新しい multi-Higgs model と TeV-scale seesaw

EXTRADIMENSION 20100 大阪大学研究会, 24,25 Jan., 2011

based on collaboration with K. Tsumura and M. Hirotsu. (Eur.Phys.J.C69 (2010) 481, N. Haba and M. Hirotsu)

Naoyuki Haba (Osaka U)

Contents

introduction
 model
 phenomenology
 summary & discussions

1. introduction

v mass means beyond SM \rightarrow key of beyond SM • existence of v mass is probed by v-oscillation exps. • $m_{y} \leq 0.1 \text{ eV}$ (with cosmologies) • Why so tiny, $m_v \ll m_{q,l} ? \rightarrow key of beyond SM$

fermion mass

low energy effective theory:

1) effective v-Yukawa is tiny (dim 4 OP)

$$m_v \sim y_v^{(eff)} \langle H \rangle$$

What is the UV theory ?

What is the UV theory of dim5 OP?

new physics in UV theory which generate dim5 OP

(ex1): seesaw mechanism

(ex2): radiative inducing models

 $M = \xi mass, \gamma = 1/(4\pi^2)$

Why
$$m_v \ll m_{q/l}$$
?

effective OPs in SM fields:

<u>③ dim7 OP</u>

$$m_{v} \sim \frac{LL\langle H\rangle\langle H\rangle}{M} \left|\frac{\langle H\rangle}{M}\right|^{2}$$

 $\Delta L=2$ (lepton # is violated)

☆ dim5 OP is forbidden by discrete symmetry
 ☆ M (dim7 OP) can be naturally smaller than M (dim5 OP)
 → can be TeV scale!

What is the UV theory of dim7 OP?

(ex) model with double & triple charged Higgs (SU(2)_L 4-rep. Higgs) in type III seesaw K.S.Babu, S.Nandi and Z.Tavartkiladze, PRD80 (2009) 071702.

As we see, there are a lot of attempts •••, but,

• always use the same SM-like Higgs doublet, $\langle H \rangle \sim 100 \text{ GeV} \cdots$, and

then must try to make tiny effective v-"Yukawa" • • •

This is the essence of difficulty for reproducing 0.1 eV v-mass •••

Here let me look at the difficulty from a different angle

How about introducing extra Higgs $\langle H_{v} \rangle \ll 100 \text{ GeV}$

instead of effective tiny v-"Yukawa"?

This is an essence of our suggesting model today

But, maybe, you may worry about appearing light Higgs • •

(ex): SM,
$$V = -m^2 H^2 + \lambda H^4 \rightarrow m \sim \langle H \rangle$$

tiny VEV ⇔ light physical Higgs…?

However, situation is drastically changed in multi-Higgs model with an *effective linear term* as,

 $V \ni H^{3}H_{v} + h.c. \rightarrow \langle H_{v} \rangle \sim \langle H \rangle^{3}/M_{Hv}^{2}$

tiny VEV ⇔ HEAVY physical Higgs!

like a "seesaw" between VEV & Higgs mass

Therefore, even evidences of "type I seesaw" is expected to be

discovered at TeV-scale and so LHC exps.

type I seesaw

$$L_{\nu} = m_D (\bar{\nu}_L \nu_R + \bar{\nu}_R \nu_L) + M \bar{\nu^c}_R \nu_R$$
$$\xrightarrow[m_D \ll M]{} m_{\nu} \sim \frac{m_D^2}{M}$$

conventional model: $m_D = y_v \langle H \rangle \sim 100 \text{ GeV}$

For $m_{\nu}\!\sim\!0.1$ eV, we need $M\!\sim\!10^{14}$ GeV , and it is impossible to find in experiments such as LHC, ILC, etc.

our model:

 $m_D = y_v \langle H_v \rangle \sim 0.1 \text{ MeV}$

For $m_{\nu} \sim 0.1 \text{ eV}$, $M \sim 1 \text{ TeV}$ & and also H_{ν} mass $\sim 1 \text{ TeV}$, and they are detectable in LHC experiment.

2. model

setup of our model

In order to obtain V \ni H³H_v + h.c. (\rightarrow \langle H_v \rangle \sim \langle H \rangle ³/M_{Hv}²),

we introduce singlet Higgs, S, and construct the similar structure as

 $\rightarrow V \ni \mu SHH_{v} + h.c. \rightarrow \langle H_{v} \rangle \sim \mu \langle H \rangle / \langle S \rangle$

\Rightarrow Introducing Z₃ sym. (which distinguish H_v from H)

fields	Z ₃ charge	Lepton #
SM fields (SM Higgs: H)	1 1	l for leptons (others, 0) 0
Right-handed ν : N	ω	1
Singlet Higgs : S	ω	-2
New Doublet Higgs: H_{v}	ω^2	0

setup of our model

• Yukawa interactions:

$$L_{yukawa} = y_u \bar{Q}_L H U_R + y_d \bar{Q}_L \tilde{H} D_R + y_e \bar{L} \tilde{H} E_R + y_\nu \bar{L} \underline{H}_{\mathsf{V}} N + y_N S \bar{N^c} N + h.c$$

$$m_{\nu} = \frac{y_{\nu}^2 \langle \underline{H}_{\nu} \rangle^2}{y_N \langle S \rangle}$$

Wanted vacuum is
$$\begin{cases} \langle S \rangle \sim \text{TeV} \\ \langle H \rangle \sim 100 \text{ GeV} \\ \langle H_{\nu} \rangle \sim 0.1 \text{ MeV} \end{cases}$$

Then, $ightarrow m_{
u} \sim 0.1 \; eV$

setup of our model

under Z_3 sym. & softly broken U(1)_L

• Higgs potential:

$$\begin{split} V = m^2 |H|^2 + m_1^2 |\underline{H}_{\mathbf{v}}|^2 - M^2 |S|^2 - \underline{\lambda}S^3 - \underline{\mu}SH^{\dagger}\underline{H}_{\mathbf{v}} \\ + \lambda_1 |H|^4 + \lambda_2 |\underline{H}_{\mathbf{v}}|^4 + \lambda_3 |H|^2 |\underline{H}_{\mathbf{v}}|^2 + \lambda_4 |H^{\dagger}\underline{H}_{\mathbf{v}}|^2 \\ + \lambda_S |S|^4 + \lambda_H |S|^2 |H|^2 + \lambda_{H_{\mathbf{v}}} |S|^2 |\underline{H}_{\mathbf{v}}|^2 + h.c \end{split}$$

terms forbidden by Z_3 : $(H^{\dagger}H_v)^2$, S^4 , $S^2 | H_v |^2$, ... terms forbidden by lepton #: $H_v^{\dagger}HS^2$

\Rightarrow lepton # is softly broken by $\mu \& \lambda$,

(and also Majorana mass of v_R)

thus, mass hierarchy of $\mu \ll M_w$ is preserved against from quantum correction.

Vacuum

vacuum @ $\langle H_v \rangle \ll \langle H \rangle \ll \langle S \rangle$

stationary conditions: $\langle S \rangle = s, \ \langle H \rangle = h, \ \langle H_{\mathbf{V}} \rangle = h_{\mathbf{V}}$ $\frac{\partial V}{\partial h} = -2(\lambda_H s^2 - m^2)h + 2\lambda_1 h^3 = 0 \quad \Longrightarrow \quad \langle H \rangle = \sqrt{\frac{\lambda_H s^2 - m^2}{\lambda_1}} \quad (\sim 100 \text{ GeV})$ \Rightarrow When λ_{H} is negative, we do not need "wine-bottle" potential at initial setup 1 MeV $\frac{\partial V}{\partial h_{\mathbf{v}}} = -2\mu sh + 2\lambda_{H_{\mathbf{v}}}h_{\mathbf{v}}s^2 = 0 \quad \blacksquare$ $\langle \underline{H}_{v} \rangle = \frac{\mu h}{\lambda m s}$ (~0.1 MeV) (consistency condition: $\mu \sinh_{\nu} \ll \lambda_1 h^3$)

Higgs mass spectra

• physical Higgs particles:

Mixings \propto rations of VEVs

$$H_v \Rightarrow$$
 heavy although tiny VEV!!

$$M_{H_0,A_0}^2 = \frac{2\mu s}{\sin \beta}$$

$$M_{H^{\pm}}^2 = -\lambda_4 h^2 + M_{H_0,A_0}^2$$

$$M_{H_s}^2 = 2M^2$$

$$M_{H_s}^2 = \frac{9\lambda s}{2}$$

$$M_{A_s}^2 = \frac{9\lambda s}{2}$$

$$M_{h_0}^2 = 2\lambda_1 h^2$$

A_sis massless, when $\lambda = 0$, since accidental global U(1) $H \rightarrow e^{-i\theta_1}H, \quad H_{\nu} \rightarrow e^{i\theta_1}H_{\nu}, \quad S \rightarrow e^{-i2\theta_1}S.$ exists. Thus, A_s is pNG. Similarly A₀ is massless, when

 $\mu = 0$, since there appear global U(1) of $H \rightarrow e^{i\theta_2}H, \quad H_{\nu} \rightarrow e^{-i\theta_2}H_{\nu}$,

3. phenomenology

3. phenomenology

3-1. charged Higgs decay

decay channel strongly depends on $M_{H^+} \leq M_{H_0,A_0}$, $M_{H^+} \leq M_N$

3-2. p parameter

tiny contribution to ρ parameter as,

$$\delta\rho = \frac{2\sqrt{2G_F}}{(4\pi)^2} F_{\Delta}(m_A^2, m_{H^{\pm}}^2) \sim 10^{-5}$$

$$F_{\Delta}(x,y)=rac{1}{2}(x+y)-rac{xy}{x-y}\lnrac{x}{y}.$$

it is because tiny breaking of custordial symmetry as,

$$M_{H^{\pm}}^{2} = M_{H_{0}}^{2} - \lambda_{4}h^{2}$$

$$\uparrow$$

$$TeV \qquad 100 GeV$$

 LFV processes from charged Higgs loop diagram (assuming M_{Rij}=Mδ_{ij}, R=1, and using v-oscillation data)

3-3. LFV

• Θ₁₃ dependence:

 $(\theta=0, \theta=0.1, \theta=0.01, \theta=0.001, dashed lines are their experimental bounds, m_{H+}=1TeV)$

• m_v (lightest mass) dependence: $(\tau \rightarrow e\gamma)$

 $(\theta=0, \theta=0.1, \theta=0.01, \theta=0.001, dashed lines are their experimental bounds, m_{H+}=1TeV)$

• m_v (lightest mass) dependence: $(\tau \rightarrow \mu \gamma)$

 $(\theta=0, \theta=0.1, \theta=0.01, \theta=0.001, dashed lines are their experimental bounds, m_{H+}=1TeV)$

4. summary & discussions

4. summary

We suggest new (2D+1S) Higgs model.

☆ 0.1 MeV Dirac v mass is produced by extra Higgs Doublet, H_v

 \Rightarrow H_v only couple lepton doublet and v_R

 \Rightarrow H_v is heavy (~TeV) but taking tiny VEV (~0.1 MeV) !

☆ TeV-scale type I seesaw → detectable phenomenology at LHC

5 physical Higgs particles, charged Higgs decay, LFV, ...

4. discussions

\Rightarrow about a role of S,

In fact, 2HD with extremely large tan β is also consistent model. models by Ma (PRL86 (2001) 2502) and Davidson and Logan (PRD 80 (2009) 095008) are the model with heavy *p*-scalar & tiny VEV.

- In a model by Davidson and Logan, v IS DIRAC.
 - \Leftrightarrow In our model v IS MAJORANA.
 - $\rightarrow 0 \nu \beta \beta$,
 - → L# violating process @LHC (same sign di-lepton events through N-decay. (سننس)

(with preliminary (Sumura))

- \rightarrow TeV-scale Leptogenesis (with M. Hirotsu, O. Seto)
- \rightarrow L# violation processes in electron collider. (with M. Hirotsu, K. Tsumura)

4. discussions

preliminary ☆ L# violation processes in electron collider. (with M. Hirotsu, K. Tsumura)

Figure 4: Total cross sections of $e^-e^- \rightarrow H^-H^-$ in s/THDM with N_N. Mass of right-handed neutrinos is set as $M_N = 200 \text{ GeV(left)}$ and 1 TeV(right).

4. discussions

☆ comparing to model by Ma (v is MAJORANA in both models), we have singlet Higgs, S.

preliminary

by modification of discrete symmetry and taking zero-VEV of it, S can be a stable DM.

by a pair annihilation, this model can explain PAMERA anomaly through a similar way of "The Leptonic Higgs as a Messenger of Dark Matter", L. Hall et al, JHEP 0905 (2009) 097

 $SS \to H_v H_v \to \text{leptons}$