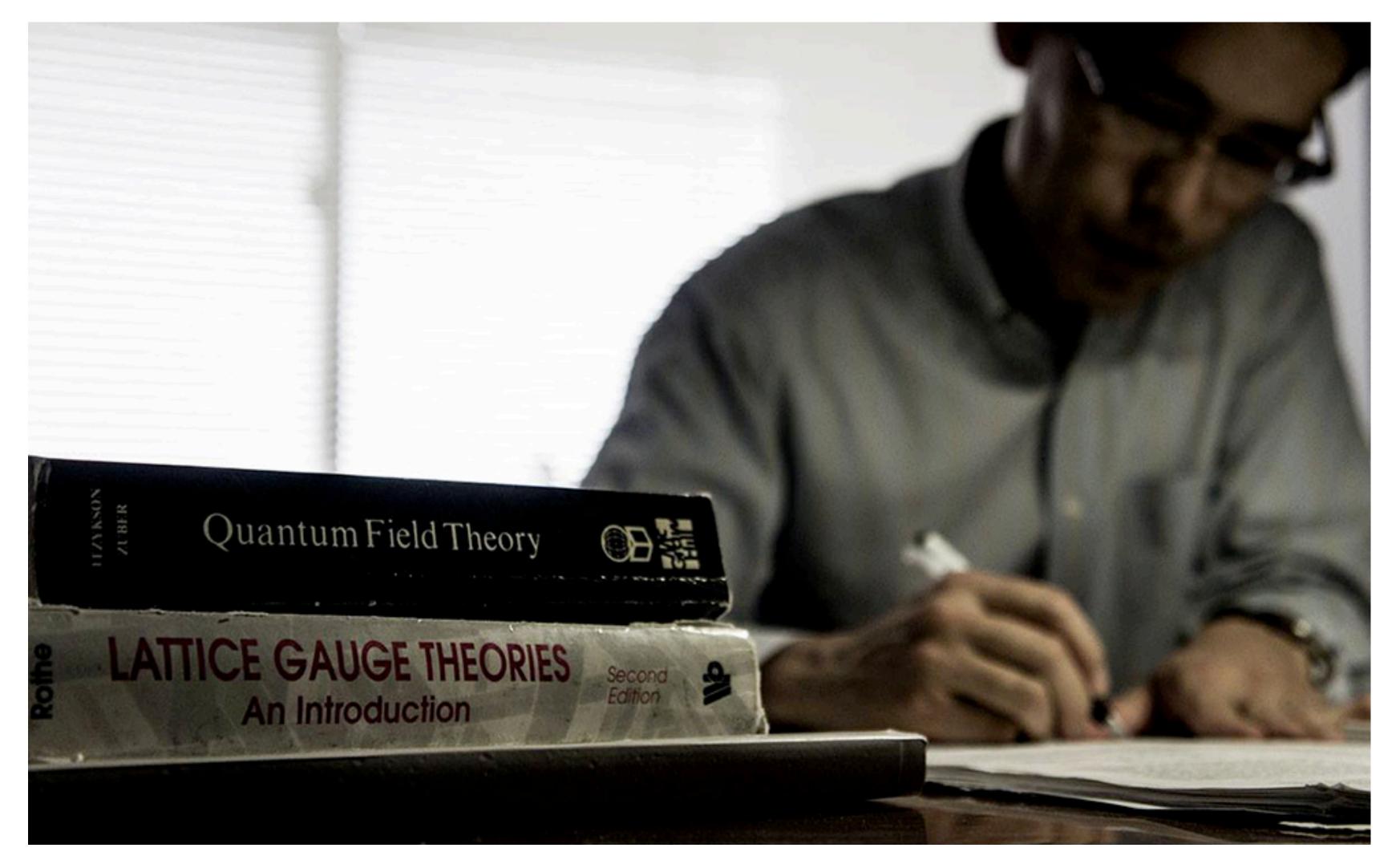


- We have developed a sub-volume method to calculate $f(\theta)$ up to $\theta \sim O(1)$.
- Our result for the order parameter suggests spontaneous CPV at $\theta = \pi$ for the vacuum of 4d SU(2) YM.

 \Rightarrow SU(2) YM belongs to large N class (not like CP^1 model).

 $\Rightarrow N_c = 2$ is large.





When I was a master course student, he kindly invited Ishikawa-san and me to the Lattice QCD and started to read Rothe's textbook. LQCD is still my favorite field.

I really appreciate your guidance.