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What is (S)CFT in six dimensions?



- Maximal dimension to admit SCFTs [Nahm ’78] 
- New dualities in lower dimensions (AGT, 3d-3d,…) 
- New insights to CFTs, e.g. TN theory (class S, class R,…)

Motivations toward 6d SCFT

Field theory

String theory
- Tensionless limit of type IIB compactified on K3 w/ ADE singularity  
                  [Witten ’95] 
- Effective theory on multiple M5-branes [Strominger ’95] 
- To describe M-theory (     -scaling,…) 
- Approach to general aspects of AdS/CFT

N3
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We would like to know more about 6d SCFTs w/ these tools.



For example, conformal bootstrap is a powerful but 
old idea used since many years ago. 
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For example, conformal bootstrap is a powerful but 
old idea used since many years ago. 

Central charge ~ Trace anomaly

ex) 2d CFTs on general backgrounds

�Tµ
µ� =

c

24�
R
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There are theorems associated with RG flow:

G. Moore

How about ‘‘a-theorem’’ in 6d?

two-dimensional theories we know that in order to define theories that are consistent on all

Riemann surfaces it does not suffice simply to solve the crossing symmetry constraints on

the four-point function. One must also impose conditions from consistency of correlation

functions at genus one.

In the context of three- and four-dimensional conformal field theories, find a set of

consistency conditions on correlation functions (in addition to the standard bootstrap equa-

tions) so that they can be defined on arbitrary conformal classes of three- and four-dimensional

Riemannian manifolds, respectively.

6.2 Geometry on the space of field theories

The profound results of D. Friedan [122, 123] and A. Zamolodchikov [323] on the geometry

of the space of two-dimensional quantum field theories have made it quite clear that we

should define a space of quantum field theories and explore its geometry. Indeed, Friedan

has even proposed to use properties of the space of all two-dimensional models as a start-

ing point for a unified view of physics alternative to the more standard string-theoretic

approach [124].

It would be good to give a concrete and rigorous definition of the “space of quantum

field theories” both in two and in higher dimensions. One tool, which has been used to

explore families of quantum field theories, is the construction of quantities that decay

monotonically under renormalization group flow. There are known quantities in two [323],

three [55], and four [192] dimensions, generally called c, F, a, respectively. An obvious

problem for the future is

Find monotonically decreasing quantities for renormalization group flow of five and six

dimensional theories.

As discussed above, we do not understand these higher dimensional theories in the UV

very well so this problem is probably out of reach at the moment. A curious aspect of

the known monotonically decreasing quantities is that c, a in 2, 4 dimensions are defined in

terms of local correlation functions of the energy-momentum tensor while F is a nonlocal

quantity.

Is there a more unified view on the monotonically decreasing quantities? Is there a

locally defined quantity in three dimensions that decreases under RG flow?

In two-dimensional theories it is known that one can enrich the story by considering

so-called boundary conformal field theories: One considers a conformal field theory defined

on a Riemann surface with boundary, with boundary interactions breaking the conformal

invariance. In this situation there is a so-called g-function that is known to undergo gradient

flow. [CITE]. It is natural to ask if there is an analogous story in higher dimensional field

theory:
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1. c-theorem in 2d



c-theorem in 2d [Zamolodchikov ‘86]

UV fixed point

IR fixed point

monotonically decrease along RG flow
cUV

cIR

C(�)

dC(�)
d�

< 0� cUV > cIR

#(dof) decrease along RG flow



2. a-theorem in 4d



aIR

a-theorem in 4d [Cardy ‘88][Komargodski-Schwimmer ‘11]

UV fixed point

IR fixed point

• Spontaneously broken conformal sym 
• Effective action of dilaton (NG boson) 
• 4-pt scattering amplitude for dilaton

aUV

ã(�)

aUV > aIR

Anomalies in 4d

�Tµ
µ� = cW 2 � aE4

�
Wµ��� : Weyl tensor

E4 : Euler density

Process of proof

monotonically decrease along RG flowã(�)



3. ‘‘a-theorem’’ in 6d



Strategy [Osborn ‘91][Grinstein-Stergiou-Stone ‘13]

Wess-Zumino consistency condition [Wess-Zumino ‘71]

Weyl rescaling

��hµ�(x) = 2�(x)hµ�(x)

��gI(x) = �(x)�I(x)

[�a,�b]W = ifabc�cW
�

W : generating functional of connected Green functions

fabc : structure constant

�
��

��

hµ� : spacetime metric

gI : couplings

�I : beta functions

� (Weyl consistency condition)[��,��� ]W = 0



Anomalies
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ddx
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Anomalies

��W [hµ� , gI ] =
�

ddx
�
�h�

�

i

�
aiAi[hµ� ] + biBi[hµ� , gI ] + ciCi[gI ]

�

Strategy [Osborn ‘91][Grinstein-Stergiou-Stone ‘13]

include a (and Euler density)

dã

d log µ
=

1
6
�IJ�I�J

�IJ : “metric” in the space of couplings

[��,��� ]W = 0

We need computing        to determine the behavior of   . ã�IJ

(c-theorem and a-theorem can be proven by this method.)



‘‘a-theorem’’ in 6d [1406.3626]

L =
1
2
hµ��µ�i���i +

1
5
R�i�

i +
1
3!

gijk�i�j�k

- conformally-coupled      theory with flavors�3

3

The six-dimensional two-loop effective potential can be
computed using heat kernel methods in dimensional reg-
ularization [3, 17, 18]. From this computation we deter-
mine the one- and two-loop anomalous dimensions of the
elementary fields φi and the beta functions for the cou-
plings gijk:

γ(1) =
1

64π3

1

12
, (8)

γ(2) =
1

(64π3)2
1

18

(

−
11

24

)

, (9)

β(1) = −
1

64π3

(

−
1

12

)

, (10)

β(2) = −
1

(64π3)2
1

2

(

−
7

36

+
1

2
−

1

9
(11)

+
11

216

)

.

Here we have used diagrammatic notation to indicate the
corresponding contraction of the couplings, e.g.,

= giklgjkl, (12)

and permutations of the free indices in the wavefunction-
renormalization corrections to the beta function are un-
derstood. For example,

= gijlglmngkmn + permutations. (13)

Eq. (10) generalizes the single field result of [19] (see
also [17, 18, 20, 21]) to the multi-field case. The first
contribution to (11) is non-planar. For the seemingly
asymmetric vertex corrections in (11) (the second and
third terms) a symmetrization is understood; for exam-
ple,

∼ + +

where “∼” means “the left-hand side stands for the right-
hand side.”
Our main result is the two-loop expression for the “met-

ric” in theory space:

χ(2)
IJ = −

1

(64π3)2
1

3240
δIJ . (14)

With this result and the one-loop beta function (10) we
can use the consistency condition (5) to compute ã at

three loops, using w(2)
I ∼ gI [22]. We find [23]

ã(3) =
1

(64π3)3
1

77760

(

−
1

4

)

. (15)

The three-loop contribution to the coefficient of the Euler
term a is

a(3) =
1

(64π3)3
7

388800

(

−
1

4

)

. (16)

In the single-coupling case both ã and a increase in the
flow out of the trivial fixed point.
One may wonder if the results in (14) and (15) depend

on the renormalization scheme we used to compute the
two loop effective potential [24]. Actually, Eq. (5) (and
thus Eq. (6)) is invariant under the choice of renormaliza-
tion scheme. The individual terms are, however, scheme-
dependent. The corresponding arbitrariness is of the
form δã = zIJβIβJ and δχIJ = βK∂KzIJ + zKJ∂IβK +
zIK∂JβK , where zIJ is an arbitrary regular symmetric
function of the couplings. Since the arbitrariness in ã van-
ishes (quadratically) when fixed points are approached,
it cannot change the nature of the flow in the vicinity of
fixed points.

IV. DISCUSSION

Using the result of our computation, Eq. (14), in the
evolution equation (6), or equivalently, the explicit form
of ã in (15), it is apparent that in perturbation theory the
quantity ã in Eq. (6) actually increases as one decreases
the renormalization scale. This is contrary to intuition
developed in d = 2, 4 dimensions where ã seems to count
the degrees of freedom in a QFT.
This result should be taken with two comments in

mind. Firstly, that the result is a perturbative one, and
we cannot say anything about non-perturbative regimes
of six-dimensional QFTs. And secondly, that there are no
known perturbative critical points other than the single,
trivial one at gijk = 0, so in this context renormalization
group flows do not connect pairs of critical points [25].
However, it is still true that, with Eq. (6) identical in
d = 2, 4, and 6 dimensions, the strong version of the a-
theorem holds perturbatively in d = 2, 4 but not in d = 6.
We do not know the reason for this difference. One

possibility may be the unstable nature of the theory we
are considering. After all, a cubic potential is unbounded
from below. However, the state with ⟨φi(x)⟩ = 0 is per-
turbatively stable and our computations are valid only in
the perturbative regime. Moreover, the analogous case in
four dimensions, the inverted quartic potential, is also un-
stable, but does satisfy a perturbative a-theorem (since
the metric in theory space, χIJ , is perturbatively posi-
tive in four dimensions, independently of the sign of the
quartic couplings). Another possibility is that a flow be-
tween critical points is required for an a-theorem to hold,
but the only perturbatively-accessible critical point in the
class of theories in Eq. (7) is the Gaussian fixed point at
gijk = 0. But, again comparing to known cases, a pertur-
bative strong a-theorem holds for scalar theories in four
dimensions, in spite of only having a Gaussian fixed point
at the origin of coupling-constant space.

anomalous dimensions for �i

beta functions for gijk
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Summary

Discussions

‘‘a-theorem’’ in 6d ; monotonically increases

- non-perturbative? 
- more general models? 
- physical intuitions for monotonically-increasing behavior? 
- holographic RG? 
- How about 5d QFTs? 
  cf. 5d N=1 SYM has a UV non-trivial fixed point [Seiberg ‘95]

ãUV < ãIR

- perturbative computation in 6d conformally-coupled      theory�3

contrary to c-theorem                    in 2d and a-theorem                     in 4d(aUV > aIR)(cUV > cIR)


