ヒッグス探索の展望など

SUSY/ED探索の現状も

大阪大学・花垣和則

Lagrangian in the Standard Model

 $\mathcal{L} = \bar{\nu}(i \not\partial - m_{\nu})\nu + \bar{l}(i \not\partial - m_{l})l + \frac{1}{2}(\partial_{\mu}\chi\partial^{\mu}\chi - \mu^{2}\chi^{2})$

 $- \frac{1}{4}F^{i}_{\mu\nu}F^{i\mu\nu} + m^{2}_{W}W^{*}_{+\mu}W^{\mu}_{+} - \frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \frac{m^{2}_{Z}}{2}Z_{\mu}Z^{\mu}$

+ $eA_{\mu}(\bar{l}\gamma^{\mu}l) - \frac{g}{\sqrt{2}}[W^{\mu}_{+}(\bar{\nu}\gamma^{\mu}P_{L}l) + c.c.]$

 $\bar{g}Z_{\mu}[\bar{\nu}\gamma^{\mu}(s_{\nu L}P_L + s_{\nu R}P_R)\nu + \bar{l}\gamma^{\mu}(s_{l_L}P_L + s_{l_R}P_R)l]$

+ $\frac{2v\chi + \chi^2}{\Lambda} (g^2 W^*_{+\mu} W^{\mu}_{+} + \frac{\bar{g}^2}{2} Z_{\mu} Z^{\mu})$ $-\frac{m_l}{n}\chi(\bar{l}l) - \frac{m_\nu}{n}\chi(\bar{\nu}\nu)$

騙されないぞっ、と感じてしまうとこ

 $\bigstar m^2 A^{\mu} A_{\mu} \to m^2 (A^{\mu} + \partial^{\mu} \Lambda) (A_{\mu} + \partial_{\mu} \Lambda) \neq m^2 A^{\mu} A_{\mu}$

⇒ need to be massless

- Fermion mass term
 - Not necessarily massless

◆ 血の繋がっていない男女が一軒の家に住んでる みたいに怪しい

質量の違い

◆ 昆虫 0.7g vs 人間 70kg vs 象 7t = 1:100,000:10,000

Point-like (?) particle

- ✤ Wrong helicity state ∝ me
- ◆ eeH coupling ∝ me
 - ← very well modeled? 出来過ぎ?

 $\mathcal{L} = \bar{\nu}(i \not\partial - m_{\nu})\nu + \bar{l}(i \not\partial - m_{l})l + \frac{1}{2}(\partial_{\mu}\chi\partial^{\mu}\chi - \mu^{2}\chi^{2})$ $- \frac{1}{4}F^{i}_{\mu\nu}F^{i\mu\nu} + m^{2}_{W}W^{*}_{+\mu}W^{\mu}_{+} - \frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \frac{m^{2}_{Z}}{2}Z_{\mu}Z^{\mu}$ + $eA_{\mu}(\bar{l}\gamma^{\mu}l) - \frac{g}{\sqrt{2}}[W^{\mu}_{+}(\bar{\nu}\gamma^{\mu}P_{L}l) + c.c.]$ $\bar{g}Z_{\mu}[\bar{\nu}\gamma^{\mu}(s_{\nu L}P_L + s_{\nu R}P_R)\nu + \bar{l}\gamma^{\mu}(s_{l_L}P_L + s_{l_R}P_R)l]$ + $\frac{2v\chi + \chi^2}{4} (g^2 W^*_{+\mu} W^{\mu}_{+} + \frac{\bar{g}^2}{2} Z_{\mu} Z^{\mu})$ $\left(\frac{m_l}{v}\chi(\bar{l}l)-\frac{m_{\nu}}{v}\chi(\bar{\nu}\nu)\right)$ 実験が理論にインプットを与えたい

9

Coupling to Higgs

- HWW
 - Coupling

$$\frac{g^2}{2}v = gm_W = \frac{e}{\sin\theta_W}m_W$$

Coupling

 $\frac{\bar{g}^2}{4}v = \frac{gm_Z}{\cos\theta_W} = \frac{2e}{\sin(2\theta_W)}m_Z$

H

Η

✤ Hff

✤ HZZ

Coupling = Yukawa (by definition)

In any case, coupling proportional to mass

 $Y_f \equiv \frac{\sqrt{2}}{n} m_f$

ハドロンコライダーでの衝突物

◆ 軽い粒子生成ではグルーオン衝突

◆ 重い粒子生成ではクォーク衝突

Higgs Production at LHC

Higgs Production at LHC

Decay of Higgs

What actually happens

at hadron collider

The structure of an event

Warning: schematic only, everything simplified, nothing to scale, ...

Incoming beams: parton densities

Hard subprocess: described by matrix elements

Resonance decays: correlated with hard subprocess

Initial-state radiation: spacelike parton showers

Final-state radiation: timelike parton showers

Multiple parton-parton interactions ...

... with its initial- and final-state radiation

Beam remnants and other outgoing partons

Everything is connected by colour confinement strings Recall! Not to scale: strings are of hadronic widths

Real Event at Dzero

Experimental Difficulty

Underlying Event

Multiple Interactions

Experimental Difficulty

28

Can you distinguish?

29

Can you distinguish?

We have to fight for huge backgrounds in

complicated event

structure

Clue Experimentalist Needs

- Majority of backgrounds
 - quark/gluon (=jet) production
 - ⇒ we need something else
 - isolated lepton or special topology

Vector Boson Fusion

VBF: Rapidity Gap

VBFの特徴 QCD起源のBG

カラーの交換がない。Rapidity Gapが観測され、 その間にhiggsが見える

32

Jet Pt :Mw程度まで t-channel 1/(t-Mw2)

Pt>40GeVを要求

0.1 0.09 ATLAS VBF H(120) $\rightarrow \tau^+ \tau^- \rightarrow \mu \mu$ Arbitrary 2000 Arbitrary ----- Z(→μμ) +jets 0.04 tī(→µµ) +jets 0.03 0.06 0.05 0.02 0.04 0.03 0.01 0.02 0 0.01 2 3 5 η

さえるのに役立つ

q

 \boldsymbol{q}

◆ 大きなp

* Twoの價

ダガのjět

持ったシ

2 Rran

colorles

特徵的是

Experimental Strategy

- Light
 - GF (+VBF) $H \rightarrow \gamma \gamma$
 - VBF H $\rightarrow \tau \tau$
 - $W/Z + H \rightarrow bb$

Lepton EM object Special topology

- Heavy or wide mass range
 - ► GF (+VBF) $H \rightarrow WW(\rightarrow II+X), ZZ(\rightarrow IIII)$

How well we are

(were) doing

ATLAS Detector

- ◆ 2010年から3.5+3.5TeVで物理データ収集
 - >40pb⁻¹ delivered (~35pb⁻¹ for physics)

 ・ 陽子の速度 = 0.99999964 x 光速

◆ LHCが設計通りに動いた場合(7TeV+7TeV)
 ▶ 陽子の速度 = 0.999999991 x 光速

◆ これまでの世界最高(米国フェルミ研究所)
 ▶ 陽子の速度 = 0.999999560 x 光速

- ◆ 2010年から3.5+3.5TeVで物理データ収集
 - >40pb⁻¹ delivered (~35pb⁻¹ for physics)

 ・ 陽子の速度 = 0.99999964 x 光速

- ◆ LHCが設計通りに動いた場合(7TeV+7TeV)
 ▶ 陽子の速度 = 0.999999991 x 光速
 = 光速 10km/h
- ◆ これまでの世界最高(米国フェルミ研究所)
 ▶ 陽子の速度 = 0.999999560 x 光速

- ◆ 2010年から3.5+3.5TeVで物理データ収集
 - >40pb⁻¹ delivered (~35pb⁻¹ for physics)

 ・ 陽子の速度 = 0.99999964 x 光速

◆ LHCが設計通りに動いた場合(7TeV+7TeV)
 ▶ 陽子の速度 = 0.999999991 x 光速
 = 光速 – 10km/h

◆ これまでの世界最高(米国フェルミ研究所)
 ▶ 陽子の速度 = 0.999999560 x 光速
 = 光速 – 475km/h

- ◆ 2010年から3.5+3.5TeVで物理データ収集
 - >40pb⁻¹ delivered (~35pb⁻¹ for physics)
 - 陽子の速度 = 0.999999964 x 光速 = 光速 – 39km/h
- ◆ LHCが設計通りに動いた場合(7TeV+7TeV)
 - ▶ 陽子の速度 = 0.999999991 x 光速 = 光速 - 10km/h
- ◆ これまでの世界最高(米国フェルミ研究所)
 ▶ 陽子の速度 = 0.999999560 x 光速
 = 光速 475km/h

Data Collection

41

Data Collection

41

運転計画

◆ 今までのデフォルト

 ▶ 2011年は√s=7TeVで~1fb⁻¹ 貯める
 2012年から2013年初めまでシャットダウン (エネルギー増強のため)

◆ 有力なオプション

- 2012年まで走り続ける(8 or 9? TeV)
 その後シャットダウン
- 今日からの会議で決定

Expected Sensitivity

Expected Sensitivity

NNLO

10

色々な運転シナリオ

- Different integrated luminosity
- Different beam energy

色々な運転シナリオ

- Different integrated luminosity
- Different beam energy

SUSY, Extra Dimension

探索の現状

見せられないものだらけです…

SUSY探索

 ◆ LSP探索 = Missing E_T のテールを見る
 ▶ ピークを作らないので検出器を含めた事象 (underlying event含む)の理解が重要

◆ Missing E⊤の理解はまぁまぁ程度
 ◆ 今はもっと良くなりました

* γ γ + Missing E_T (3.1pb⁻¹) ▶ 実験的にはSUSY探索とほぼ同じ

TeVスケール 重力探索

◆ High q² 事象を探す ▶ 夏の結果はジェットのみ

2010年秋の学会 14aSL08 ICEPP 兼田さん

50

◆解析は単純です

- ▶ M 分布上にピークがあるかどうか
- ▶ Z'探索などと共通
- Drell-Yanとあってるかどうか

Conclusions

- ◆ ヒッグス発見(楽観的な)シナリオ
 - ▶ 2012年いっぱい走ることを仮定
 - 5 σ discovery possible for m_H > 130 GeV
 5 fb⁻¹ for both ATLAS & CMS

✤ SUSY, Extra Dimension 探索進行中