Gauge couplings in SO(5)xU(1) Gauge-Higgs unification

Nobuhiro Uekusa

Collaboration/ Yutaka Hosotani, Shusaku Noda

Standard Model

charm W boson up Z boson bottom down top 光子 strange タウレプトン グルーオン 電子 ニュートリノ x3 ミューオン ヒッグス粒子(まだ見つかっていない)

W boson charm up Z boson bottom down top 光子 strange タウレプトン グルーオン_{xSU(3)c} 電子 ニュートリノ x3 ミューオン ヒッグス粒子 +非常に重い粒子

Standard Model Higgs H SU(2) doublet

Standard Model Higgs H SU(2) doublet

 ϵH^* transforms in the same way as H $\longrightarrow \qquad \epsilon H^* H$ $\mathrm{SU}(2)_{\mathrm{L}}$

Standard Model Higgs H SU(2) doublet

SU(2)L x SU(2)R x U(1)x anomaly free $_{\rm 14}$

Quark

bクオークの Z boson coupling

$$\mathcal{L}_{Zb\overline{b}} = \frac{g_A Z_\mu}{\cos\theta_W} \left(\mathcal{B}_L \overline{b}_L \gamma^\mu b_L + \mathcal{B}_R \overline{b}_R \gamma^\mu b_R \right)$$

$$\mathcal{B}_{L,R} = -\frac{1}{2}\mathcal{B}_{L,R}^3 + \frac{1}{3}\mathcal{B}_{L,R}^Q \sin^2\theta_W$$

$$\mathcal{B}_{L}^{3} = \int_{1}^{z_{L}} dz \, [N_{Z}(z)(C_{L}(z;\lambda_{b}))^{2} \left(a_{b}^{2} + 2\cos\theta_{H}a_{D+X}a_{D-X}\right) \\ + 2\sin\theta_{H}D_{Z}(z)C_{L}(z;\lambda_{b})S_{L}(z;\lambda_{b})a_{D+X}a_{b'}],$$

$$\mathcal{B}_{L}^{Q} = \int_{1}^{z_{L}} dz \, N_{Z}(z)[(C_{L}(z;\lambda_{b}))^{2}(a_{b}^{2} + a_{D+X}^{2} + a_{D-X}^{2}) + (S_{L}(z;\lambda_{b}))^{2}a_{b'}^{2}].$$

bクオークの Z boson coupling

$$\mathcal{L}_{Zb\overline{b}} = \frac{g_A Z_\mu}{\cos \theta_W} \left(\mathcal{B}_L \overline{b}_L \gamma^\mu b_L + \mathcal{B}_R \overline{b}_R \gamma^\mu b_R \right)$$

$$\mathcal{B}_{L,R} = -\frac{1}{2}\mathcal{B}_{L,R}^3 + \frac{1}{3}\mathcal{B}_{L,R}^Q \sin^2\theta_W$$

$$\mathcal{B}_{L}^{3} = \int_{1}^{z_{L}} dz \, [N_{Z}(z)(C_{L}(z;\lambda_{b}))^{2} \mathcal{B}_{L} \xrightarrow{\mathsf{SM}} -\frac{1}{2} + \frac{1}{3} \sin^{2} \theta_{W} \\ +2\sin\theta_{H} D_{Z}(z)C_{L}(z;\lambda_{b})S \\ \mathcal{B}_{L}^{Q} = \int_{1}^{z_{L}} dz \, N_{Z}(z) [(C_{L}(z;\lambda_{b}))^{2} \mathcal{B}_{R} \xrightarrow{\mathsf{SM}} \frac{1}{3} \sin^{2} \theta_{W}$$

Standard Modelからのずれ

そのほかも、1%以下

universalityの破れ (W boson coupling)

- t-e τ -e
- μ -e10⁻⁸ 10^{-6} 2.3%

Currents and custodial symmetry

$$\frac{g}{\cos\theta_w} Z_\mu \ \bar{f}\gamma^\mu (I_f^3 - Q_f \sin^2\theta_w) f$$

Currents and custodial symmetry

$$\frac{g}{\cos \theta_{w}} Z_{\mu} \bar{f} \gamma^{\mu} (I_{f}^{3} - Q_{f} \sin^{2} \theta_{w}) f$$

Conserved

Symmetry and

conserved charges

Non-universal? after EWSB

SU(2)L X SU(2)R X PLR → SU(2)V X PLR

Subgroup U(1)L X U(1)R X PLR → U(1)V X PLR

U(1)V $Q_{V} = Q_{L} + Q_{R} \rightarrow Q_{L} \int_{f}^{3} P_{LR}$

L ⇔ R 入れ替え対称なら、

non-universal なずれは小さいはず

Agashe, Contino, Da Rold,

Pomarol 06

$$\frac{d\sigma}{d\Omega}(e_R^-e_L^+ \to f_R\bar{f}_L) = \frac{\alpha^2}{4E_{cm}^2}(1+\cos\theta)^2(g_R^e)^2(g_R^f)^2$$
$$\frac{d\sigma}{d\Omega}(e_R^-e_L^+ \to f_L\bar{f}_R) = "(1-\cos\theta)^2(g_R^e)^2(g_L^f)^2$$
$$\frac{d\sigma}{d\Omega}(e_L^-e_R^+ \to f_R\bar{f}_L) = "(1-\cos\theta)^2(g_L^e)^2(g_R^f)^2$$
$$\frac{d\sigma}{d\Omega}(e_L^-e_R^+ \to f_L\bar{f}_R) = "(1+\cos\theta)^2(g_L^e)^2(g_L^f)^2$$

16コパラメータがある。 \bigcirc バルク質量パラメータ C計6コ クォーク3、レプトン3 🔵 相対的なブレイン結合パラメータ $|\tilde{\mu}/\mu_2|, |\mu_3^\ell/\tilde{\mu}^\ell|$ 計6コ クォーク3、レプトン3 ● ゲージ結合定数 計2コ SO(5)とU(1) Θ 時空の曲率 k,余剰次元長さ L

16コパラメータがある。 \bigcirc バルク質量パラメータ Cオーク3、レフ クォークの レプトンの イン結合パラ 質量 質量 6⊐ 6⊐ カオーク3、レ ● ゲー $\sin heta_W, m_Z$ <u>ワープ因子</u> ● 時空の曲率 k,余剰 $z_L = e^{kL}$

Xing-Zhang-Zhou '07, Fusaoka-Koide '97, Particle Data Group '08 (in unit of MeV)

	m_u	m_d	m_s	m_c	m_b	m_t	m_e	m_{μ}	m_{τ}
XZZ	1.27	2.90	55	619	2890	171700	0.486570161	102.7181359	1746.24
FK	2.33	4.69	93.4	677	3000	181000	0.48684727	102.75138	1746.69
PDG	2.4	4.75	104	1270	4200	171200	0.510998910	105.658367	1776.84

$$\sin^2\theta_W = 0.2312 \text{ (MS in PDG)}$$
$$m_Z = 91.1876 \text{GeV}$$

$$z_L = (10^{18} \text{GeV})/(1\text{TeV}) = 10^{15}$$

 $k = 4.7 \times 10^{17} \text{GeV}$

such that the value of $\,m_W\,$ is appropriately reproduced

Standard Model (PDG review) 0.0992 ± 0.0016

 0.1033 ± 0.0007

Standard Model

0.10496 (tree)

XZZ, FK0.09952中心値PDG0.09941に近い!

-7

Standard Model (PDG review) 0.0738 ± 0.0006

 0.0707 ± 0.0035

Standard Model

0.07500 (tree)

XZZ, FK0.07073中心値PDG0.07065に近い!

$$z_L = 10^{15}$$
 100 $z_L = 10^{17}$
 $k = 4.7 \times 10^{17} \text{GeV}$ $k = 5.0 \times 10^{19} \text{GeV}$

パラメータを100倍しても、Standard Model より中心値に近い

Radiative corrections

Radiative corrections

Radiative corrections

SUMMARY

fop はStandard Modelから最もずれる
 $Zt_L \overline{t}_L \ Zt_R \overline{t}_R \ Zt_R \ Z$