Phenomenology of Kaluza-Klein gluon in warped extra dimension

Gi-Chol Cho (Ochanomizu U.)

余剰次元物理研究会@Osaka Univ, Jan.20, 2010

in collaboration with Y. Kanehata (0902.3322[hep-ph]) Y. Kanehata, N. Maru, K. Yoneyama (in progress) b-quark coupling w/ Z-boson may be one of the good stages to look for the implications of physics beyond the SM

 In this talk, I report an interpretation on a 'puzzle' in the Zbb coupling in the framework of Warped Extra Dimension model

Plan

• Introduction: summary of electroweak data

• Puzzles(?) in EW data: b-jet asymmetry

• KK gluon in Warped Extra Dimension model

• Summary

Introduction

- LEP exp. @CERN (1st phase:1989-1995)
 - electron-positron collision on the Z-pole
 - 17 million Z decays
 - precise study of fermion pair production processes in Z decay
 - Test of the Standard Model
 - Window looking for physics beyond the SM

	data	SM	
LEP 1		prediction	pull
line-shape & FB asym.:			
$\Gamma_Z \ (\text{GeV})$	2.4952 ± 0.0023	2.4957	-0.23
$\sigma_h^0({ m nb})$	41.540 ± 0.037	41.477	1.69
R_l	20.767 ± 0.025	20.744	0.92
$A_{ m FB}^{0,l}$	0.01714 ± 0.00095	0.01648	0.69
au polarization:			
$A_l(P_{\tau})$	0.1465 ± 0.0032	0.14825	-0.54
b and c quark results:			
R_b	0.21629 ± 0.00066	0.21586	0.65
R_c	0.1721 ± 0.0030	0.172225	-0.04
$A_{FB}^{0,b}$	0.0992 ± 0.0016	0.10393	-2.95
$A_{FB}^{\bar{0},\bar{c}}$	0.0707 ± 0.0035	0.07432	-1.03
jet charge asymmetry:			
$\sin^2 heta_{ m eff}^{ m lept}$	0.2324 ± 0.0012	0.23137	0.86
\mathbf{SLC}			
$A_l(SLD) = A_{LR}^0$	0.1513 ± 0.0021	0.14825	1.47
A_b	0.923 ± 0.020	0.9350	-0.59
A_c	0.670 ± 0.027	0.6684	-0.06
Tevatron + LEP 2			
$m_W ~({\rm GeV})$	80.398 ± 0.025	80.380	0.74
$\Gamma_W (\text{GeV})$	2.1400 ± 0.060	2.0916	0.81
Numerical inputs			
$m_Z ~({ m GeV})$	91.18756 ± 0.00021	91.18737	0.90
$G_F(10^{-5} {\rm GeV}^{-2})$	1.16637 ± 0.00001	1.16637	
Parameters			
$\Delta lpha_{ m had}^{(5)}$	0.02768 ± 0.00022	0.02772	-0.17
$\alpha_s(m_Z)$	0.118 ± 0.002	0.118	-0.25
$m_t \; ({\rm GeV})$	172.5 ± 2.7	171.1	0.51
$m_H ~({\rm GeV})$		70.2	
$\chi^2_{\rm tot} \ ({\rm d.o.f.} = 19 - 5)$			18.095

summary of EW precision data (*Phys.Rept.427:257,2006*)

in the SM, there are four parameters which are determined from the data

Puzzles(?) in EW data

SM is mostly good, but...

LEP electroweak working group, Phys. Rept. 427, 257 (2006)

	data	SN	1	
LEP1		best fit	pull	b_L b_R
line-shape & FB asym.:				
$\Gamma_Z(\text{GeV})$	2.4952 ± 0.0023	2.4965	-0.57	
$\sigma_h^0(\text{nb})$	41.540 ± 0.037	41.481	1.59	a_{I}^{b} a_{R}^{b}
R_l	20.767 ± 0.025	20.739	1.12	$b_L \qquad \forall b_L \qquad b_R$
A_{FB}^{l}	0.0171 ± 0.0010	0.01642	0.79	
b and c quark results:				
R_b	0.21629 ± 0.00066	0.21562	1.01	(h) () 0.0000 + 0.001 (
R_c	0.1721 ± 0.0030	0.1723	-0.07	$A_{FB}^{\circ}(\exp.) = 0.0992 \pm 0.0016$
A^b_{FB}	0.0992 ± 0.0016	0.1037	-2.8	$A^{b}_{DD}(SM) = 0.1037$
A_{FB}^{c}	0.07072 ± 0.0035	0.07428	-1.02	
SLC				
A_{LR}	0.1513 ± 0.0021	0.1480	1.51	2.80 deviation
A_b	0.923 ± 0.020	0.9346	-0.58	
A_c	0.6702 ± 0.027	0.6683	0.07	

$$A_{FB}^{b}(new \ phys.) = A_{FB}^{b}(SM) - 0.0326\Delta g_{L}^{b} - 0.1789\Delta g_{R}^{b}$$

$$\delta A_{FB}^{b} = -0.0326\Delta g_{L}^{b} - 0.1789\Delta g_{R}^{b} = -(45 \pm 16) \times 10^{-4}$$

effective Weinberg angle vs. jet-asymmetry data

$$\begin{split} \Gamma_{Z}[\text{GeV}] &= 2.4952 + 4.515 \Delta \bar{g_{Z}}^{2} - 2.621 \Delta \bar{s}^{2} - 1.743 \Delta g_{L}^{b} + .306 \Delta g_{R}^{b} + .0017 x_{s}, \\ \sigma_{h}^{0}[\text{nb}] &= 41.481 + .047 \Delta \bar{g_{Z}}^{2} + 3.878 \Delta \bar{s}^{2} + 16.41 \Delta g_{L}^{b} - 2.880 \Delta g_{R}^{b} - .016 x_{s}, \\ R_{l} &= 20.738 - .008 \Delta \bar{g_{Z}}^{2} - 17.474 \Delta \bar{s}^{2} - 20.734 \Delta g_{L}^{b} + 3.638 \Delta g_{R}^{b} + .020 x_{s}, \\ R_{b} &= 0.21584 - .00016 \Delta \bar{g_{Z}}^{2} + .0382 \Delta \bar{s}^{2} - .7790 \Delta g_{L}^{b} + .1367 \Delta g_{R}^{b} - .000007 x_{s} \\ R_{c} &= 0.17222 + .00014 \Delta \bar{g_{Z}}^{2} - .0587 \Delta \bar{s}^{2} + .1711 \Delta g_{L}^{b} - .0300 \Delta g_{R}^{b} + .00006 x_{s}, \\ A_{FB}^{0,l} &= 0.01628 + .000440 \Delta \bar{g_{Z}}^{2} - 1.7565 \Delta \bar{s}^{2}, \\ A_{FB}^{0,b} &= 0.10326 + .0014 \Delta \bar{g_{Z}}^{2} - 5.612 \Delta \bar{s}^{2} - .0326 \Delta g_{L}^{b} - .1789 \Delta g_{R}^{b}, \\ A_{FB}^{0,c} &= 0.0738 + .0011 \Delta \bar{g_{Z}}^{2} - 4.34 \Delta \bar{s}^{2}, \\ A_{l} &= 0.14731 + .0020 \Delta \bar{g_{Z}}^{2} - 7.894 \Delta \bar{s}^{2}, \\ A_{b} &= 0.93463 + .000027 \Delta \bar{g_{Z}}^{2} - 3.468 \Delta \bar{s}^{2}, \\ A_{c} &= 0.6680 + .0005 \Delta \bar{g_{Z}}^{2} - 3.468 \Delta \bar{s}^{2}, \\ m_{W} &= 80.365 - .137 x_{H} - .019 x_{H}^{2} + .018 x_{t} - .005 x_{\alpha} - .002 x_{s}. \end{split}$$

 $\Delta \bar{g}_Z^2$ and $\Delta \bar{s}^2$ (also Δg_L^b and Δg_R^b) include the radiative corrections not only in the SM but also new physics

an interpretation of A_{FB}^b data

	data	SM	
LEP1		best fit	pull
line-shape & FB asym.:			
$\Gamma_Z(\text{GeV})$	2.4952 ± 0.0023	2.4965	-0.57
$\sigma_h^0(\text{nb})$	41.540 ± 0.037	41.481	1.59
R_l	20.767 ± 0.025	20.739	1.12
A_{FB}^{l}	0.0171 ± 0.0010	0.01642	0.79
b and c quark results:			
R_b	0.21629 ± 0.00066	0.21562	1.01
R_c	0.1721 ± 0.0030	0.1723	-0.07
A^b_{FB}	0.0992 ± 0.0016	0.1037	-2.8
A_{FB}^{c}	0.07072 ± 0.0035	0.07428	-1.02
SLC			
A_{LR}	0.1513 ± 0.0021	0.1480	1.51
A_b	0.923 ± 0.020	0.9346	-0.58
A_c	0.6702 ± 0.027	0.6683	0.07

LEP electroweak working group, Phys. Rept. 427, 257 (2006)

 $A_{FB}^{b}(new \ phys.) = A_{FB}^{b}(SM) - 0.0326\Delta g_{L}^{b} - 0.1789\Delta g_{R}^{b}$ $\delta A_{FB}^{b} = -0.0326\Delta g_{L}^{b} - 0.1789\Delta g_{R}^{b} = -(45 \pm 16) \times 10^{-4}$

FB asymmetry can be expressed using LR asymmetry

$$A_{FB}^b = \frac{3}{4}A_eA_b$$

But b-quark LR asym.(@SLD) looks consistent with SM

Thus, reason may be

(1) A_e (=A_LR)?(2) b-tagging@LEP?(3) statistics?

or *NEW PHYSICS* in b-quark coupling

Example: MSSM (gluino contribution)

GCC, Hagiwara (2000)

relative sign of g_b^R is good, but size is too small to explain the puzzle

other new physics approach:

extra gauge boson (He etal, 2002)

extra vector-like quark

(Choudhury etal, 2002, etc)

Figure 4: The gluino contribution to $(g_R^b)_{\text{new}}$.

KK gluon in Warped Extra Dimension model

Warped extra dimension (RS model) - one of the solutions to the hierarchy problem

Randall and Sundrum, PRL83,3370('90)

Set up: Two 3-branes with $\Lambda(< 0)$ in the bulk & 5D metric:

$$ds^{2} = e^{-2k|y|} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^{2}$$

electroweak scale:

$$v \sim O(100 \text{GeV}) = e^{-kr_c \pi} \times v_0$$

= $e^{-kr_c \pi} \times 10^{18} \text{GeV}$

the hierarchy between Planck and EW scales is stable if $kr_c = 11-12$

Extension of RS model

allow that fermions and gauge boson propagate into the bulk

KK(Kaluza-Klein) decomposition

$$A_{\mu}(x,\phi) = \sum_{n=0}^{\infty} A_{\mu}^{(n)}(x) \frac{\chi_{A}^{(n)}(\phi)}{\sqrt{r_{c}}}$$
$$\Psi_{L,R}(x,\phi) = \sum_{n=0}^{\infty} \psi_{L,R}^{(n)}(x) \frac{e^{2\sigma(\phi)}}{\sqrt{r_{c}}} \hat{f}_{L,R}^{(n)}(\phi)$$

Extension of RS model

•KK EW gauge bosons gives too large oblique corrections (corrections to gauge boson propagators) so that the scale of KK mass is strongly constrained as ~O(10TeV)

•further arrangement on the model is required

Davoudiasl et al, PLB473, 43('00) Pomarol, PLB486,153('00) Csaki etal, PRD66, 064021('02)

possiblity of Kaluza-Klein gluon

- no interaction with EW gauge boson → constraints from the oblique corrections are expected to be negligible
- couples only to quarks (not to leptons)
- (KK) gluon may resolve A_fb^b puzzle w/o conflicting the agreement of the lepton sector between exp. and SM

 comments: difficulty from model building (suppression of KK of W, Z?)

possiblity of Kaluza-Klein gluon

interaction of KK gluon and fermions

$$g_{mnq}^{ffA} \sim \int_{-\pi}^{\pi} d\phi e^{\sigma} \hat{f}_L^{(m)*} \hat{f}_L^{(n)} \chi_A^{(q)}$$

$$A_{\mu}(x,\phi) = \sum_{n=0}^{\infty} A_{\mu}^{(n)}(x) \frac{\chi_{A}^{(n)}(\phi)}{\sqrt{r_{c}}}$$
$$\Psi_{L,R}(x,\phi) = \sum_{n=0}^{\infty} \psi_{L,R}^{(n)}(x) \frac{e^{2\sigma(\phi)}}{\sqrt{r_{c}}} \hat{f}_{L,R}^{(n)}(\phi)$$

(m)

overlapping of wave functions in 5th D

it depends on the bulk mass term of fermion

$$S_f = \int d^4x \int d\phi r_c \sqrt{G} \left[V_n^M \left(\frac{i}{2} \bar{\Psi} \gamma^n \partial_M \Psi + h.c. \right) - \operatorname{sgn}(\phi) m_{\Psi} \bar{\Psi} \Psi \right]$$
$$m_{\Psi} = \nu_{\Psi} k \epsilon(y)$$

Grossman and Neubert, PLB474,361('00)

the bulk femion mass terms have been used to explain the hierarchy of Yukawa couplings

Agashe etal, (2003)

flavor dependent coupling

$$\xi = \frac{g_{001}^{ffA}}{g_{\rm SM}} \sim \int_{-\pi}^{\pi} d\phi e^{\sigma} \hat{f}_L^{(m)*} \hat{f}_L^{(n)} \chi_A^{(q)}$$
$$\approx \begin{cases} -0.2 & (\nu_{\Psi} < -0.5) \\ 4.0 + 5.2\nu_{\Psi} - 4.6\nu_{\Psi}^2 & (\nu_{\Psi} > -0.5) \end{cases}$$

flavor dependent coupling of quarks with KK gluon

the coupling of KK gluon could be a few times larger than the QCD coupling

recall A_{FB}^b puzzle

$$A_{FB}^{b}(\text{exp.}) = 0.0992 \pm 0.0016$$

 $A_{FB}^{b}(\text{SM}) = 0.1037$
 $\delta A_{FB}^{b} = -45 \pm 16 \ (\times 10^{-4})$

evaluate KK gluon contribution to Zbb couplings

$$g_{\alpha}^{b} = g_{\alpha}^{b}(\mathrm{SM}) + \Delta g_{\alpha}^{b} \quad (\alpha = L, R)$$
$$A_{FB}^{b} = A_{FB}^{b}(\mathrm{SM}) + \delta A_{FB}^{b}$$
$$= A_{FB}^{b}(\mathrm{SM}) - 0.0326\Delta g_{L}^{b} - 0.1789\Delta g_{R}^{b}$$

KK gluon contribution in 1-loop

(Note)

UV divergence of loop integral \rightarrow cancel between two diagrams However, infinity comes from sum of infinite KK towers. The following result is obtained for n=50 (a) : $(\xi_L, \xi_R) = (6, 0.2)$ (b) : $(\xi_L, \xi_R) = (0.2, 6)$

$$A_{FB}^{b} = A_{FB}^{b}(\mathrm{SM}) + \delta A_{FB}^{b}$$
$$= A_{FB}^{b}(\mathrm{SM}) - 0.0326\Delta g_{L}^{b} - 0.1789\Delta g_{R}^{b}$$

$$egin{array}{rcl} g^b_lpha &\sim & I_{3b} - Q_b \sin^2 heta_W \ g^b_L &< & 0, & g^b_R > 0 \end{array}$$

favored scenario: right-handed b-quark couples strongly to KK gluon

KK gluon w/ m~200GeV explains A_FB^b puzzle in 1- σ level

mass of KK mode (for n=50) ~13 TeV

KK mode dependence

Correlation w/ other obs.

data		SM		
LEP1			best fit	pull
line-shap	pe & FB asym.:			
Г	$T_Z(GeV)$	2.4952 ± 0.0023	2.4965	-0.57
	$\sigma_h^0(\text{nb})$	41.540 ± 0.037	41.481	1.59
	R_l	20.767 ± 0.025	20.739	1.12
	A_{FB}^{l}	0.0171 ± 0.0010	0.01642	0.79
b and c	quark results:			
	R_b	0.21629 ± 0.00066	0.21562	1.01
	R_c	0.1721 ± 0.0030	0.1723	-0.07
	A^b_{FB}	0.0992 ± 0.0016	0.1037	-2.8
	A^c_{FB}	0.07072 ± 0.0035	0.07428	-1.02
SLC				
_	A_{LR}	0.1513 ± 0.0021	0.1480	1.51
	A_b	0.923 ± 0.020	0.9346	-0.58
	A_c	0.6702 ± 0.027	0.6683	0.07

LEP electroweak working group, Phys. Rept. 427, 257 (2006)

Correlation w/ other obs.

	Exp.	SM best fit	Pull
A^b_{FB}	0.0992 ± 0.00016	0.1037	-2.8
R_b	0.21629 ± 0.00066	0.21562	1.0
A_b	0.923 ± 0.020	0.935	-0.6

$$A_{FB}^{b}(NP) = [A_{FB}^{b}]_{SM} - 0.0326\Delta g_{L}^{b} - 0.1789\Delta g_{R}^{b}$$

$$R_{b}(NP) = [R_{b}]_{SM} - 0.78\Delta g_{L}^{b} + 0.14\Delta g_{R}^{b}$$

$$A_{b}(NP) = [A_{b}]_{SM} - 0.30\Delta g_{L}^{b} - 1.63\Delta g_{R}^{b}$$

Correlation w/ other obs.

	Exp.	SM best fit	Pull
A^b_{FB}	0.0992 ± 0.00016	0.1037	-2.8
R_b	0.21629 ± 0.00066	0.21562	1.0
A_b	0.923 ± 0.020	0.935	-0.6

$$A_{FB}^{b}(NP) = [A_{FB}^{b}]_{SM} - 0.0326\Delta g_{L}^{b} - 0.1789\Delta g_{R}^{b}$$

$$R_{b}(NP) = [R_{b}]_{SM} - 0.78\Delta g_{L}^{b} + 0.14\Delta g_{R}^{b}$$

$$A_{b}(NP) = [A_{b}]_{SM} - 0.30\Delta g_{L}^{b} - 1.63\Delta g_{R}^{b}$$

phenomenology at hadron colliders

- more detail, see Yoneyama's talk (next) KK gluon couples to (only) left-handed (t.b)
- production process:
- no gluon fusier

 $\sigma_0 \equiv \sigma(p\bar{p} \to g^{(1)} + X) \times \operatorname{Br}(g^{(1)} \to b\bar{b})$ $(\xi_L, \xi_R) = (0.2, 6)$

and Tevatron results

(CDF) arXiv: 0812.4036, 0808.3347

Tevatron constraints

GCC, Kanehata, Maru, Yoneyama, in preparation

Summary

- a possibility to explain b-jet asymmetry data within the framework of Warped Extra Dim.
- Enhancement of right handed b-quark coupling is favored from the data
- 3rd gen. quarks could strongly couple to KK gluon
- KK gluon w/ m~200 GeV is favored
- safe from Tevatron bound since production in p-pbar collision is suppressed (Yoneyama's talk)
- signal at LHC?

Back up

cut-off

- Naive Dimensional Analysis (NDA)
 - cut-off ∧ → limit of energy scale where 4D gauge couplings are not perturbative
- in case of RS model

$$\Lambda \sim 24\pi^2/g_5^2 g_5 = g_4\sqrt{\pi r_c} g_4^2 \approx 16\pi^2 \Lambda \approx 1/r_c \sim k/10$$

interval of mass

$$m_n \simeq n\pi k e^{-\pi k r_c}$$

Manohar and Georgi (1984)

number of KK mode $\label{eq:kk} \sharp = \Lambda/m_n \sim 10^{15}$

number of KK mode is another model parameter (we take n=50)

2. Framework

• EW observables in Z decay experiments can be expressed in terms of the effective couplings

$$g^f_{\alpha} = a^f_{\alpha} + b^f_{\alpha} \Delta \bar{g}^2_Z + c^f_{\alpha} \Delta \bar{s}^2 + \Delta g^f_{\alpha}$$

f: flavor, a: chirality

Δ: shift from the SM reference values $(m_t, m_H, \Delta \alpha_{had}^{(5)}(m_Z^2), \hat{\alpha}_s(m_Z)) = (172, 100, 0.0277, 0.118)$ • EW observables in Z decay experiments can be expressed in terms of the effective couplings

$$g^f_{\alpha} = a^f_{\alpha} + b^f_{\alpha} \Delta \bar{g}^2_Z + c^f_{\alpha} \Delta \bar{s}^2 + \Delta g^f_{\alpha}$$

e.g.,

$$g_L^{\nu} = 0.50199 + 0.45250\Delta \bar{g}_Z^2 + 0.00469\Delta \bar{s}^2$$
$$(g_L^f \sim I_3 - Q_f \sin^2 \theta_W)$$

$$\begin{split} & \Gamma_{Z}[\text{GeV}] = 2.4952 + 4.515 \Delta \bar{g_{Z}}^{2} - 2.621 \Delta \bar{s}^{2} - 1.743 \Delta g_{L}^{b} + .306 \Delta g_{R}^{b} + .0017 x_{s}, \\ & \sigma_{h}^{0}[\text{nb}] = 41.481 + .047 \Delta \bar{g_{Z}}^{2} + 3.878 \Delta \bar{s}^{2} + 16.41 \Delta g_{L}^{b} - 2.880 \Delta g_{R}^{b} - .016 x_{s}, \\ & R_{l} = 20.738 - .008 \Delta \bar{g_{Z}}^{2} - 17.474 \Delta \bar{s}^{2} - 20.734 \Delta g_{L}^{b} + 3.638 \Delta g_{R}^{b} + .020 x_{s}, \\ & R_{b} = 0.21584 - .00016 \Delta \bar{g_{Z}}^{2} + .0382 \Delta \bar{s}^{2} - .7790 \Delta g_{L}^{b} + .1367 \Delta g_{R}^{b} - .000007 x_{s} \\ & R_{c} = 0.17222 + .00014 \Delta \bar{g_{Z}}^{2} - .0587 \Delta \bar{s}^{2} + .1711 \Delta g_{L}^{b} - .0300 \Delta g_{R}^{b} + .00006 x_{s}, \\ & A_{FB}^{0,b} = 0.01628 + .000440 \Delta \bar{g_{Z}}^{2} - 1.7565 \Delta \bar{s}^{2}, \\ & A_{FB}^{0,b} = 0.10326 + .0014 \Delta \bar{g_{Z}}^{2} - 5.612 \Delta \bar{s}^{2} - .0326 \Delta g_{L}^{b} - .1789 \Delta g_{R}^{b}, \\ & A_{FB}^{0,c} = 0.0738 + .0011 \Delta \bar{g_{Z}}^{2} - 7.894 \Delta \bar{s}^{2}, \\ & A_{l} = 0.14731 + .0020 \Delta \bar{g_{Z}}^{2} - 7.894 \Delta \bar{s}^{2}, \\ & A_{b} = 0.93463 + .000027 \Delta \bar{g_{Z}}^{2} - 3.468 \Delta \bar{s}^{2}, \\ & A_{c} = 0.6680 + .0005 \Delta \bar{g_{Z}}^{2} - 3.468 \Delta \bar{s}^{2}, \\ & M_{W} = 80.365 - .137 x_{H} - .019 x_{H}^{2} + .018 x_{t} - .005 x_{\alpha} - .002 x_{s}. \end{split}$$

 $\Delta \bar{g}_Z^2$ and $\Delta \bar{s}^2$ (also Δg_L^b and Δg_R^b) include the radiative corrections not only in the SM but also new physics

summary of radiative corrections

gauge boson propagator corrections

$$\bigvee_{i=1}^{\gamma} \bigvee_{i=1}^{\gamma} \bigvee_{i=1}^{\gamma} \sim \bar{e}^{2}(q^{2}) = \hat{e}^{2}[1 - \operatorname{Re}\overline{\Pi}_{T,\gamma}^{\gamma\gamma}(q^{2})]$$

$$\bigvee_{i=1}^{\gamma} \bigvee_{i=1}^{\gamma} \bigvee_{i=1}^{\gamma}$$

Hagiwara, Haidt, Kim, Matsumoto (1994)

Zff vertex corrections

vertex/box corrections in muon decay

independent of external fermions (process independent corrections)

process dependent corrections

 $\bar{g}_Z^2, \bar{s}^2 \leftrightarrow S, T, U$ parameters (Peskin-Takeuchi, 1990)

$$\Delta \bar{g}_{Z}^{2} = 0.00412 \Delta T_{Z}$$

$$\Delta \bar{s}^{2} = 0.00360 \Delta S_{Z} - 0.00241 \Delta T_{Z} + 0.00011 x_{\alpha}$$

$$T_Z = T + 1.49R - \frac{\Delta \bar{\delta}_G}{\alpha}$$

$$S_Z = S + R - 0.064x_\alpha$$

$$\frac{4\pi}{\bar{g}_Z^2(m_Z^2)} - \frac{4\pi}{\bar{g}_Z^2(0)} = -\frac{1}{4}R$$

G.C.C, Hagiwara ('98)

(overview of Peskin-Takeuchi's formalism (1990))

- there are four form factors (function of momentum transfar q^2)
- at $q^2 = 0$ and mZ^2 , eight form factors in total
- at q²=0, two form factors including photon leg vanish due to the gauge invariance
- three of six form factors could be replaced by (α, mZ, G_F)
- then, gauge boson propagator corrections can be evaluated by three parameters (S,T,U)

(overview of Peskin-Takeuchi's formalism (1990))

assuming the running of the pi-functions between $q^2 = 0$ and $q^2 = m_Z^2$ can be described by the SM, and the scale of new physics is much larger than m_Z , the three independent parameters can be chosen as follows

$$S = 16\pi \operatorname{Re} \left[\Pi_{T,\gamma}^{3Q}(m_Z^2) - \Pi_{T,Z}^{33}(0) \right]$$
$$T = \frac{4\sqrt{2}G_F}{\alpha} \left[\Pi_T^{33}(0) - \Pi_T^{11}(0) \right]$$
$$U = \left[\Pi_{T,Z}^{33}(0) - \Pi_{T,W}^{11}(0) \right]$$

 $\bar{g}_Z^2, \bar{s}^2 \leftrightarrow S, T, U$ parameters (Peskin-Takeuchi, 1990)

$$\Delta \bar{g}_{Z}^{2} = 0.00412 \Delta T_{Z}$$

$$\Delta \bar{s}^{2} = 0.00360 \Delta S_{Z} - 0.00241 \Delta T_{Z} + 0.00011 x_{\alpha}$$

$$T_Z = T + 1.49R - \frac{\Delta \delta_G}{\alpha}$$
$$S_Z = S + R - 0.064x_{\alpha}$$
$$4\pi \qquad 4\pi \qquad 1_P$$

 $\overline{\bar{g}_{Z}^{2}(m_{Z}^{2})} - \overline{\bar{g}_{Z}^{2}(0)} = -\overline{4}R$

•the parameter "R" accounts for the new physics contributions to the running of Z-boson self energy between 0 and mZ

•SUSY contributions to R is important

 $m_W = 80.402 - 0.288\Delta S + 0.418\Delta T + 0.337\Delta U + 0.012x_{\alpha} - 0.126\frac{\Delta\bar{\delta}_G}{\alpha}$

G.C.C, Hagiwara ('98)

 we can perform model independent analysis using (Sz, Tz and Zbb vertex corrections) and mW.

$$S_Z, T_Z, g_L^b, g_R^b$$

$$\Delta S_Z = 0.041 + 24.2\Delta g_L^b - 7.8\Delta g_R^b \pm 0.101 \Delta T_Z = 0.053 + 46.1\Delta g_L^b - 9.2\Delta g_R^b \pm 0.125$$
, $\rho_{\rm corr} = 0.90$

 $\chi^2_{\rm min} = 15.7 + ({\rm squared \, term \, of} \, \Delta g^b_L, g^b_R)$

yellow: 1-sigma allowed region of (Sz, Tz, g_L^b , g_R^b)

- (1)SM prediction (mt, mH)
 (2)light squarks gives significantly large Tz
 (3)sleptons (~100GeV)
- gives large Sz
- (4) chargino-neutralino
- * SPS1a' →a SUSY parameter set (benchmark) used in the linear collider community

GCC, Hagiwara, Matsumoto, Nomura (2008)

effective Weinberg angle vs. jet-asymmetry data

41