Collider Signatures of the SO(5)xU(1) Gauge-Higgs Unification

余剰次元物理研究会 2011 @ 大阪大学

2011/01/24,25

共同研究者 細谷裕,植草宣弘

A possible solution: Dark Higgs scenario Stable Higgs in gauge-Higgs unification

Matter 23%

Y. Hosotani, P. Ko, MT(PLB680, 179, 2009)

http://map.gsfc.nasa.gov/

WIMP?

How do we confirm it? Collider phenomenology based on H parity definite H parity for each 4d particle

Nontrivial signals

Higgs pair production

H-even KK Z production

etc.

Model Hosotani, Oda, Ohnuma, Sakamura, PRD78,096002(2008). $SO(5) \times U(1)$ in 5D warped space-time. EWSB by Hosotani mechanism. 4D Higgs field: Wilson line phase, $\hat{\theta}_H(x) = \theta_H + \frac{H(x)}{f_H} \cdot f_H \simeq 246 \,\mathrm{GeV}$ A new dynamical parity, H-parity, $H(x) \rightarrow -H(x)$.

KK modes: H-even towers and H-odd towers

Y. Hosotani, MT, N. Uekusa, PRD82, 115024(2010).

Model parameters

EW parameters: $k, g_A, g_B, z_L = e^{kL}$ EW inputs: $m_Z, \alpha, \sin^2 \theta_W$

	z_L	$\longrightarrow m_{I}$	H			
\frown					\frown	
$z_L = e^{kL}$	$\sin^2 \theta_W$	k(GeV)	$m_{\rm KK}({\rm GeV})$	c_{top}	$m_H(\text{GeV})$	$m_W^{\text{tree}}(\text{GeV})$
10^{15}	0.2312	4.666×10^{17}	1,466	0.432	135	79.82
10^{10}	0.23	3.799×10^{12}	1,194	0.396	108	79.82
10^{5}	0.2285	2.662×10^{7}	836	0.268	72	79.70
	<u> </u>	•				

	# data	$z_L = 10^{15}$	10^{10}	10^{5}	SM
$\sin^2 \theta_W$		0.2309	0.2303	0.2284	0.2312
$\chi^2 [A_{FB}]$	6	6.30441	6.43451	7.12513	10.8335
$\chi^2 [Z \text{ decay}]$	8	16.5153	37.6908	184.468	13.6264
$\chi^2 \text{ [sum]}$	14	22.8197	44.1253	191.593	24.4599

Minoru TANAKA

Higgs pair production at Linear Collider

LC background $e^+e^- \rightarrow Z\nu\bar{\nu}$

BG cross section with $M_{\rm miss} \ge 120 \,{\rm GeV}$

 $\sigma_{\rm BG} \simeq 311 \, {\rm fb}$

Need polarizations!

beams and Z

LC with polarizations Ideal case: $e_L^+ e_R^- \to Z_L H H$, $Z_L \nu \bar{\nu}$ $\sigma_{\rm signal} \simeq 0.12, 0.056, 0.024 \, {\rm fb}$ $\sigma_{\rm BG} \simeq 0.42, \, 0.39, \, 0.36 \, {\rm fb} |\cos \theta| < 0.6$ is applied. Significance: $S \equiv \frac{N_{\text{signal}}}{\sqrt{N_{\text{signal}} + N_{\text{BG}}}}$ $\mathcal{S} = (1.4, 0.73, 0.34) \sqrt{L/100 \, \text{fb}^{-1}}$ A few (or more) ab^{-1} is required! $S = 1.1 \sqrt{L/100 \, \text{fb}^{-1}}$ for $\sqrt{s} = 750 \, \text{GeV}, \, m_H = 135 \, \text{GeV}$

Higgs pair production at LHC Signal: Weak boson fusion

Signal cross section at LHC

H-even KK Spectra

n

1143.4

939.287

676.998

1

1132.69

 10^{15}

 10^{10}

 10^{5}

 10^{15}

 $\setminus n$

 z_L

Table 14: KK gluon masses $m_{G^{(n)}}$ in unit of GeV.

3

4060.29

3313.67

2342.77

3

2586.69

4

5524.61

4505.36

3177.87

4

3284.74

5

6989.61

5697.54

4013.1

5

4049.02

2

2597.79

2123.35

1508.23

2

1799.15

KK gluon z_L

Table 15: KK W boson masses $m_{W^{(n)}}$ in unit of GeV.

KKW

10^{10}	926.031	1468.74	2109.46	2677.61	3299.47
10^{5}	657.626	1038.84	1487.22	1885.54	2320.8

Table 16: KK Z boson masses $m_{Z^{(n)}}$ in unit of GeV.

KK Z

			2 ·	, ,	
$z_L \setminus n$	1	2	3	4	5
10^{15}	1129.49	1802.53	2583.37	3288.13	4045.64
10^{10}	922.087	1472.93	2105.3	2681.86	3295.21
10^{5}	651.946	1045.02	1480.99	1892.00	2314.27

Focus on the first KK Z.

Couplings

Table 25: The couplings of the first KK Z boson with charged leptons, $g_{fI}^{(Z_1)}\sqrt{L}/g_A$.

z_L	eL	μL	au L	eR	μR	au R
10^{15}	0.0310237	0.0310238	0.0310529	2.52033	2.42011	2.35629
10^{10}	0.0382222	0.0382224	0.0382616	2.13663	2.03326	1.96297
10^{5}	0.0549348	0.0549354	0.0550174	1.62351	1.53169	1.45818

Table 26: The couplings of the first KK Z boson with left-handed quarks, $g_{fL}^{(Z_1)}\sqrt{L}/g_A$.

						V
z_L	u	С	t	d	s	b
10^{15}	-0.0399184	-0.0399209	-0.206095	0.0488131	0.048804	-0.558474
10^{10}	-0.0491807	-0.0491842	-0.256412	0.0601393	0.0601274	-0.672188
10^{5}	-0.0706849	-0.0706938	-0.386896	0.0864351	0.0864104	-0.927167

Table 27: The couplings of the first KK Z boson with right-handed quarks, $g_{fR}^{(Z_1)}\sqrt{L}/g_A$.

	z_L	u	С	t	d	S	b
ĺ	10^{15}	-1.65847	-1.58714	-1.4692	0.829233	0.793569	0.723936
	10^{10}	-1.40259	-1.32685	-1.1796	0.701297	0.663427	0.579202
	10^{5}	-1.06424	-0.991935	-0.754189	0.532119	0.495967	0.376702

Table 24: The couplings of the first KK W boson with leptons, $g_{fL}^{(W_1)}\sqrt{L}/g_A$ and the couplings of the first KK Z boson with neutrinos, $g_{fL}^{(Z_1)}\sqrt{L}/g_A$.

z_L	$e u_e$	μu_{μ}	$ au u_{ au}$	$ u_e $	$ u_{\mu}$	$ u_{ au}$
10^{15}	-0.138009	-0.138008	-0.137939	-0.0577078	-0.0577075	-0.0576242
10^{10}	-0.170013	-0.170012	-0.169923	-0.0710978	-0.0710974	-0.0709898
10^{5}	-0.244187	-0.244186	-0.24403	-0.102185	-0.102184	-0.101988

Decay width and BR

z_L	10^{15}	10^{10}	10^{5}	
e (%)	14.1396	14.18	13.253	
$\mu~(\%)$	13.0376	12.8416	11.798	
au~(%)	12.3591	11.9693	10.6941	
$\nu_e + \nu_\mu + \nu_\tau ~(\%)$	0.0222139	0.0470403	0.157124	
$(u+c)/2 \ (\%)$	17.6028	17.3854	16.0203	
$(d+s+b)/3 \ (\%)$	3.68474	4.40884	7.27081	
c~(%)	16.8299	16.4225	14.9003	
b~(%)	5.58161	7.3338	15.0894	
t~(%)	14.1818	12.9648	10.2446	
$u + d + s + c \ (\%)$	40.6781	40.6636	38.7638	
total width (GeV)	371.761	217.536	95.0912	

Table 28: First KK Z boson decay: the branching fraction and the total width.

Minoru TANAKA

17

Significance at LHC $\sqrt{s} = 7 \text{ TeV}$ $\begin{array}{c|c} z_L & 10^5 & 10^{10} & 10^{15} \\ \hline L = 10 \text{ pb}^{-1} & 6.3 & 4.3 & 2.9 \\ L = 100 \text{ pb}^{-1} & 8.2 & 6.5 & 4.9 \\ L = 1000 \text{ pb}^{-1} & 8.5 & 7.0 & 5.4 \end{array}$

10% theoretical uncertainty included.

Summary

- * The first KK Z production at Tevatron suggests a larger warp factor. $z_L = 10^5$ unlikely
- * Dark Higgs seems difficult at the present model. $m_H = 108(135) \text{ GeV}$ for $z_L = 10^{10(15)}$
- * The first KK Z production may be discovered at LHC with 100 pb^{-1} even for $z_L = 10^{15}$.