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The present Universe is dominated by dark sector.
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The fraction of dark energy and dark matter
depends on time.
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The fraction of dark energy and dark matter
depends on time.
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Effective number of light
neutrino species

It is conventional to measure the amount of
extra radiation in the units of active neutrinos.

(std) '
| Ner e e |
' std '
- N ~ 3,046 |

&
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The Friedman equation:
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@ The observation of Type Ia SNe revealed the
presence of dark energy.

@ It is also possible to infer the particle content
of the Universe in the past by measuring the
helium abundance, cosmic microwave background
(CMB) and large-scale structure (LSS).
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2. Observations

‘“He abundance

IS sensitive to the expansion rate when the
Universe iIs 1 second old.

Cosmic microwave background radiation

IS sensitive to the expansion rate when the
Universe is 380,000 vyears old.
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‘“He abundance

@n-p transformation decouples when

fres > ) LR
[Pan:HJ Wl mi) T 6

n——e+Hp+ﬂe

* I'I/P ratio is fixed (except for neutron free decay)

at T ~1 MeV. (n> ( Q>
) el =
P/ Eq L

Q) = my — my = 1.203MeV
m=) Almost all neutrons are absorbed in 4He.

| If there is extra radiation, | o

Yp >

4nHe + Ny
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Two recent results on the helium abundance:

Y, = 0.2565 % 0.0010 (stat) = 0.0050 (syst)
Neff £33, 68*8 ig (20)

| Aver, Olive and Skillman (1001.5218)
' Y, = 0.2561 + 0.0108 (68%CL) E

For comparlson the std. WMAP value is

(¥, = 0.2486 £ 0.0002 (68%CL) ]
Nele = 3.046 .{
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Two recent res

Y, = 0.25¢€
Nofe=t3. 64

! Aver, Olive and Sk
Y, = 0.256

200 300

For comparlson 10°(0/H)

RS T (68%CL)
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CMB+LSS

o
=
®
>
=
8
0

@ WMAP 7-yr + BAO + Ho: N.g = 4.3470%5 (68%CL)

(Komatsu et al, 2010)

@ +ACT : Neff — 4. 56%r 0. 70 (68%CL) (Dunkley et al, 2010)
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CMB+LSS

| 0 WMAP 7-yr + BAO + Ho: N — 4.347086 (68%CL)
(Komatsu et al, 2010)

| 0 +ACT : Nog = 4.56 + 0.75 (68%CL) (ounkiey et i, 2010)
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CMB+LSS
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@ WMAP 7-yr + BAO + Ho: N.g = 4.3470%5 (68%CL)

(Komatsu et al, 2010)

@ +ACT Neff — 4. 369 (.75 (68%CL) (Dunkley et al, 2010)
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@ So, both the helium abundance and CMB/LSS mildly
prefer the presence of extra radiation, AN.g ~ 1 .

(Steigman,1008.4765)
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Various possibilities

® Extra radiation: dark radiation or excess in
the active neutrinos.

@ Modified gravity (e.g. extra dim.)

e e e U,
g ?l. <> D ¢
n——e+Hp+ﬂ€

@ Large lepton asymmetry

® Here we assume that there is indeed extra radiation
both at the BBN and CMB epochs, and consider its
implications for particle physics.
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3. Models

Let us take the observational hint seriously and
consider the implications for particle physics.

Assumpftions:

@ We assume that the extra radiation is “dark radiation”
made of unknown light and relativistic particles, Xi.

@ We also assume that the X; was once in thermal
equilibrium in the early Universe, since some (mild)
tuning is necessary to obtain right abundance,
otherwise (e.g. non-thermal production).
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ngh’r degrees oF Freedom g*

X TX
i ANeg = : s ( > g ( :
Pv L, f

Broadly speaking, there are 2 cases.

@ ~ 10 particles decoupled
(much) before the QCD
phase transition.

@ one or a few particles that
decouple after the QCD
phase transition before BBN.

(Laine, Schroeder, "06)
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Then the question is why they are so light?

It is natural to expect that the bare mass is
forbidden by symme’rry e

1) Gauge symme’rry '

2) Shift symmetry

3) Chiral symme’rry

We con5|der ’rhese cases in Jrurn

* Here I do not consider the sterile neutrino which

mixes with the active neutrinos. See Melchiorri et al, 08
Hamman et al, 10.
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Case 1: Gauge boson
@ U(1) hidden photon

1 1% 1 v X v 1 2
£ =~ FuF" — 2By BY + _F,,B* + ;m5, B, B",
Redefining

A= (L) S
B;L =, — ey,

they become canonically normalized, but with a mixing in
the mass term:

2 _ 2 4 AT U R
i ”/( x/v1—x2 1 >
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The production rate of the hidden photon is

4
Y=
X2 ( E ) FC for mfy’ << mfy

s Ke BEH Ty Ty

where TI'c ~ T and m, S 0.1eV

Y

The hidden photon is never thermalized
before the BBN.
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The production rate of the hidden photon is
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Case 2: Nambu-Goldstone boson

Consider an axion-like particle coupled to the photon:

Production rate: ['(ve < ae) ~ (ov)n, ~ =S

The freeze-out temperature is given by

f 2
T: ~ 10 MeV -
. f <1O5G6V>

However, the cooling argument using the HB stars gives

T, Z PN

MN\Y
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Next consider an axion interacting predominantly with the
hadrons.

§ S a ra : = $
i L= F,uVFM | tMmagq7ys54- 1
87T f a. f a £

TIR 2 = v 5 HAGIRRGE SR SR SAN PR E iz B o
P P P S - g I LT oA Y P B P R Tt ) UG O Ly B 1) S

Then, the freeze-out temperature is higher than O(10) MeV,
if

{02 1006eV
The hadronic axion window is

3 x 107 GeV <, < 25 10° GeV;
3eV < m, <20eV Axion HDM

Y

However, the window was closed by the recent analysis.

Hannestad, Mirizzi, Raffelt, hep-ph/0504059
Hannestad, Mirizzi, Raffelt, Wong, 1004.0695



Case 3: Chiral fermion

Consider a chiral fermion lb charged under a new U(1)
gauge symmetry, which forbids the mass.

Lint = 194pp A0, 0 + igapp A LS
f : SM fermions

Assuming that the U(1) is spontaneously broken, we have
| Lo = 5 (M H)W0Y),
in the low energy. A2 = ngziwgz}f
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Using the production rate,

T5
~Y F’
the freeze-out temperature is given by

L T ~ 100 MeV
d & ( 61eV ) ;

['(eTe™ < yYp) ~ {ov)n.

TR DR TP DO, S o8
~

The star cooling const. can be evaded because the
fermion is much more weakly coupled than neutrinos.

The SN limit reads A 2 6TeV

There is a slight dilution of a factor (2-3), and so a few
fermions are needed to realize AN ~ 1
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Implications

A chiral fermion coupled to the SM fermions with
intferactions suppressed by TeV scale is a viable
candidate for extra rad.

@ We need a new gauge symmetry broken at TeV
scale.

@ A new heavy gauge boson may be produced at
the LHC. The strategy is same as the Z' boson
search.

v With 10 fb!, 3TeV Z’ can be discovered at LHC.
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Example of a new U(1)

One candidate is U(1)s.L , which naturally appears in the
SO(10) GUT. However it should be broken at a high scale
to explain the nu mass thru the seesaw mechanism.

We therefore consider

(S0 0w <)
inspired by the E¢-GUT.

E¢ — SO(10) x U(1)y

SO(10) — SU(5) x U(1),
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Matter content

27— 1658 L 10 T 16 =10+5+1
10=5-+5

SO(10) x U(1), | SUBG) x U(1), x U(1),
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The right-handed neutrino acquires a mass from
P56V16V16

if the singlet component of ®i35 develops a vev.

The vev leaves the following U(1) unbroken:

The 11 remains massless
if U(1)x is unbroken.

201151 824HBEH




Assuming that U(1)x is broken by (¢x) =&,
1 acquires a mass from

PO g AP TSP LTy T RN ORIy Sy

£ By ¢§(¢§(¢1¢1 bl

The mass m is given by

2

for ¢ =1TeV and M = Mp
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comments

If there is 1 in each generation, we would
have AN.s =3 . AN, =1 can be achieved by
slightly increasing ¢.

The colored fermion \If(;;;’l"r) IS long-lived.
Cosmological problem can be avoided if

1. Low reheating
2. Mix with SM quarks via Zzg-1) breaking
3. SUSY
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Conclusions

@ If there is indeed extra radiation AN.g ~ 1 as

suggested by the recent observation, a chiral fermion
IS a plausible candidate.

@ Interestingly the U(1) gauge boson should be at TeV
scale, and may be within the reach of collider
experiments such as the LHC (Z-prime search)

@ One example for such a light chiral fermion is a SU(5)
singlet fermion ¥, in the 27 rep. of Ee.
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