Discovery of minimal Universal Extra Dimension at the LHC

2011年1月25日 余剰次元2011@大阪大学

飛岡 幸作

東京大学数物連携宇宙研究機構修士2年

Motivation

・暗黒物質候補を持つ余剰次元模型 Universal Extra Dimensions (UED)

LHCでの発見可能

- ・質量スペクトラムは縮退している
- 先行研究は

4leptons $+ E_T^{miss}$

・ジェットを用いた解析
 <u>質量決定として提唱されているM_{T2}を用いて解析する</u>
Channel: 2jets + at least 1lepton/ 1fb-1 at 7TeV, 14TeV

•結果

14TeV 1fb⁻-1で1/R~1.1TeVまで発見可能 (UED暗黒物質シナリオが好むのは1/R~1.4TeV)

流れ

1.minimal Universal Extra Dimension 暗黑物質熱的残存量

2. MT2のカットとしての性質

→SM, mUED

3. LHCでの発見可能性

2 jets + at least 1 lepton

Universal Extra Dimensions

"Universal":全ての標準模型粒子が余剰次元方向に伝搬する

- •Minkowski 4次元 + 半径Rの空間1次元(S^1) 1/R~1TeV
- •Oモードが標準模型粒子、

高次モード(Kaluza-Klein modes)が無限に存在する(KK tower)

Universal Extra Dimensions

"Universal":全ての標準模型粒子が余剰次元方向に伝搬する

- •Minkowski 4次元 + 半径Rの空間1次元(S^1) 1/R~1TeV
- •Oモードが標準模型粒子、

高次モード(Kaluza-Klein modes)が無限に存在する(KK tower)

"minimal"UED →Boundaryに何も特別な項を置かない パラメータは3つ (like mSUGRA)

5

カットオフハとゲージ結合定数

高いエネルギースケールでは、KKモードが次々増えて、ベータ 関数の振る舞いがpower lawになる

$$\beta^{SM} \rightarrow \beta^{SM} + (\mu R - 1)\beta^{KK}, \quad R^{-1} < \mu < \Lambda$$

$$\frac{d}{d\ln\mu}\alpha^{-1} = -\frac{8\pi}{g^3}\beta \qquad (\mu R l t \mu までに現れるKK粒子のセットの数nに対応)$$

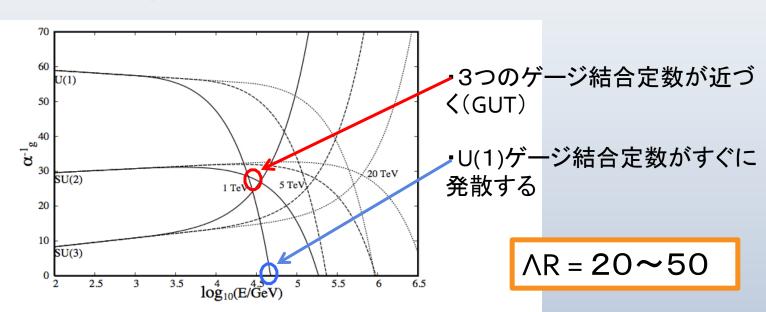
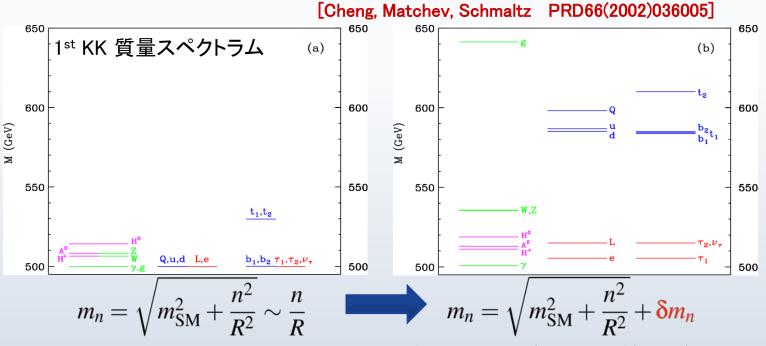
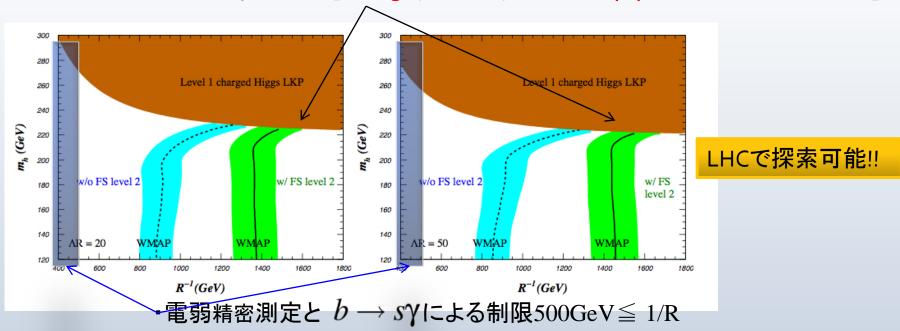



Figure 1: Evolution of gauge couplings for UED with $R^{-1}=1$, 5, and 20 TeV. For each of the three couplings, $\alpha_g \equiv g^2/4\pi$. [Bhattacharvva, Datta, Majee, Raychaudhuri Nucl. Phys. B760(2007)117]

質量補正とLKP

Self energyの輻射補正を考えると質量スペクトラムが変わる

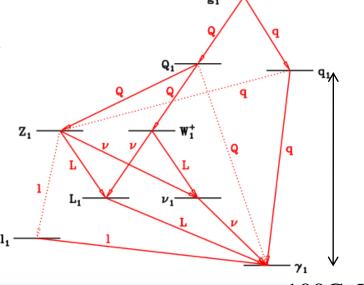

- ・KKモードの質量差がひらき、縮退が解ける
- ARが大きいほど質量差は大きくなる

 $\lambda_{\rm H}$ が大きいと、LKPは $\gamma^{(1)}$ ではなく 荷電ヒッグスのKKモード $H^{\pm(1)}$ となる

暗黒物質の残存量

Coannihilation と 2次KKモードの寄与が重要

- Coannihilation
- +2次KKモードの共鳴 [Kakizaki, Matsumoto, Senami PRD74(2006) 023504]など
- +2次KKモード終状態 [Belanger, Kakizaki, Pukhov hep-ph/1001.2577 (Dec 2010)]


mUED暗黒物質シナリオは 1/R~1.4TeV付近 調べる領域: **500GeV**≦ **1/R** ≦ **1.6TeV**

mUEDのLHCシグナル

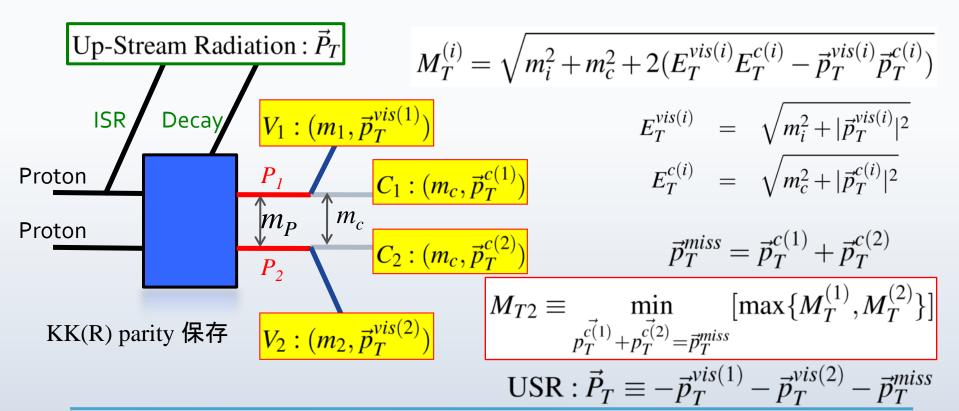
・散乱断面積が大きい。LHCで最も生成されるのは

• $Q_1 o Q + Z_1$ の崩壊から複数の荷電レプトンを出す

先行研究: $\frac{4 \text{leptons} + E_T^{miss}}{2}$

 $(\Lambda R=20, 1/R=500\sim700 \text{GeV}) \sim 100 \text{GeV}$

ジェットを用いて発見可能性を調べたい


• $\mathbf{M}_{\mathrm{eff}}$ だとバックグラウンドに埋もれてしまう $M_{eff} = \sum_{jet}^{4} p_{T}^{jet} + \sum_{lepton}^{all} p_{T}^{lep} + E_{T}^{miss}$

 \mathbf{M}_{T2} をカットとして用いるとmUEDシグナルとバックグラウンドを分離できる(SMバックグラウンドは \mathbf{M}_{T2} \leq \mathbf{m}_{t} で抑えられる)

$\mathbf{M}_{\mathbf{T2}}$

$$\text{Up-Stream Radiation}: \vec{P}_T \qquad M_T^{(i)} = \sqrt{m_i^2 + m_c^2 + 2(E_T^{vis(i)}E_T^{c(i)} - \vec{p}_T^{vis(i)}\vec{p}_T^{c(i)})}$$

$$E_T^{vis(i)} = \sqrt{m_i^2 + |\vec{p}_T^{vis(i)}|^2}$$

$$E_T^{vis(i)} = \sqrt{m_i^2 + |\vec{p}_T^{vis(i)}|^2}$$

$$E_T^{c(i)} = \sqrt{m_c^2 + |\vec{p}_T^{c(i)}|^2}$$

$$P_T \text{Proton} \qquad P_T \qquad C_1 : (m_c, \vec{p}_T^{c(1)}) \qquad E_T^{c(i)} = \sqrt{m_c^2 + |\vec{p}_T^{c(i)}|^2}$$

$$P_T \text{Proton} \qquad P_T \qquad C_2 : (m_c, \vec{p}_T^{c(2)}) \qquad \vec{p}_T^{miss} = \vec{p}_T^{c(1)} + \vec{p}_T^{c(2)}$$

$$P_T \text{Max}\{M_T^{(1)}, M_T^{(2)}\}\}$$

$$P_T \text{Max}\{M_T^{(1)}, M_T^{(2)}\}$$

$$P_T \text{Max}\{M_T^{(1)}, M_T^{(2)}\}$$

$\mathbf{M}_{\mathbf{T2}}$


一般に m_c はわからない \Rightarrow テスト質量 \tilde{m}_c を設定して M_{T2} を計算する。

•Endpointの振る舞い

If
$$\tilde{m}_c = m_c$$
, $M_{T2}^{max} = m_P$

If $\tilde{m}_c \neq m_c$, M_{T2}^{max} : USR (P_T) & \tilde{m}_c dependent

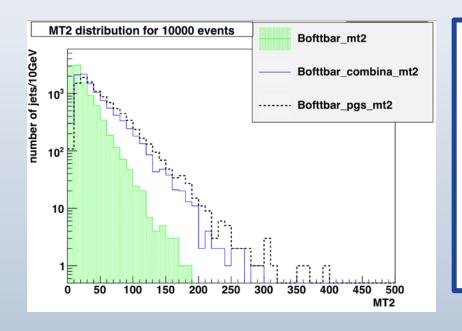
M_{T2}

- 一般に m_c はわからない \Rightarrow テスト質量 $ilde{m}_c$ を設定して M_{T2} を計算する。
- ・Endpointの振る舞い $ext{If } ilde{m}_c = m_c, \qquad M_{T2}^{max} = m_P ext{If } ilde{m}_c
 eq m_c, \qquad M_{T2}^{max} : ext{USR}(P_T) & ilde{m}_c ext{ dependent}$

$$ilde{m}_c \Rightarrow 0$$
 と設定する($\mathrm{M}_{\scriptscriptstyle{\mathrm{T2}}}$ event selection)

バックグラウンドに対するMT2の性質

①親粒子の質量で上限


 $M_{T2} \leq m_P \leq m_t$

 $\tilde{m}_c \Rightarrow 0$

観測粒子の質量は小さい、

$$M_T^{(i)} = \sqrt{|\vec{p}_T^{vis(i)}||\vec{p}_T^{c(i)}| - \vec{p}_T^{vis(i)} \cdot \vec{p}_T^{c(i)}}$$

- ②missingのないイベントの $M_{T2} \rightarrow 0$.
- ③Fake missing ($\vec{p}_T^{miss} \parallel \vec{p}_T^{vis(i)}$ のイベントも、 $M_{T2} \rightarrow 0$ ($\vec{p}_T^{c(i)} = \vec{p}_T^{miss}$)

 $m_t \le M_{T2}$ 残留バックグラウンド

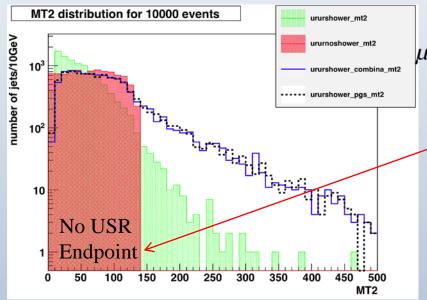
- 1.Combinatorics $tar{t}$ など
- 2. 観測粒子とmissingの起源に 関係がない場合 W/Z+2jets, Diboson+jets <u>t</u>t +jets など

シグナルに対するM_{T2}の性質

•USRがない場合のEndpoint

$$M_{T2} \le \frac{m_P^2 - m_c^2}{m_P} \equiv 2\mu_0$$

単純な質量差∆mより大きい!


$$2\mu_0 = \Delta m (2 - \frac{\Delta m}{m_P}) \ge \Delta m$$

ISRや崩壊→ USR

"重い粒子からはハードなISRが出やすい"

・USRがある場合のEndpoint USRの効果でEndpointはさらに大きくなる!!

$$M_{T2}^{max}(P_T) = \sqrt{4\mu^2(P_T) + 2P_T\mu(P_T)} \ge 2\mu_0$$

$$\mu(P_T) \equiv \frac{m_P^2 - m_c^2}{2m_P} \left(\sqrt{1 + \left(\frac{P_T}{2m_P}\right)^2} - \frac{P_T}{2m_P} \right)$$

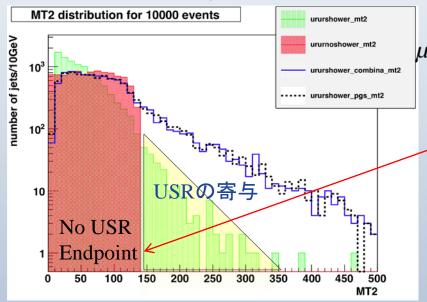
KKquark:574GeV LKP:501GeV $2\mu_0 = 136 \text{GeV}$

シグナルに対するM_{T2}の性質

•USRがない場合のEndpoint

$$M_{T2} \le \frac{m_P^2 - m_c^2}{m_P} \equiv 2\mu_0$$

単純な質量差∆mより大きい!


$$2\mu_0 = \Delta m (2 - \frac{\Delta m}{m_P}) \ge \Delta m$$

ISRや崩壊→ USR

"重い粒子からはハードなISRが出やすい"

・USRがある場合のEndpoint USRの効果でEndpointはさらに大きくなる!!

$$M_{T2}^{max}(P_T) = \sqrt{4\mu^2(P_T) + 2P_T\mu(P_T)} \ge 2\mu_0$$

$$\mu(P_T) \equiv rac{m_P^2 - m_c^2}{2m_P} \left(\sqrt{1 + \left(rac{P_T}{2m_P}
ight)^2} - rac{P_T}{2m_P}
ight)$$

KKquark:574GeV LKP:501GeV $2\mu_0 = 136 \text{GeV}$

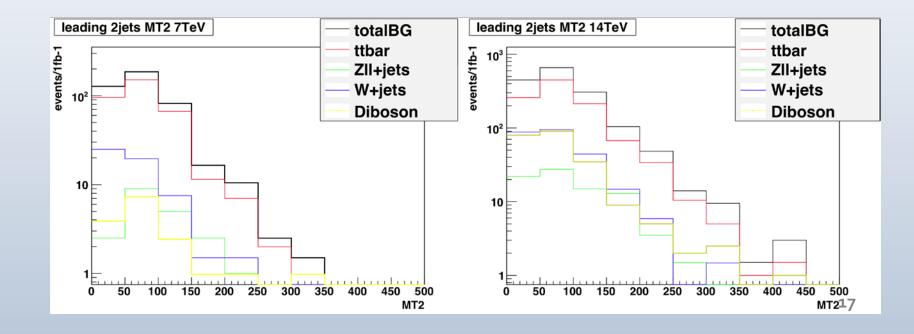
生成イベント

- 検出器シミュレーションはすべてPGS
- •mUEDシグナルはPythiaで生成

Parameter
$$m_h = 120 \text{GeV (fixed)}$$
 Luminosity $1/R = 500, 600, ..., 1600 \text{GeV}$ at 7TeV $5 \sim 10 \text{ fb}^{-1}$

 $\Lambda R = 20, 30, 40, 50$ at 14TeV $2 \sim 10 \text{ fb}^{-1}$

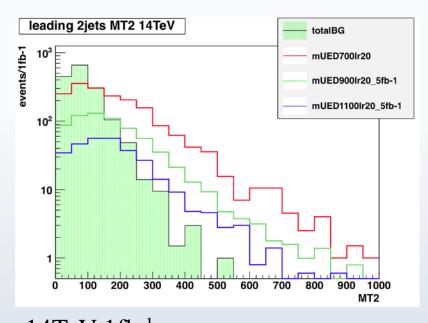
- •SMバックグラウンドはMadgraph で生成し、Matchingを行った。
- •(N)NLOの散乱断面積に規格化(×K factor = $\sigma_{(N)NLO}/\sigma_{matching}$)


SM background	Luminosity (σ _{matching}) 7TeV	14TeV
$t\bar{t}$ +0, 1, 2 jets	1.4 fb ⁻¹ (106 pb)	1.1 fb ⁻¹ (623 pb)
W→lv+1, 2 jets *	1~1.6 fb ⁻¹ (137 pb)	1~2 fb ⁻¹ (608 pb)
Z→11+1, 2 jets *	1.2 fb ⁻¹ (13 pb)	2.5 fb ⁻¹ (58 pb)
$Z\rightarrow vv+1$, 2 jets*	1.2 fb ⁻¹ (36 pb)	1 fb ⁻¹ (186 pb)
Diboson +0, 1, 2 jets	1~1.5 fb ⁻¹ (34 pb)	1~2 fb ⁻¹ (320 pb)

^{(*} W/Z +jetsは leading partonのP_T>100GeV というカットを課して生成した)

イベントセレクション

- 1. At least one lepton with $p_T > 20 \text{GeV}$
- 2. $p_T^{jet1} > 100 \text{GeV}, p_T^{jet2} > 20 \text{GeV}$
- 3. $E_T^{miss} > 100 \text{GeV}$
- 4. If only one lepton, M_T (lepton, missing) >100GeV


Construct M_{T2} of leading 2 jets

mUED vs Background

7TeV 1fb⁻¹ 1/R = 500GeV(黒), 700GeV(赤)

14TeV 1fb⁻¹ 1/R= 700(赤),900(緑),1100(青)GeV

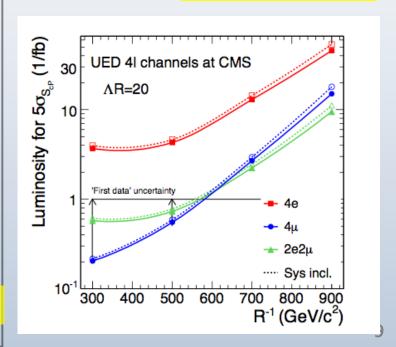
Small 1/R Large

Large Cross section Large mass splitting

M_{T2}≥200GeV, 250GeV, 300GeV ... (50GeV step) でSignificanceを評価し、発見可能性を調べる。

発見可能性

[ATLAS Collaboration, hep-ph/0107056]


バックグラウンドの不定性(20%)を考慮したSignificance Z_B を用いて シグナル $\ge 10, Z_B > 5$ を"発見"とした。

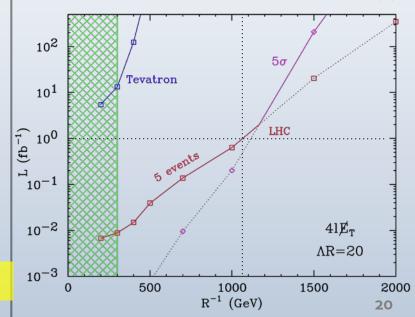
Significance/7 ${ m TeV}$ 1 ${ m fb}^{-1}$						
$R^{-1}({ m GeV})$	$\Lambda R = 20$	$\Lambda R = 30$	$\Lambda R = 40$	$\Lambda R = 50$		
500	4.54	6.05	6.36	6.51		
600	2.26	3.08	3.32	4.29		
Significance/14TeV 1fb^{-1}						
600~800	10+	10+	10+	10+		
900	9.79	10+	10+	10+		
1000	7.68	7.98	8.49	9.11		
1100	5.90	5.61	5.13	6.35		
1200	4.50	4.63	4.49	3.52		
1300	2.75	3.58	3.45	4.36		
1400	2.06	2.58	1.49	2.56		
1500	(1.64)	(1.40)	(1.69)	(1.35)		
1600	(0.58)	(1.03)	(1.03)	(1.09)		

LKP暗黒物質シナリオ 1/R= 1300~1600GeV

[M.Kazana (CMS Conference report) Acta Phys.Polon.B38:449-458,2007]

先行研究: 4leptons $+ E_T^{miss}$

発見可能性


[ATLAS Collaboration, hep-ph/0107056]

バックグラウンドの不定性(20%)を考慮したSignificance Z_B を用いて シグナル $\geq 10, Z_B > 5$ を"発見"とした。

Significance/7 ${ m TeV}$ 1 ${ m fb}^{-1}$						
$R^{-1}({ m GeV})$	$\Lambda R = 20$	$\Lambda R = 30$	$\Lambda R = 40$	$\Lambda R = 50$		
500	4.54	6.05	6.36	6.51		
600	2.26	3.08	3.32	4.29		
Significance/14 ${ m TeV}$ 1fb ⁻¹						
600~800	10+	10+	10+	10+		
900	9.79	10+	10+	10+		
1000	7.68	7.98	8.49	9.11		
1100	5.90	5.61	5.13	6.35		
1200	4.50	4.63	4.49	3.52		
1300	2.75	3.58	3.45	4.36		
1400	2.06	2.58	1.49	2.56		
1500	(1.64)	(1.40)	(1.69)	(1.35)		
1600	(0.58)	(1.03)	(1.03)	(1.09)		

LKP暗黒物質シナリオ 1/R= 1300~1600GeV

[Cheng, Matchev, Schmaltz PRD66,056006(2002)]

まとめ

- M_{T2}を用いた解析の有効性を議論した
- 14TeV 1fb-1 ではLKP暗黒物質シナリオー部の領域 に迫る
- 発見可能性は先行研究に比べ向上している
- バックグラウンドとシグナルを分離できているので、さらに高いLuminosityではより多くの領域が発見できるだろう

今後の展望 1.どの程度のLuminosityでLKP暗黒物質シナリオの領域をカバーできるか 2.パラメーターの測定

Significance Z_B

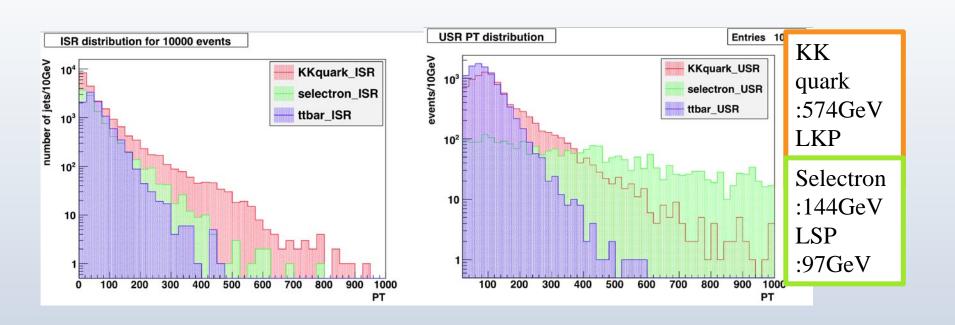
$$Z_B = \sqrt{2} \text{erf}^{-1} (1 - 2p)$$

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

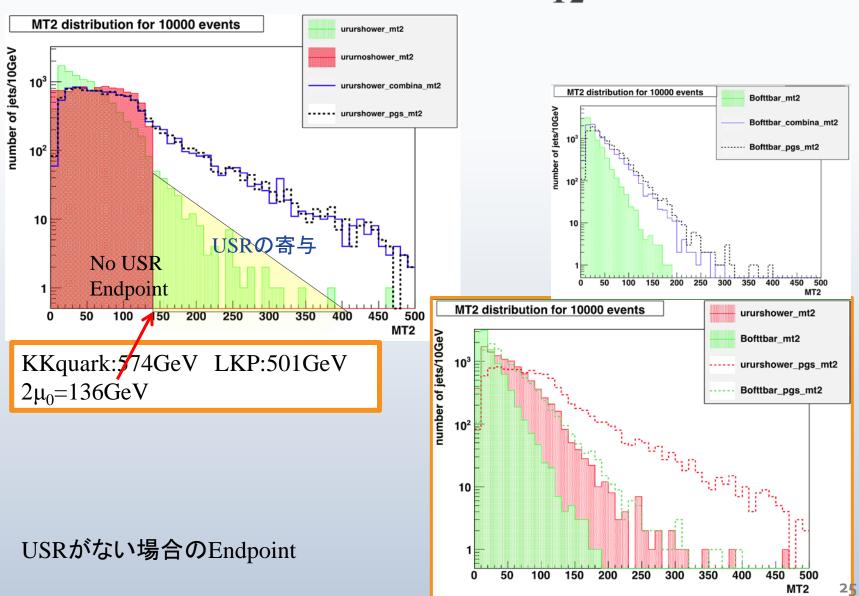
[J. T. Linnemann, Measures of significance in HEP and astrophysics, 2003]

バックグラウンドが N_{data} 以上の数を生じる確率 p は、

$$p = A \int_0^\infty db G(b; N_b, \delta N_b) \sum_{n=N_{data}}^\infty rac{e^{-b}b^n}{n!}$$


$$A^{-1} = \int_0^\infty db G(b; N_b, \delta N_b) \sum_0^\infty \frac{e^{-b}b^n}{n!},$$

G はガウス関数で N_b は平均、 δN_b は分散


Backup Slides

ISR & USR

ISRや崩壊→ USR "重い粒子からはハードなISRが出やすい"

シグナルに対するM_{T2}の性質

