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Vacuum energy density f(6)
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Vacuum energy density f(6)

_VAO) _ Z(0) ® In both theories,
€ 0) 0 €7 = f(6) =f(0+2n)
S 1s CP even = f(0) = f(—6)
where [
Z(0) = [9 U e>+00 fir—0) =f(n+6)
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Expected 0 dependence: large-N.. vs instanton

Large N [Witten (1980, 1998)]

— f(0) = y/2 min(0 + 27k)* + O(1/N?)
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Significant difference in d f(6)/d @ around 0 = =

A



Lattice calculation: f{(#) in 2d CP"~!

[Keith-Hynes and Thacker (2008)]
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< Haldane conjecture



Lattice calculations of f(6) in 4d SU(N)
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If DIGA works, f(6) = y(1 —cos0) = by, = — 5



First two coefficients for V. > 3

[Review by Vicari and Panagopoulos (2018)]
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First two coefficients for V. > 3

[Review by Vicari and Panagopoulos (2018)]
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These behavior looks smooth = Nothing special happens down to N, = 3
How about N, =2 ?
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y and b, mSU(2)atT =0

[Kitano, NY, Yamazaki (2021)]
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y and b, mSU(2)atT =0

[Kitano, NY, Yamazaki (2021)]
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Conjectured 6-T phase diagram

¢-vacuum undergoes CPV at 0 = 7 when N, > 1.

Above T, instanton calc. = no CPV at 0 = .
| Frison, Kitano, Matsufuru, Mor1 and NY(2016)]

“For general N, , CP has to be broken at 6 = & 1f the vacuum

1s 1n the confining phase.”
[Gaiotto, et al.(2017)], [Kitano, Suyama, NY(2017)]

® T.(0) 1s available for SU(3) around 6 = 0.
[D’Elia, Negro(2012, 2013)], [Otake, NY (2022)]

® Numerical evidences and our speculation = CPV for N, > 2
|Kitano, NY, Yamazaki(2021)]
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We want to check whether SU(2) is large N -like.

= How to avoid the sign problem ?
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S“b'VOlume meth()d [Kitano,Matsudo,NY,Yamazaki(2021)]

c.f. [Keith-Hynes and Thacker (2008)]

does not rely on any expansions

Replace Q with QO , = Z qg(x) & 7

xevV.

sub

where V. = [*is a sub-volume.

oVarun® — Zounl® ] JSZU e =S*i00us = (oi0us) °7°
7000 Z(0)
|
Jsup(6) = - In{ cos(00,1) ) Vsub
sub
fO) = lim f,(6) = lim {fw): S(le) | 0(1/12>} T U
Vsub_>OO — 0
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Some remarks on the sub-volume method

What is the suitable range for V  ?
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eAs V. o = Vi 5, inite size effects may appear. >V, < Vi
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Lattice parameters and observables

*SU(2) YM by Symanzik improved gauge action

4
f=— = 1975 [ct. 1/(aT,) = 9.50]
8

Ve =247 % {48, 8, 6} (T=0, 1.2T., 1.6T.)
* Periodic boundary conditions

' # of configs = { 68000, 5000, 5000 }

.V = [*for =0 and V., = [° X N for finite T

- After applying APE smearing, we estimate

1
v f(0)=— lim In{ cos(6Q,1) )
Voup— 00 Vsub

S

df0) .. 1 (Qupsin(00y) )
v = lim
do Veup— 0 Vsub <COS(9qub)>
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» Fitrange n,pp = [20, 40] determined in
[Kitano, NY, Yamazaki (2021)].

* Linear fit works well.

* Monotonic function f(7) < f(37/2)



f0) /%

0 dependenceof f(0) atT =0

12 _ e;r/:(z) . | * Succeed to calculate up to 6 ~ 37/2
10 | [cos§ ===~ * Monotonically increasing function
Q| * Inconsistent with DIGA p
6 » Numerical consistency with J'dé’%
4 |
7 |
O |

0 7t/2 T 37t/2 27t
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df(0)/do /

dfi0)/doat T = 0

* Order parameter is non-zero

Af(O)/d0| =~ i{q(x) Jgur # 0

= spontaneous CPVatfd = r
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0 7t/2 TT 3m/2 27T
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f0)/x

6 dependenceof f(0) at T = 1.2T.
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I-cos9 - -~ - scaling region
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cllvolume  m | ¢ Within large uncertainty, consistent with the
e b

55 . DIGA
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| « Large uncertainty due to ambiguity of the
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fir—0)=fx+0)’

f0) 7/
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fir—0)=fx+0)’

f0) 7/

14 +
12 |
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T=0 —©

0% /2

l1-cosO - - - -
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Interpretation:
Sub-volume method sticks to the original branch
even after passing through the transition point.
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= Nothing but overlap problem
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field.
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