博士論文公聴会の公示(物理学専攻)

学位申請者:前田 剛

論文題目: Study of Ca-49 Background in Neutrinoless Double Beta Decay of Ca-48 (Ca-48 のニュートリノを伴わない二重ベータ崩壊探索のための Ca-49 の背景事象の研究)

日時 : 201X年 X月 X日 (X) XX:XX-XX:XX

場所: 理学研究科 H棟 7階 7階セミナー室(H701号室)

主查 :能町 正治

副查 : 岸本 忠史、野海 博之、嶋 達志、小田原 厚子

論文要旨:

Next-generation experiments for neutrinoless double beta decay (0 ν β β decay) search are planned over the world. CANDLES experiment is challenging the first discovery by promoting enrichment of ⁴⁸Ca. In parallel with development of enrichment method, research on background events is progressed for the future detector using enriched ⁴⁸CaF₂ crystals.

For 0 ν β β decay of 48 Ca (Q $_{\beta}$ =4.3MeV), high energy events by 49 Ca decays (Q $_{\beta}$ =5.3MeV) inside the crystals are concerned as inevitable cosmogenic effect. In order to estimate the effect, a measurement was done from December 2016 at Kamioka Underground Laboratory. By analyzing data of live time 267 days and a simulation, it was estimated that generated rate of 49 Ca would be 2×10^2 counts/year and the background rate would be 0.8 counts/year for 0 ν β β decay from planned amount of 48 Ca. In addition that, it was found that it could be reduced to one or more order of magnitude by preparing reduction methods. From these studies, it was turned out that 49 Ca background would be remain as sever background for 0 ν β β decay of 48 Ca, but, by preparing the reduction methods before start measurement, it would be possible to search for 0 ν β β decay of 48 Ca.