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1. Anomalous velocity



Berry curvature

parameter set

: instantaneous eigenstates of Hamiltonian at each value of

i.e. 
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Hamiltonian and eigenstates
periodic potential with 

Independent electron approximation

band index

crystal momentum
Bloch’s theorem: 

-dependent Hamiltonian: 

parameter space: Brillouin zone,  : basis function
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Wave function
: changes slowly in time

time-dependent Scrhodinger equation: 

instantaneous eigenstates
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First-order wave function
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We have an initial condition:  
For 

Integrate by parts



The average velocity

velocity operator in the q representation : 

Berry curvature 

Apart from the overall phase factor, 



With electric field
uniform vector potential 

q-space

gauge invariant crystal momentum: 

eigenstates: 

preserve the translational symmetry, 



Anomalous velocity

Berry curvature: 

anomalous velocity: 

transverse to the electric field
give rise a Hall current



2. The valley Hall effect



Symmetry consideration

time-reversal sym.

spatial inversion sym.

time-reversal and spatial inversion symmetry



2-valley structure

Using ! /!q!=! /!k! and ! /!t=−!e /""E!! /!k!, the gen-
eral formula !2.5" for the velocity in a given state k be-
comes

vn!k" =
!#n!k"

"!k
−

e
"

E $ !n!k" , !3.6"

where !n!k" is the Berry curvature of the nth band:

!n!k" = i#"kun!k"$ $ $"kun!k"% . !3.7"

We can see that, in addition to the usual band dispersion
contribution, an extra term previously known as an
anomalous velocity also contributes to vn!k". This veloc-
ity is always transverse to the electric field, which will
give rise to a Hall current. Historically the anomalous
velocity was obtained by Karplus and Luttinger !1954",
Kohn and Luttinger !1957", and Adams and Blount
!1959"; its relation to the Berry phase was realized much
later. In Sec. V we rederive this term using a wave-
packet approach.

B. Berry curvature: Symmetry considerations

The velocity formula !3.6" reveals that, in addition to
the band energy, the Berry curvature of the Bloch bands
is also required for a complete description of the elec-
tron dynamics. However, the conventional formula &Eq.
!3.1"' has much success in describing various electronic
properties in the past. It is thus important to know under
what conditions the Berry curvature term cannot be ne-
glected.

The general form of the Berry curvature !n!k" can be
obtained via symmetry analysis. The velocity formula
!3.6" should be invariant under time-reversal and spatial
inversion operations if the unperturbed system has these
symmetries. Under time reversal, vn and k change sign
while E is fixed. Under spatial inversion, vn, k, and E
change sign. If the system has time-reversal symmetry,
the symmetry condition on Eq. !3.6" requires that

!n!− k" = − !n!k" . !3.8"

If the system has spatial inversion symmetry, then

!n!− k" = !n!k" . !3.9"

Therefore, for crystals with simultaneous time-reversal
and spatial inversion symmetry the Berry curvature van-
ishes identically throughout the Brillouin zone. In this
case Eq. !3.6" reduces to the simple expression !3.1".
However, in systems with broken either time-reversal or
inversion symmetries, their proper description requires
the use of the full velocity formula !3.6".

There are many important physical systems where
both symmetries are not simultaneously present. For ex-
ample, in the presence of ferromagnetic or antiferro-
magnetic ordering the crystal breaks the time-reversal
symmetry. Figure 3 shows the Berry curvature on the
Fermi surface of fcc Fe. As shown the Berry curvature is
negligible in most areas in the momentum space and
displays sharp and pronounced peaks in regions where
the Fermi lines &intersection of the Fermi surface with

!010" plane' have avoided crossings due to spin-orbit
coupling. Such a structure has been identified in other
materials as well !Fang et al., 2003". Another example is
provided by single-layered graphene sheet with stag-
gered sublattice potential, which breaks inversion sym-
metry !Zhou et al., 2007". Figure 4 shows the energy
band and Berry curvature of this system. The Berry cur-
vature at valley K1 and K2 have opposite signs due to
time-reversal symmetry. We note that as the gap ap-
proaches zero, the Berry phase acquired by an electron
during one circle around the valley becomes exactly ±%.
This Berry phase of % has been observed in intrinsic
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FIG. 3. !Color online" Fermi surface in !010" plane !solid lines"
and the integrated Berry curvature −&z!k" in atomic units
!color map" of fcc Fe. From Yao et al., 2004.
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FIG. 4. !Color online" Energy bands !top panel" and Berry
curvature of the conduction band !bottom panel" of a
graphene sheet with broken inversion symmetry. The first Bril-
louin zone is outlined by the dashed lines, and two inequiva-
lent valleys are labeled as K1 and K2. Details are presented in
Xiao, Yao, and Niu !2007".
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Valley Hall effect
valley index: 

Valley Hall Effect: 
valley Hall conductivity

valley current: 

time reversal inversion symmetry



Berry curvature of graphene

Using ! /!q!=! /!k! and ! /!t=−!e /""E!! /!k!, the gen-
eral formula !2.5" for the velocity in a given state k be-
comes

vn!k" =
!#n!k"

"!k
−

e
"

E $ !n!k" , !3.6"

where !n!k" is the Berry curvature of the nth band:

!n!k" = i#"kun!k"$ $ $"kun!k"% . !3.7"

We can see that, in addition to the usual band dispersion
contribution, an extra term previously known as an
anomalous velocity also contributes to vn!k". This veloc-
ity is always transverse to the electric field, which will
give rise to a Hall current. Historically the anomalous
velocity was obtained by Karplus and Luttinger !1954",
Kohn and Luttinger !1957", and Adams and Blount
!1959"; its relation to the Berry phase was realized much
later. In Sec. V we rederive this term using a wave-
packet approach.

B. Berry curvature: Symmetry considerations

The velocity formula !3.6" reveals that, in addition to
the band energy, the Berry curvature of the Bloch bands
is also required for a complete description of the elec-
tron dynamics. However, the conventional formula &Eq.
!3.1"' has much success in describing various electronic
properties in the past. It is thus important to know under
what conditions the Berry curvature term cannot be ne-
glected.

The general form of the Berry curvature !n!k" can be
obtained via symmetry analysis. The velocity formula
!3.6" should be invariant under time-reversal and spatial
inversion operations if the unperturbed system has these
symmetries. Under time reversal, vn and k change sign
while E is fixed. Under spatial inversion, vn, k, and E
change sign. If the system has time-reversal symmetry,
the symmetry condition on Eq. !3.6" requires that

!n!− k" = − !n!k" . !3.8"

If the system has spatial inversion symmetry, then

!n!− k" = !n!k" . !3.9"

Therefore, for crystals with simultaneous time-reversal
and spatial inversion symmetry the Berry curvature van-
ishes identically throughout the Brillouin zone. In this
case Eq. !3.6" reduces to the simple expression !3.1".
However, in systems with broken either time-reversal or
inversion symmetries, their proper description requires
the use of the full velocity formula !3.6".

There are many important physical systems where
both symmetries are not simultaneously present. For ex-
ample, in the presence of ferromagnetic or antiferro-
magnetic ordering the crystal breaks the time-reversal
symmetry. Figure 3 shows the Berry curvature on the
Fermi surface of fcc Fe. As shown the Berry curvature is
negligible in most areas in the momentum space and
displays sharp and pronounced peaks in regions where
the Fermi lines &intersection of the Fermi surface with

!010" plane' have avoided crossings due to spin-orbit
coupling. Such a structure has been identified in other
materials as well !Fang et al., 2003". Another example is
provided by single-layered graphene sheet with stag-
gered sublattice potential, which breaks inversion sym-
metry !Zhou et al., 2007". Figure 4 shows the energy
band and Berry curvature of this system. The Berry cur-
vature at valley K1 and K2 have opposite signs due to
time-reversal symmetry. We note that as the gap ap-
proaches zero, the Berry phase acquired by an electron
during one circle around the valley becomes exactly ±%.
This Berry phase of % has been observed in intrinsic
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FIG. 3. !Color online" Fermi surface in !010" plane !solid lines"
and the integrated Berry curvature −&z!k" in atomic units
!color map" of fcc Fe. From Yao et al., 2004.
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FIG. 4. !Color online" Energy bands !top panel" and Berry
curvature of the conduction band !bottom panel" of a
graphene sheet with broken inversion symmetry. The first Bril-
louin zone is outlined by the dashed lines, and two inequiva-
lent valleys are labeled as K1 and K2. Details are presented in
Xiao, Yao, and Niu !2007".
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In low energy, 



Valley Hall current

Anomalous velocity: 

Valley Hall current!



Pathway to valleytronics

It provides a new and standard pathway to potential 
applications of valleytronics in a broad class of 

semiconductors. 



3. Valley-selective circular 
dichroism of monolayer MoS2
[Ting Cao, Ji Feng, Junren Shi, Qian Niu, Enge Wang,(2012)]  



Graphene?

graphene: inversion symmetry

Unprecedented control of the 
lattice structure on the scale of a 

single atom is required. 

Valleytronics in graphene is very difficult



MoS2
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A non-equilibrium charge carrier imbalance between valleys 
is the key to creating valleytronic devices1–9. The principal 
mechanism invoked in this context is circularly polarized 

optical excitation3,4. In this approach, the two valleys absorb left- and 
right-handed photons differently, a phenomenon referred to as circu-
lar dichroism (CD). An essential condition for valley-selective CD in 
a honeycomb lattice is the absence of a centre of inversion. In the case 
of graphene, it was suggested that by interacting graphene with a sub-
strate such that the centre of inversion can be obliterated, whereupon 
a gap opens up in each valley10,11. This strategy, however, is quite 
challenging experimentally. And even in its eventual realization, there 
can only be a gentle perturbation to graphene via the weak covalent  
coupling at large van der Waals separations from the substrate11.

Since its first isolation12,13, monolayer molybdenum disulphide 
(MoS2) has attracted immense attention. Many measurements have 
been performed to characterize the optical and transport proper-
ties of this material12–16. In monolayer MoS2, two layers of sulphur 
atoms in a two-dimensional hexagonal lattice are stacked over each 
other in an eclipsed fashion. Each Mo sits in the centre of a trigonal 
prismatic cage formed by six sulphur atoms (Fig. 1a). Quite remark-
ably in the context of current discussion, the natural stable struc-
ture of free-standing monolayer MoS2 is a honeycomb lattice with 
inequivalent bipartite colouring, breaking the inversion symmetry 
(Fig. 1b).

While bulk MoS2 has an indirect bandgap, interestingly, when 
thinned to the monolayer limit, the material acquires direct band-
gaps located exactly at the corners of the Brillouin zone. Indeed, with 
its 1.8 eV direct bandgap and unique two-dimensional structure 
embracing the high-symmetry valleys, monolayer MoS2 has much 
to offer in the exploration of novel electronic and optoelectronic 
devices and the associated physics (as compared with boron nitride, 
which has a bandgap of about 6.0 eV in the ultraviolet regime). It 
is quite natural to question whether it is possible to achieve valley-
selective CD in this semiconducting atomic membrane, which will 
endow electrons in this material the valley degree of freedom, in 
addition to charge and spin that have been routinely explored in 
conventional device physics. We show here using ab initio numeri-
cal simulation and experimental micro-photoluminescence that  
monolayer MoS2 possesses near-perfect valley-selective CD, a prop-
erty rooted in its bulk symmetry and very much conducive to opto-
electronic valley polarization needed for valleytronics.

Results
Degree of circular polarization. The key quantity to assess is, 
therefore, the k-resolved degree of optical polarization, (k), 

between the top of the valence bands and the bottom of the 
conduction bands4

( , ) = | ( ) | | ( ) |
| ( ) | | ( ) |

.
2 2

2 2k k k
k kcv

cv cv

cv cv

This quantity is the difference between the absorption of left- 
and right-handed lights (  ), normalized by total absorption, at 
each k-point and evaluated between the top of the valence bands 
(v) and the bottom of conduction bands (c). The band structure 
of monolayer MoS2 is shown in Fig. 2a. The dependence on the 
transition energy, cv c v( ) = ( ) ( )k k k , is implicit through k.  
Here, the transition matrix element of circular polarization is 

cv
x
cv

y
cvP iP( ) =1 2[ ( ) ( )]k k k/ . The interband matrix elements, 

P pcv
c v( ) = | |k k k , are evaluated using the density functional 

perturbation theory, within the local-density approximation17, as 
implemented in VASP18. Spin-orbit coupling is not included in 
our calculations19,20. Briefly, a planewave basis set is employed at a 

(1)(1)

Mo S

Figure 1 | The crystal structure of monolayer MoS2. (a) Coordination 
environment of Mo (blue sphere) in the structure. Sulphur is shown  
as golden spheres. (b) A top view of the monolayer MoS2 lattice, 
emphasizing the connection to a honeycomb lattice. In our calculations, 
we used an optimized structure at the level of local density approximation 
in density functional theory. The shaded region bounded by dashed lines 
corresponds to one primitive cell. The unit cell parameter is a = 3.12 Å,  
and the vertical separation between sulphur layers is 3.11 Å.
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Figure 2 | Valley-selective CD of monolayer MoS2. (a) Top valence band 
(blue) and bottom conduction band (pink). The centre hexagon is the 
Brillouin zone colour-coded by the degree of circular polarization, (k), 
as defined in the text. The vector connecting K +  and K −  is perpendicular 
to Mo-S bond in the crystal structure in Fig. 1b. (b) Schematic of phase 
winding on the MoS2 lattice that gives rise to the chiral optical selectivity. 
Left panel: the contribution to phase winding from the Bloch lattice phase, 
where  =   1 is the valley index, and s = 1,2 corresponding to the S and Mo 
sites (isospin index). Right panel: the phase winding under a threefold 
rotation. The green axes indicate the rotation of local atomic coordinates 
that leads to the azimuth dissynchronization.

inversion symmetry



MoS2 for valleytronics
 

 
Fig. 1 Monolayer MoS2 Hall bar device. (A) Schematics of the valley-dependent optical 
selection rules and the photoexcited carriers at the K valley that experience an effective magnetic 
field.  (B) Schematic of a photoinduced AHE driven by a net valley polarization, and an image of 
the Hall bar device. (C) 2-point (dashed, Vx = 0.5 V) and 4-point (solid) conductivities of the 
device as a function of back gate voltage Vg. Inset: Source-drain bias (Vx) dependence of the 
current along the longitudinal channel (Ix) at different back gate voltages Vg. (D) The change in 
conductivity Δσxx as a function of incident photon energy E under laser illumination. The arrow 
indicates the excitation energy used in this experiment, E ≈ 1.89 eV. Inset: Source-drain bias (Vx) 
dependence of the photocurrent (ΔIx) at different incident laser intensities P centered at 657 nm 
(Vg = 0 V). 

1.8eV



Degree of circular polarization

circular polarization: 

inter-band matrix elements: 

difference between the absorption of left- and right-
handed lights, between the top of the valence bands 

and the bottom of conduction bands



at       in MoS2
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A non-equilibrium charge carrier imbalance between valleys 
is the key to creating valleytronic devices1–9. The principal 
mechanism invoked in this context is circularly polarized 

optical excitation3,4. In this approach, the two valleys absorb left- and 
right-handed photons differently, a phenomenon referred to as circu-
lar dichroism (CD). An essential condition for valley-selective CD in 
a honeycomb lattice is the absence of a centre of inversion. In the case 
of graphene, it was suggested that by interacting graphene with a sub-
strate such that the centre of inversion can be obliterated, whereupon 
a gap opens up in each valley10,11. This strategy, however, is quite 
challenging experimentally. And even in its eventual realization, there 
can only be a gentle perturbation to graphene via the weak covalent  
coupling at large van der Waals separations from the substrate11.

Since its first isolation12,13, monolayer molybdenum disulphide 
(MoS2) has attracted immense attention. Many measurements have 
been performed to characterize the optical and transport proper-
ties of this material12–16. In monolayer MoS2, two layers of sulphur 
atoms in a two-dimensional hexagonal lattice are stacked over each 
other in an eclipsed fashion. Each Mo sits in the centre of a trigonal 
prismatic cage formed by six sulphur atoms (Fig. 1a). Quite remark-
ably in the context of current discussion, the natural stable struc-
ture of free-standing monolayer MoS2 is a honeycomb lattice with 
inequivalent bipartite colouring, breaking the inversion symmetry 
(Fig. 1b).

While bulk MoS2 has an indirect bandgap, interestingly, when 
thinned to the monolayer limit, the material acquires direct band-
gaps located exactly at the corners of the Brillouin zone. Indeed, with 
its 1.8 eV direct bandgap and unique two-dimensional structure 
embracing the high-symmetry valleys, monolayer MoS2 has much 
to offer in the exploration of novel electronic and optoelectronic 
devices and the associated physics (as compared with boron nitride, 
which has a bandgap of about 6.0 eV in the ultraviolet regime). It 
is quite natural to question whether it is possible to achieve valley-
selective CD in this semiconducting atomic membrane, which will 
endow electrons in this material the valley degree of freedom, in 
addition to charge and spin that have been routinely explored in 
conventional device physics. We show here using ab initio numeri-
cal simulation and experimental micro-photoluminescence that  
monolayer MoS2 possesses near-perfect valley-selective CD, a prop-
erty rooted in its bulk symmetry and very much conducive to opto-
electronic valley polarization needed for valleytronics.

Results
Degree of circular polarization. The key quantity to assess is, 
therefore, the k-resolved degree of optical polarization, (k), 

between the top of the valence bands and the bottom of the 
conduction bands4

( , ) = | ( ) | | ( ) |
| ( ) | | ( ) |

.
2 2

2 2k k k
k kcv

cv cv

cv cv

This quantity is the difference between the absorption of left- 
and right-handed lights (  ), normalized by total absorption, at 
each k-point and evaluated between the top of the valence bands 
(v) and the bottom of conduction bands (c). The band structure 
of monolayer MoS2 is shown in Fig. 2a. The dependence on the 
transition energy, cv c v( ) = ( ) ( )k k k , is implicit through k.  
Here, the transition matrix element of circular polarization is 

cv
x
cv

y
cvP iP( ) =1 2[ ( ) ( )]k k k/ . The interband matrix elements, 

P pcv
c v( ) = | |k k k , are evaluated using the density functional 

perturbation theory, within the local-density approximation17, as 
implemented in VASP18. Spin-orbit coupling is not included in 
our calculations19,20. Briefly, a planewave basis set is employed at a 

(1)(1)

Mo S

Figure 1 | The crystal structure of monolayer MoS2. (a) Coordination 
environment of Mo (blue sphere) in the structure. Sulphur is shown  
as golden spheres. (b) A top view of the monolayer MoS2 lattice, 
emphasizing the connection to a honeycomb lattice. In our calculations, 
we used an optimized structure at the level of local density approximation 
in density functional theory. The shaded region bounded by dashed lines 
corresponds to one primitive cell. The unit cell parameter is a = 3.12 Å,  
and the vertical separation between sulphur layers is 3.11 Å.
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Figure 2 | Valley-selective CD of monolayer MoS2. (a) Top valence band 
(blue) and bottom conduction band (pink). The centre hexagon is the 
Brillouin zone colour-coded by the degree of circular polarization, (k), 
as defined in the text. The vector connecting K +  and K −  is perpendicular 
to Mo-S bond in the crystal structure in Fig. 1b. (b) Schematic of phase 
winding on the MoS2 lattice that gives rise to the chiral optical selectivity. 
Left panel: the contribution to phase winding from the Bloch lattice phase, 
where  =   1 is the valley index, and s = 1,2 corresponding to the S and Mo 
sites (isospin index). Right panel: the phase winding under a threefold 
rotation. The green axes indicate the rotation of local atomic coordinates 
that leads to the azimuth dissynchronization.
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show the samples on which our experiments are performed. The 
monolayer region is identified by micro-PL at 300 K (Fig. 3c), as 
in a monolayer sample displays a single PL peak at 1.82 eV, while 
multi-layer samples show an additional peak at lower energies12. In 
Fig. 3d, we show the intensities of the luminescence with  +  (left-
handed) and − (right-handed) polarizations at low temperature 
(83 K), under a  +  irradiation at wavelength 633 nm (see Methods). 
In agreement with our prediction, the luminescence indeed exhibits 
a substantial circular polarization ( ~50%) at the PL peak.

Discussion
The experimentally measured polarization of the PL is considerably 
larger than spin-related polarization in other widely studied materi-
als such as GaAs, but smaller than the expected value from ab initio  
simulation ( 0.98 for the energy of the incident light). There are 
two important timescales in the valley-optical processes: valley 
lifetime, v, and recombination time, 1 1 1= r nr , in which sub-
scripts r and nr refer to radiative and non-radiative recombinations 
(via, for example, the substrate), respectively. The value of polariza-
tion of the experimental PL, PL, can be deduced from standard rate 
equations for the steady-state process,

PL = (1 )
1 /

,
2

v

where 1−  is selectivity in the initial excitation (including possi-
ble intervalley generation), and  the theoretical degree of circular 
polarization.

In the lowest order description of the kinetic processes, we have 
 = imp + ph to account for impurity/defects/substrate- and pho-

non-assisted excitation and recombination in which the valleys are 
coupled by the momentum components of the scatterers. Conse-
quently, the less-than-perfect circular polarization observed in the 
experimental PL is ascribable to inevitable intervalley processes, 
or relatively large ratio between valley lifetime and recombina-
tion time, / v. Measurements of PL circular polarization on high- 
quality, clean samples at very low temperatures (minimizing ) will 
allow the extraction of / v. Moreover, it is interesting to assess the 
role of non-radiative relaxation of carriers, which can be induced by 
substrate12 and defects.

Now that we have established the valley-selective CD in monol-
ayer MoS2 with ensuing non-equilibrium valley polarization, it is 
also interesting to inspect the Berry curvature, n n z z( ) = ( ),k k ,  
which, if present, has crucial influence on the electronic transport 
properties. Berry curvature enters into the semiclassical wavepacket 
dynamics via an anomalous velocity perpendicular to the applied 
electric field (~ E × n(k)), in addition to the usual group veloc-
ity of a Bloch band state21,22. Although Berry curvature is not 
exactly a ground-state property, it can be evaluated quite accu-
rately for the Kohn-Sham one-particle states23,24. The presence of 
non-vanishing Berry curvature is possible in the non-centrosym-
metric honeycomb lattice3. In Fig. 4, we plot the Berry curvature, 

n z n x n yu k u k, ( ) = 2 / | /k k kIm  along the K −  −  − K +  path. 
Because the system has time-reversal symmetry and not inversion 
symmetry, n,z(k) is an odd function in k with generally non-zero 
values, as expected. The charge carriers’ anomalous velocities acquire 
opposite signs in the two valleys, exactly cancelling each other’s 
contribution to the transverse current. At equilibrium, freestanding 
monolayer MoS2 will not exhibit valley Hall effect, as expected. At 
K  , the Berry curvatures do not have the particle-hole symmetry. 
This is a clear indication that the physics of MoS2 cannot be fully 
captured by a minimalistic two-band model, as is distinct from the 
case of gapped graphene.

On the bais of our theoretical and experimental results, a few 
further experiments are quite compelling. When valley polarization  

(5)(5)

is induced by, say, valley-selective CD, only one valley has non- 
vanishing charge carrier population (ideally, assuming the absence 
of intervalley scattering). This can then lead to the Hall effect and 
magnetization without an applied magnetic field4. The Berry curva-
ture across the band edges near K   is most relevant to photo-excited 
charge carriers. We see that, at the band edges, both conduction and 
valence bands display significant Berry curvature with opposite 
signs. Consequently, when electrons and holes are generated by a 
circularly polarized irradiation, both types of charge carriers have 
an intrinsic concurrent contribution to the Hall conductivity or 
magnetization.

Moreover, a time-resolved PL measurement will also be an inter-
esting experiment for revealing the valley lifetime, analogous to the 
spin lifetime in spintronics. In closing, we also would like to point 
out that MoS2 is but one of the many transition metal dichalcoge-
nides, MX2, where M = Mo, W, and X = S, Se. They all have identical 
crystal structure and are similar electronically. These compounds, 
once available in monolayer form, will provide a chemically rich 
family of semiconducting atomic membranes for exploring the val-
ley physics, as we have demonstrated here for MoS2. In addition, 
there is considerable spin-orbit coupling in these systems19, and the 
valley and spin dependent physics in the neighbourhood of K points 
in MoX2 monolayers is discussed in a recent theoretical work20. The 
evaluation of optical selecivity and Berry curvature at higher level 
theories to address the many-body nature of the excited states is also 
an important future direction.

Methods
Sample preparation. MoS2 flakes consisting of 1–4 layers (L) are obtained by 
micro-mechanical cleavage of a natural bulk MoS2 crystal (SPI Supplies, USA)  
on a Si/90 nm SiO2 substrate. The number of layers is identified by optical contrast 
and PL spectroscopy.

Circularly polarized micro-PL. Optical contrast and micro-PL are performed in 
a backscattering geometry using a Jobin-Yvon HR800 Raman system equipped 
with a liquid-nitrogen-cooled charge-coupled detector. The optical excitation 
wavelength is 633 nm from a HeNe laser. The laser beam passes through a Soleil 
Babinet Compensator to generate a circularly polarized light. The polarization is set 
to  + , and the PL polarization  +  or − is analysed by a quarter-wave plate placed 
in front of a fixed Glan–Thomson linear polarizer. The whole set-up provides a 
rejection ratio better than 5% in  +  and − configuration over the spectral range 
of interest. The excitation power of 50 W is used to avoid sample heating. We use 
a normal ×100 objective with numerical aperture  = 0.90 for optical contrast and 
PL measurement at room temperature (Fig. 3c). A long-working-distance ×50 
objective is used for PL measurement at low temperature (Fig. 3d). The sample 
temperature was controlled by a programmable hot stage THMS600 from Linkam 
Scientific Instruments. 
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Figure 4 | Berry curvature, n,z(k), of bands across the bandgap. 
The blue curve corresponds to the top of valence bands. The red curve 
corresponds to the bottom of conduction bands. The Berry curvatures  
of the states along the K −  −  − K +  path of the Brillouin zone are plotted. 
The value of Berry curvature is large for the conduction band at the zone 
centre, where bands are degenerate.



Hall effect
 

 
Fig. 1 Monolayer MoS2 Hall bar device. (A) Schematics of the valley-dependent optical 
selection rules and the photoexcited carriers at the K valley that experience an effective magnetic 
field.  (B) Schematic of a photoinduced AHE driven by a net valley polarization, and an image of 
the Hall bar device. (C) 2-point (dashed, Vx = 0.5 V) and 4-point (solid) conductivities of the 
device as a function of back gate voltage Vg. Inset: Source-drain bias (Vx) dependence of the 
current along the longitudinal channel (Ix) at different back gate voltages Vg. (D) The change in 
conductivity Δσxx as a function of incident photon energy E under laser illumination. The arrow 
indicates the excitation energy used in this experiment, E ≈ 1.89 eV. Inset: Source-drain bias (Vx) 
dependence of the photocurrent (ΔIx) at different incident laser intensities P centered at 657 nm 
(Vg = 0 V). 
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The valley Hall effect

 
Fig. 2 The valley Hall effect. (A) The source-drain bias (Vx) dependence of the Hall voltage 
(VH) for 657 nm R-L (red, solid) and L-R (red, dashed) modulations. Results from the monolayer 
device under half-wave (s-p) modulation (red, dotted) and from the bilayer device under R-L 
modulation (blue, solid) are also shown. (B) The anomalous Hall resistance of the monolayer 
device as a function of the incidence angle θ under quarter-wave (Δλ = 1/4, solid red) and half-
wave (Δλ = 1/2, empty red) modulations. That of the bilayer device under quarter-wave 
modulation is also shown (blue). (C) Energy dependence of the change in conductivity Δσxx 
(black curve) and of the anomalous Hall conductivity σH (solid dots). The latter is obtained under 
R-L modulation. 
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Doping dependence of the 
anomalous Hall conductivity

 
Fig. 3 Doping dependence of the anomalous Hall conductivity. The anomalous Hall 
conductivity as a function of the charge carrier density ∆!!! at different gate voltages with linear 
fits to the experimental data. The theoretical prediction in equation 1, for Δnv = Δnph, is shown by 
the grey curve.  
  



Open question

• What does cause the observed quick drop of Hall 
conductance at laser frequency? Inter-corn scattering?

• What are the relevant sources of scattering present 
in MoS22, and what are their relative strengths? 

• What are the next steps towards the long standing 
goal of valleytronics? 



Summary

1. Anomalous velocity

2. The valley Hall effect

3. Valley-selective circular dichroism of monolayer MoS2
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