# Gauge-Higgs Unification -LHCと暗黒物質-

細谷 裕 (大阪大学)
 副大学 12 February 2010

## LHCで Higgs が見つかるか



## - 暗黒物質が見えた?



#### arXiv:0912.3592 [astro-ph.CO] 18 Dec 2009 Two events in the signal region







### 標準理論 (SM)

超対称性理論 (MSSM)

Little Higgs theory -- pseudo-NG boson

Higgsless theory -- 境界条件によるSB

ゲージ・ヒッグス統合理論

# Gauge-Higgs unification in more than four dimensions

### Kaluza-Klein's picture

1921, 1926

5D gravity  $M^4 \times S^1$  (circle)  $g_{MN} = \begin{pmatrix} t, \vec{x}, y \end{pmatrix}$ 



Unification of 4D gravity and EM



ヒッグス場はゲージ場の一部になる

### ヒッグス粒子の質量

 $m_H$ 

### 量子補正で有限に予言

Higgs couplings

 $H^3$ ,  $H^4$ , ...

 $WWH, WWH^2, \cdots$  $ZZH, ZZH^2, \cdots$ 

全て決まる

 $\bar{\Psi}\Psi H$ , ...

Randall-Sundrum ワープ時空上の SO(5)xU(1)ゲージ理論 AdS  $\Lambda = -6 k^2$ **Planck brane** TeV brane ゲージ場  $SO(5) \times U(1)_X$ Agashe, Contino, Pomarol 2005 Hosotani, Sakamura 2006 Medina, Shah, Wagner 2007

クォーク・レプトン

YH, Oda, Ohnuma, Sakamura 2008 YH, Noda, Uekusa 2009











**Effective** interactions

AB phase 
$$\hat{\theta}_H = \theta_H + \frac{H}{f_H}$$
  $f_H = \frac{2}{\sqrt{kL}} \frac{m_{KK}}{\pi g}$   
~246 GeV 0.8 ~1.5 TeV

$$\mathcal{L}_{ ext{eff}} \sim -V_{ ext{eff}}(\hat{ heta}_{H})$$

YH 1983, Oda-Weiler 2005

$$-m_{W}(\hat{\theta}_{H})^{2}W_{\mu}^{\dagger}W^{\mu} - \frac{1}{2}m_{Z}(\hat{\theta}_{H})^{2}Z_{\mu}Z^{\mu}$$
  
YH-Sakamura 2006, 2007  
$$-m_{f}(\hat{\theta}_{H})\overline{\psi}_{f}\psi_{f}$$
YH-Kobayashi 2008

YH-Kobayashi 2008



Y. Hosotani, Osaka Univ, 25 December 2009, -18



## AB位相の量子効果でEW対称性が破れる

#### Hosotani mechanism 1983

$$\theta_{H} = \frac{\pi}{2}$$
でエネルギーが最小になる



 $z_L = 10^5 \sim 10^{17}$   $\implies m_H = 70 \sim 140 \, {
m GeV}$ YH, Noda, Sakamura, Tanaka, Uekusa

WWH, ZZH, Yukawa = 0 *LEP2 bound is evaded*.

## 宇宙は暗黒物質で満ちている

## その正体は?

## ヒッグスボゾンは安定になり 暗黒物質になる

## WMAPデータから ヒッグス質量が 決まる

Hosotani, Ko, Tanaka 0908.0212 [hep-ph]











### Higgs-nucleon 弾性散乱



多くの不定性(強い相互作用の効果、DMの分布) CDMS II, XENON10 で除外されたとは言えない。



#### arXiv:0912.3592 [astro-ph.CO] 18 Dec 2009

Two events in the signal region

## LHC, ILC でヒッグスをどうみるか

#### **Production:**



 $\boldsymbol{H}$ 

 $\cdot H$ 

H

だが、ヒッグスは安定

ヒッグス粒子

missing energy, missing momentum

実験のやり方を変える必要あり



### Z : neutral currents

YH, Noda, Uekusa, 0912.1173 [hep-ph]

 $\frac{1}{\cos\theta_W} Z_\mu \left\{ g_{tL}^{(Z)} \bar{t}_L \gamma^\mu t_L + g_{tR}^{(Z)} \bar{t}_R \gamma^\mu t_R + g_{bL}^{(Z)} \bar{b}_L \gamma^\mu b_L + g_{bR}^{(Z)} \bar{b}_R \gamma^\mu b_R \right\}$ 

$$g_{fL}^{\prime(Z)} = rac{g_{fL}^{(Z)}}{g_{
u eL}^{(W)}} \left( rac{g_{fL}^{\prime(Z)}}{g_{SM}^{(Z)}} - 1 
ight)$$

$$z_L = 10^{15} \;,\; k = 4.7 imes 10^{17} \, {
m GeV}$$



| Forward-backward asymmetry<br>$e^+ + e^- \rightarrow Z \rightarrow f + \bar{f}$ |                           |                                |                     |
|---------------------------------------------------------------------------------|---------------------------|--------------------------------|---------------------|
|                                                                                 | Uekusa 0912.1218 [hep-ph] |                                |                     |
|                                                                                 | Exp.                      | Gauge-Higgs<br>(at tree level) | Standard<br>Model   |
| $A^b_{FB}$                                                                      | $0.0992\pm0.0016$         | 0.09952                        | $0.1033 \pm 0.0007$ |
| $A^c_{FB}$                                                                      | $0.0707\pm0.0035$         | 0.07073                        | $0.0738\pm0.0006$   |

$$z_L = 10^{15} \;,\; k = 4.7 imes 10^{17} \, {
m GeV}$$



Gauge-Higgs unification

Gauge couplings ~ (III) SM.

Higgs couplings ~ SMから大きくずれる.



実験のやり方を変える必要

暗黒物質=ヒッグス  $m_H \sim 70 \, \text{GeV}$