#### Seesaw with loop-Induced Dirac mass and dark matter from U(1)<sub>B-L</sub> gauge symmetry breaking

#### Shinya KANEMURA University of TOYAMA



S.K., T. Nabeshima, H. Sugiyama, PLB703, 66 (2011) S.K., T. Nabeshima, H. Sugiyama, arXiv: 1111.0059

Seminar at Osaka University, 1 February, 2012

#### Introduction



To understand these phenomena, we need to go beyond-SM

### Plan of Talk

- Intoroduction
- Physics of Extended Higgs sector
- A new model for neutrino mass and dark matter
- Summary

#### Masses of elementary particles



In the SM, all masses are zero in the Lagrangian Where do they come from? Electroweak Symmetry Breaking

#### **Electroweak Symmetry Breaking**

#### Nothing is known for Higgs sector!

- Anything to trigger EWSB:  $SU(2) \times U(1) \rightarrow U(1)$
- Elementary Scalar? Dynamical?
- Scale of EWSB: 246GeV (Fermi Constant)

#### Higgs: Origin of Mass?

- Weak Gauge Boson
- Quarks and Leptons (Yukawa Interaction)
- Mass of itself

- (Higgs Mechanism)
- - (Higgs Potential)
- [Neutrinos (Dirac? Seesaw? Radiative?)]
- [Dark Matter?]

In the SM, only a Higgs doublet field is responsible for all of them!



### Higgs potential in the SM

One doublet field

 $V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$ 

 $m_{h}^{2} = 2 \lambda v^{2}$ 

- $\lambda \phi^4$  theory  $\rightarrow$  Landau pole  $16\pi^2 \mu \frac{d}{d\mu} \lambda = 24\lambda^2 - 6y_t^4 + \dots$
- Custodial symmetry

$$M = (\tilde{\Phi}, \Phi) = \begin{bmatrix} -\phi^0 & \phi^+ \\ \phi^- & \phi^0 \end{bmatrix}$$
$$M \to M' = g_L^{\dagger} M g_R \quad (g_{L,R} \in SU(2)_{L,R})$$
$$SU(2)_L \times SU(2)_R \longrightarrow SU(2)_V$$



# SM Higgs

#### LEP precision data tells us

Lighter Higgs boson is preferable ! (114 GeV <  $m_h$  < 149 GeV at 95 % CL)

Current direct search data at LHC  $115 \text{ GeV} < m_h < 128 \text{ GeV}$  $600 \text{ GeV} < m_h$ 



Data suggest a light Higgs boson

It is expected to detect a light Higgs boson at the LHC in near future

### SM Higgs

#### **Origin of Mass**



This relation is important to identify the Higgs boson in the SM

The International Linear Collider is necessary!

# Heavy Higgs is really excluded?

#### No!

A heavy (SM-like) Higgs is not excluded, if there is new physics

The upper bound comes from the loop effect of  $m_{H}$ .

$$\Delta T_{\text{Higgs}} \simeq -\ln \frac{m_H^2}{M_W^2} ~(\sim 0$$

A heavy Higgs is possible by additional new physics loop contributions to the *T* parameter (violation of custodial SU(2))

Heavy Higgs: Signal of New Physics

**Oblique Corrections** W, Z W.Z W.Z 0.2 LHC 2000 0.0 NP  $\vdash$ contribution  $m_{h} = 100$ 300 -0.2 H 500 -0.4 -0.2 -0.10.0 0.1 S.00.3 S

### Non-minimal Higgs sector?

Many new physics models predict extended Higgs sectors

- SUSY, DSB, Little Higgs, ...
- Extra CPV phases, First order phase transition
- Radiative Seesaw models

Each model has a specific (extended) Higgs sector

#### Higgs Sector = Window to New Physics

# [2] Extended Higgs models

- If the Higgs sector contains more than one scalar bosons, possibility would be
  - Extra singlets (NMSSM, B-L Higgs, ...)
  - Extra doublets (SUSY, CPV, ...)
  - Extra triplets (Type II seesaw, ....)
- Basic experimental quantities:

....

- Electroweak rho parameter
- Flavor Changing Neutral Current (FCNC)

#### Electroweak rho parameter

$$\rho_{exp} = 1.0008 + 0.0017 - 0.0007$$

$$\rho \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \frac{\sum_i \left[ 4T_i (T_i + 1) - Y_i^2 \right] |v_i|^2 c_i}{\sum_i 2Y_i^2 |v_i|^2}$$

$$Q = I_3 + Y/2$$

 $T_i : SU(2)_L$  isospin  $Y_i :$  hypercharge  $v_i :$  v.e.v.  $c_i :$  1 for complex representation 1/2 for real representation

Possibility of  $\rho=1$  (tree)

- 1. SM + doublets (D) + singlets (S)
- 2. SM + Triplets(T)

a) 
$$V_T \ll V_D$$

b) Combination of several representations  $v_D \sim v_T$  [ (ex) D+T\_0+T\_2: Georgi-Machasek model]

Naively muliti-doublets (+ singlets) are natural extension

#### 2 Higgs doublet model (2HDM)

#### **FCNC Suppression**

# SM: FCNC via Z is suppressed by GIM mechanism Multi-Higgs models: FCNC via Higgs

To avoid FCNC, impose a discrete symmetry **2HDM:**  $\Phi_1 \rightarrow + \Phi_1$ ,  $\Phi_2 = -\Phi_2$ Each quark or lepton couples only one of the Higgs doublets No FCNC at tree level

#### Four types of Yukawa Interaction





Aoki, SK, Tsumura, Yagyu, PRD 80, 015017 (2009)

## Decoupling/Non-decoupling

Precision measurements on Higgs sector Calculation with radiative corrections

- $\rightarrow$  Determination of deteils of Higgs sector
- Decoupling Theorem
   Appelquist-Carazzone 1975

   New phys. loop effect in observables
   1/M<sup>n</sup> → 0 (M→∞: decouple)
- Violation of the decoupling theorem
  - Chiral fermion loop (ex. top)

 $m_f = y_f v$ 

- Boson loop (ex.  $H^+$  in non-SUSY 2HDM) Non-decoupling effect  $m_{\phi}^2 = \lambda v^2 + M^2$  (only if  $\lambda v^2 > M^2$ )





SK, Okada, Tsumura, Taniguchi, 2011

2HDM



Even in the SM Higgs is heavy, the data can be satisfied by the mass splitting between  $H^{\pm}$  and A (by breaking of custodial SU(2)v).





### Model without $\rho = 1$ at tree level

Model with  $\rho$ =1: SM, 2HDM, MSSM, .... 3 inputs ( $\alpha_{EM}$ ,  $G_F$ ,  $m_Z$ ) with  $\cos\theta_W = m_W/m_Z$  $- \delta\rho = \rho - 1$  measures the violation of SU(2)v in the loop dynamics

> ex)  $\delta \rho \propto (m_t - m_b)^2 / v^2$  quark-loop or  $(m_{H^+} - m_A)^2 / v^2$  scalar-loop

Model without  $\rho=1$ : models with tripletes 4 inputs ( $\alpha_{EM}$ ,  $G_F$ ,  $m_Z$ ,  $\sin^2\theta w$ )

 Renormalization of additional EW parameter sin<sup>2</sup>θw absorbs the violation of the custodial SU(2)v symmetry

$$1 - 4\hat{s}_W^2(m_Z) = \frac{\operatorname{Re}(v_e)}{\operatorname{Re}(a_e)}$$

 $v_e$  ( $a_e$ ): vector (axial) part of the Zee vertex

- No quadratic mass dependences in  $\Delta \rho$  ! ex)  $\delta \rho \propto \ln(m_t/m_b)$  quark-loop

#### Higgs Triplet Model (HTM)

Neutrino mass via Type-II Seesaw mechanism

$$\Phi = \begin{bmatrix} \varphi^+ \\ \frac{1}{\sqrt{2}}(\varphi + v_{\Phi} + i\chi) \end{bmatrix}, \quad \Delta = \begin{pmatrix} \frac{\Delta^+}{\sqrt{2}} & \Delta^{++} \\ \Delta^0 & -\frac{\Delta^+}{\sqrt{2}} \end{pmatrix}$$

• Tree level

$$\rho \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \frac{1 + \frac{2v_{\Delta}^2}{v_{\Phi}^2}}{1 + \frac{4v_{\Delta}^2}{v_{\Phi}^2}}$$

• Loop level

$$m_W^2 = \frac{\pi \alpha_{\rm em}}{\sqrt{2}G_F \hat{s}_W^2} (1 + \Delta r),$$
  
$$\rho = \frac{\pi \alpha_{\rm em}}{\sqrt{2}G_F m_Z^2 \hat{s}_W^2 \hat{c}_W^2} (1 + \Delta r),$$

S. Kanemura, K. Yagyu, arXiv:1201.6287

0

Case I:  $m_{H^{++}} = 150 \text{ GeV}, m_{h} = 125 \text{ GeV}, \tan \alpha = 0$ 



### Higgs potential

To understand the essence of EWSB, we must know the self-coupling in addition to the mass independently

$$V_{\text{Higgs}} = \frac{1}{2} \frac{m_h^2 h^2}{2!} + \frac{1}{3!} \frac{\lambda_{hhh}}{2!} h^3 + \frac{1}{4!} \lambda_{hhhh} h^4 + \cdots$$

Effective potential 
$$V_{\text{eff}}(\varphi) = -\frac{\mu_0^2}{2}\varphi^2 + \frac{\lambda_0}{4}\varphi^4 + \sum_f \frac{(-1)^{2s_f}N_{C_f}N_{S_f}}{64\pi^2}m_f(\varphi)^4 \left[\ln\frac{m_f(\varphi)^2}{Q^2} - \frac{3}{2}\right]$$
  
Renormalization  $\frac{\partial V_{\text{eff}}}{\partial \varphi}\Big|_{\varphi=v} = 0, \quad \frac{\partial^2 V_{\text{eff}}}{\partial \varphi^2}\Big|_{\varphi=v} = m_h^2, \quad \frac{\partial^3 V_{\text{eff}}}{\partial \varphi^3}\Big|_{\varphi=v} = \lambda_{hhh} \quad \text{if } \varphi = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$   
SM Case  $\lambda_{hhh}^{\text{SMloop}} \sim \frac{3m_h^2}{v}\left(1 - \frac{N_c m_t^4}{3\pi^2 v^2 m_h^2} + \cdots\right)$ 

#### Non-decoupling effect

22

### Case of Non-SUSY 2HDM

- Consider when the lightest h is SM-like  $[\sin(\beta - \alpha) = 1]$
- At tree, the hhh coupling takes the  ${\bullet}$ same form as in the SM

• At 1-loop, non-decoupling effect  $m_0^4$ 



SK, Kiyoura, Okada, Senaha, Yuan, PLB558 (2003)

 $\Phi = H, A, H^{\pm}$ 



#### Relation to electroweak baryogenesis

#### Sakharov's conditions:



Broken Phase

 $\phi = v_c$ 

Quick sphaleron decoupling to retain sufficient baryon number in Broken Phase

$$\frac{\varphi_c}{T_c}\gtrsim 1$$

Symmetric Phase

 $\phi = 0$ 

#### EW baryogenesis and the hhh coupling

Finite temperature potenital



Strong 1<sup>st</sup> OPT ⇔ Large *hhh* coupling

#### What kind of SUSY Higgs sectors give strong 1<sup>st</sup> OPT ? (large deviation in the *hhh* coupling?)

$$\begin{array}{|c|c|c|c|c|c|c|c|} \text{Case of} \\ \text{Non-SUSY} \\ \text{THDM} \end{array} \lambda_{hhh}^{2\text{HDM}} \simeq \frac{3m_h^2}{v} \left[ 1 + \frac{m_{\Phi}^4}{12\pi^2 m_h^2} \left( 1 - \frac{M^2}{m_{\Phi}^2} \right)^3 - \frac{m_t^4}{\pi^2 v^2 m_h^2} \right] \end{array}$$

1. MSSM: only D term [+ (F-term top Yukawa at loop)] determines  $m_h$ , *hhh* etc.

2. General SUSY Higgs sector

 $V_{int} = |D|^2 + |F|^2 + Soft-breaking$ F-term contributions: appear with additional singlets, triplets  $W = \lambda H_u H_d \varphi$ ,  $\lambda H_u \Delta H_{u'} ...$ Large non-decoupling effects can appear in observables via F-term

# NMSSM (MSSM+S)

Chiral Superfield: **S (singlet)** which generates F-term interaction

$$W = \lambda_{HHS} H_u H_d S$$



Same coupling makes both  $m_h$  and the *hhh* coupling large

 $m_h$  is large, but the deviation in *hhh* coupling not large

#### Fat Higgs model

Harnik, Kribs, Larson, Murayama

Composite  $H_1, H_2, N$ A UV complete theory At low energy, a strong NMSSM  $W = \lambda (NH_1H_2 - v_0^2)$ 

The SM-like Higgs can be heavy

$$\begin{split} m_h^2 &\simeq \lambda^2 v^2 + \mathcal{O}(m_Z^2) \\ M_{H^{\pm}}^2 &= M_A^2 - \lambda^2 v^2 \\ \hline \lambda \text{ can be of O(1)} \\ \Leftrightarrow m_h > 200 \text{ GeV} \end{split}$$





appears in the *hhh* coupling after renormalization <sup>29</sup>

#### Non-decoupling effects

#### SM-like Higgs mass

$$\begin{split} m_h^2 &\simeq m_Z^2 \cos^2 2\beta + (\text{MSSM-loop}) \\ &+ \frac{\lambda_1^4 v^2 c_\beta^4}{16\pi^2} \ln \frac{m_{\Omega_2^\pm}^2 m_{\Phi_2^{\prime\pm}}^2}{m_{\tilde{\chi}_2^\pm}^4} + \frac{\lambda_2^4 v^2 s_\beta^4}{16\pi^2} \ln \frac{m_{\Omega_1^\pm}^2 m_{\Phi_1^{\prime\pm}}^2}{m_{\tilde{\chi}_1^\pm}^4} \\ &\text{m}_h \text{ cannot be very large: 114-135 GeV} \end{split}$$

$$\begin{aligned} \text{The hhh coupling} \\ \lambda_{hhh}^{\text{Model}} &\simeq \lambda_{hhh}^{\text{SM}} \left[ 1 + \sum_{1,2} \frac{m_{\Omega_i}^4}{6\pi^2 v^2 m_h^2} \left( 1 - \frac{\overline{m}_i^2}{m_{\Omega_i}^2} \right)^3 + \cdots \right] \\ &m_{\Omega_1}^2 &\simeq \overline{m}_1^2 + \frac{\lambda_1^2 \sin^2 \beta}{2} v^2 \\ &m_{\Omega_2}^2 &\simeq \overline{m}_2^2 + \frac{\lambda_2^2 \cos^2 \beta}{2} v^2 \end{aligned}$$

$$\begin{aligned} \text{Deviation can be large when} \\ \hline m_{\Omega_i} &\gg \overline{m}_i \end{aligned}$$

20-70%!



#### RGE analysis in 4HDM+ $\Omega$



S.K., T. Shindou, K. Yagyu, 2010

#### EW Phase Transition in 4HDM+ $\Omega$

S.K., E. Senaha, T. Shindou arXiv:1109.5226



Large *hhh* coupling ⇔ Strong 1<sup>st</sup> OPT

Testable at ILC !

### Higgs self-coupling at ILC

The nature of EWSB  $V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$ 

- LHC: Difficult for a light Higgs ( < 140 GeV)
- ILC: Testable
  - Simulation study underway
     Suehara-san's talk

LC Physics!

It is important to determine the hhh coupling by O(20) %



D. Harada 2010

### Summary

- There are many possibilities for the Higgs sector
- New physics scenarios ⇔ Extended Higgs sector
- The scale of new physics cannot be predicted, so that it is not guaranteed to directly find evidence of new physics at collider experiments
- But at the LHC, we definitely obtain information for the Higgs sector
- New physics can be explored via the detailed study of extended Higgs sectors

A TeV scale model to explain tiny neutrino masses, the WIMP dark matter mass and its stability

#### Seesaw with loop-Induced Dirac mass and dark matter from U(1)<sub>B-L</sub> gauge symmetry breaking

#### Shinya KANEMURA University of TOYAMA



S.K., T. Nabeshima, H. Sugiyama, PLB703, 66 (2011) S.K., T. Nabeshima, H. Sugiyama, arXiv: 1111.0059

Seminar at Osaka University, 1 February, 2012

#### Introduction



To understand these phenomena, we need to go beyond-SM

#### BSM Phenomenon: Dark Matter

#### WIMP Hypothesis

- Neutral, Non-relativistic, Stable
- Mass = 10-1000 GeV (WMAP)

 $\Omega h^2 = 0.1 \Rightarrow \sigma(DD \rightarrow XX) = O(1) \text{ pb} \Rightarrow M_{DM} = 10-1000 \text{GeV}$ 

- Basic Questions
  - Which particle is DM?
  - What is the origin of the DM mass?
  - Why is  $M_{DM}$  similar to the scale of EWSB?
  - What is the origin of stability of DM?

Maybe, the mass can be spontaneously generated at the scale JUST above EWSB, if it is given at the tree level.

#### BSM phenomenon: tiny neutrino mass



Why neutrino masses are tiny? What is the origin of neutrino mass? Dirac? Majorana?

#### **BSM Phenomenon: Neutrino Mass**

Neutirno Mass Term (= Effective dim-5 operator)

 $L^{eff} = (c_{ij}/M) v^{i} v^{j} \varphi \phi$ 

 $\langle \phi \rangle = v = 246 GeV$ 

Mechanism for tiny masses:

$$m_{ij}^{v} = (c_{ij}/M) v^{2} < 0.1 eV$$

Seesaw (tree level)  $m_{ij}^{\nu} = y_i y_j v^2 / M$ 

(M>> 1TeV)

<u>Quantum Effects</u> N-th order of perturbation theory  $m_{ij}^{v} = [g^{2}/(16\pi^{2})]^{N} C_{ij} v^{2}/M$  (M can be 1 TeV)

#### Seesaw Mechanism?

Super heavy RH neutrinos (M<sub>NR</sub> ~ 10<sup>10-15</sup>GeV)

- Hierarchy between  $M_{NR}$  and  $m_D$  generates that between  $m_D$  and tiny  $m_v$  ( $m_D \sim 100 \text{ GeV}$ )

$$m_v = m_D^2 / M_{N_R}$$





Minkowski Yanagida Gell-Mann et al



- Simple, compatible with GUT etc
- Introduction of a super high scale
   Hierarchy for hierarchy!
   Far from experimental reach...

### 2 possibilities

- 1) Scenario dependent on very high scales
  - Maybe compatible with canonical GUTs
  - Large mass hierarchy
  - A direct link to the GUT or Planck Scale?
  - Too high to be tested

- 2) Scenario due to the TeV scale physics
  - Renormalizable theory at the TeV scale
  - No large hierarchy among mass scales
  - Strong connection to Electroweak Symmetry Breaking
  - Testable at collider experiments

#### Scenario of Radiative $\nu\nu\phi\phi$ generation

- Tiny v-Masses come from loop effects
  - Zee (1980, 1985)
  - Zee, Babu (1988)
  - Krauss-Nasri-Trodden (2002)
  - Ma (2006), .....
- Merit
  - Super heavy particles are not necessary

Size of tiny m, can naturally be deduced from TeV scale by higher order perturbation

νL  $l_L \mid l_R N_R$  $l_{R'} l_L$ φ0 Physics at TeV: Testable at collider experiments



### Radiative seesaw with Z<sub>2</sub>

Z<sub>2</sub>-parity plays roles: 1. No Yukawa coupling (Radiative neutrino mass) 2. Stability of the lightest Z<sub>2</sub> odd particle (DM)

- Ex1) 1-loop Ma (2006)
  - Simplest model
  - $-SM + N_R + Inert doublet (H')$
  - DM candidate [ H' or NR ]
- Ex2) 3-loop Aoki-Kanemura-Seto (2008)
  - Neutrino mass from O(1) coupling
  - $2HDM + \eta^{0} + S^{+} + N_{R}$
  - DM candidate [  $\eta^0$  (or NR) ]
  - Electroweak Baryogenesis

All 3 problems may be solved by TeV physics w/o fine tuning



#### Questions on Radiative Seesaw with Z<sub>2</sub>

- What is the origin of LNV at the TeV scale?
- What is the origin of the DM mass?
- Where the Z<sub>2</sub> parity come from?

Gauged U(1)<sub>B-L</sub> would solve these problems

- LNV: SSB of U(1)<sub>B-L</sub> at the TeV scale
- DM mass: chiral for U(1)<sub>B-L</sub>
   → Dirac fermion after the SSB
- Global U(1)<sub>DM</sub> as remnant of the SSB of U(1)<sub>B-L</sub>

### Phenomenological interest

- It is interesting if mass of  $v_R$  is at TeV
- Seesaw Mechanism:
  - $v_R$  must be very heavy, if y=O(1)
- Radiative Seesaw:
  - $v_R$  can be at the TeV scale w/o fine tuning but it is  $Z_2$ -odd in many models
- Can we have mechanism to have a TeV scale  $Z_2$ -even  $V_R$  w/o fine tuning ?
- Loop-induced Yukawa coupling!
- After the SSB of Lepton Number at the TeV scale, Type-I seesaw mechanism occurs with TeV-scale v<sub>R</sub> via the loopinduced Dirac Yukawa coupling



#### Raditative Type-I seesaw model

If Dirac Yukawa couplings are 1-loop induced, M<sub>R</sub> can be at TeV scale or below w/o large fine tuning (g~0.1).



#### 1-loop induced Yukawa

 $M_{\mbox{\tiny NR}}$  is naturally at TeV scale so that it is testable at LHC

In this model,  $v_R$  is  $Z_2$ -even, so that it can decay into SM particles DM candidate may be in the loop sub-diagram of Yukawa coupling

# Our Model

S.K., T. Nabeshima, H. Sugiyama arXiv: 1111.0059

 $SU(3)_{C} \times SU(2)_{I} \times U(1)_{Y} \times U(1)_{B-L}$ 

- Z' : B-L gauge boson
- $\sigma^0$  : B-L Higgs
- $v_{R}^{i}$  : RH-neutrino (i=1,2)
- Ψ<sub>L,R</sub><sup>i</sup>: chiral (i=1,2)
- s<sup>0</sup> : singlet
- η : doublet

half-unit B-L charge Remnant global U(1)<sub>DM</sub> remains after SSB of B-L

Masses of  $\nu_{\text{R}}$  and  $\Psi$  are generated by SSB of U(1)\_{\text{B-L}}

Particles
 
$$s^0$$
 $\eta$ 
 $(\Psi_R)_i$ 
 $(\Psi_L)_i$ 
 $(\nu_R)_i$ 
 $\sigma^0$ 

 SU(3)<sub>C</sub>
 $\underline{1}$ 
 $\underline{1}$ 
 $\underline{1}$ 
 $\underline{1}$ 
 $\underline{1}$ 
 $\underline{1}$ 
 $\underline{1}$ 

 SU(2)<sub>L</sub>
 $\underline{1}$ 
 $\underline{2}$ 
 $\underline{1}$ 
 $\underline{1}$ 
 $\underline{1}$ 
 $\underline{1}$ 

 U(1)<sub>Y</sub>
 0
  $1/2$ 
 0
 0
 0
 0

 U(1)<sub>B-L</sub>
 $1/2$ 
 $1/2$ 
 $-1/2$ 
 $3/2$ 
 $1$ 
 $2$ 



$$U(1)_{B-L} \Rightarrow \text{Masses of Z', } v_{R} \text{ and } \Psi$$

$$B-L \text{ gauge boson Z'} \qquad m_{Z'} = 2g_{B-L} v_{\sigma} \qquad v_{\sigma} [= \sqrt{2}\langle \sigma^{0} \rangle]$$

$$\text{LEP bounds: } m_{Z'}/g_{B-L} = 2 v_{\sigma} > 6-7 \text{ TeV} \Rightarrow v_{\sigma} > 3-3.5 \text{ TeV}$$

$$\text{Weyl fermions } v_{R}, \Psi_{L}, \Psi_{R}$$

$$\mathcal{L}_{\text{Yukawa}} = -(y_{R})_{i} \overline{(v_{R})_{i}^{c}} (v_{R})_{i} (\sigma^{0})^{*} - (y_{\Psi})_{i} \overline{(\Psi_{R})_{i}} (\Psi_{L})_{i} (\sigma^{0})^{*}$$

$$\boxed{m_{\nu_{R}} = \sqrt{2}y_{R}v_{\sigma}} \qquad \text{Majorana mass of } v_{R} \qquad \sum_{\gamma_{R}=0.05, v_{\sigma}=3 \text{ TeV}} v_{\Psi} = 0.05, v_{\sigma}=3 \text{ TeV}$$

$$U(1)_{\text{DM}} \Rightarrow \text{ Lightest } \Psi (\Psi^{1}) \text{ is the DM candidate}$$

# $U(1)_{B-L} \Rightarrow$ Mass of Neutrinos

- No Yukawa  $L \Phi v_R$  by the B-L charge assignment
- $\mathcal{V}(1)_{B-L}$ : Source of LNV  $v_{\sigma} \rightarrow m_{vR}, m_{\psi}$
- $U(1)_{B-L}$  : Remnant  $U(1)_{DM}$
- Radiative generation of the operator  $L \Phi v_R \sigma$
- Seesaw mechanism  $\rightarrow$  Majorana mass of  $v_L$

$$(m_{\nu})_{\ell\ell'} = \left(\frac{1}{16\pi^2}\right)^2 f_{\ell i} h_{ia} (m_R)_a (h^T)_{aj} (f^T)_{j\ell'} \frac{(8\pi^2 \sin 2\theta)^2 m_{\Psi_i} m_{\Psi_j}}{(m_R)_a^2}$$

The correct neutrino mass O(0.1) eV can be deduced from TeV scale physics w/o fine tuning

- All mass parameters = O(0.1 1) TeV
- All coupling constants = O(0.1)

Mass structure is similar but not exactly same as the tree-level seesaw scenario.

S.K., T. Nabeshima, H. Sugiyama, arXiv: 1111.0059



#### A viable parameter set (Set A)

$$s_{23}^2 = \frac{1}{2}, \quad s_{13}^2 = 0, \quad s_{12}^2 = \frac{1}{3},$$
  
 $\Delta m_{21}^2 = 7.5 \times 10^{-5} \,\mathrm{eV}^2, \quad |\Delta m_{31}^2| = 2.3 \times 10^{-3} \,\mathrm{eV}^2.$ 

Coupling constants are all O(0.01 -0.1)

Masses are O(0.1-1) TeV

Among  $\Psi$ , s<sup>0</sup>,  $\eta$  which have U(1)<sub>DM</sub> charge,  $\Psi^1$  is the DM candidate

| $f_{\ell i}$                             | $\begin{pmatrix} -0.00726 & 0.00667 \\ -0.0523 & 0.0206 \\ -0.0378 & 0.00723 \end{pmatrix}$                                        |  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| $h_{ij}$                                 | $\begin{pmatrix} -0.119 & 0.150 \\ 0.150 & 0.150 \end{pmatrix}$ $\begin{pmatrix} 0.0152 & 0.0152 \\ 0.0152 & 0.0152 \end{pmatrix}$ |  |
| $(y_3)_{ij}$                             |                                                                                                                                    |  |
| $m_R \equiv (m_R)_1 = (m_R)_2$           | $250{ m GeV}$                                                                                                                      |  |
| $\{m_{\Psi_1}, \ m_{\Psi_2}\}$           | $\{57.0{ m GeV},\ 800{ m GeV}\}$                                                                                                   |  |
| $\{m_{h^0},\ m_{H^0},\ \cos\alpha\}$     | $\{120{ m GeV},\ 140{ m GeV},\ 1/\sqrt{2}\}$                                                                                       |  |
| $\{m_{s_1^0},\ m_{s_2^0},\ \cos\theta\}$ | $\{200{\rm GeV},\ 300{\rm GeV},\ 0.05\}$                                                                                           |  |
| $m_{\eta^{\pm}}$                         | $280{ m GeV}$                                                                                                                      |  |
| $g_{\mathrm{B-L}}$                       | 0.2                                                                                                                                |  |
| $m_{Z'}$                                 | $2000{ m GeV}$                                                                                                                     |  |

#### LFV constraint

 $\Psi$  and  $\eta$  (have U(1)\_{DM} charge) contribute to  $\mu \rightarrow e \gamma \ process$ 

$$BR(\mu \to e\gamma) = \frac{3\alpha_{EM}}{64\pi G_F^2} \left| \frac{1}{m_{\eta^{\pm}}^2} f_{\mu i} F_2\left(\frac{m_{\Psi_i}^2}{m_{\eta^{\pm}}^2}\right) (f^{\dagger})_{ie} \right|^2$$



Experimental upper bound  $Br(\mu \rightarrow e\gamma) < 2.4 \times 10^{-12}$ is satisfied

For Set A, it is evaluated as  $Br(\mu \rightarrow e\gamma) = 5.1 \times 10^{-13}$ Safe against the current bound but can be future experimental reach

$$F_2(a) \equiv \frac{1 - 6a + 3a^2 + 2a^3 - 6a^2 \ln(a)}{6(1 - a)^4}$$

### Thermal relic abundance of $\Psi^1$



### Thermal Relic Abundance of $\Psi^1$



 $\Psi$  can explain  $\Omega$ h<sup>2</sup>=0.11, so that  $\Psi^1$  can be a Dirac DM

#### **Direct searches**

Ex) XENON 100 Results

$$\sigma(\Psi_1 N \rightarrow \Psi_1 N) < 8 \times 10^{-45} \text{ cm}^2$$

E. Aprile et al, PRL107,131302 (2011)

Prediction in our model for set A

$$\sigma(\Psi_1 N \to \Psi_1 N) = 2.7 \times 10^{-45} \,[\text{cm}^2]$$

Z' mediation dominant



Testable at ILC and the future direct detection experiments

#### Parameters **Mass Spectrum** Inputs Vs = 3-4 TeVV =246 GeV Neutrino mass mixing 1TeV Z' LFV Mh=O(100) GeV DM abundance MH=O(100)GeV $Sin\alpha = 1/Sqrt[2]$ Direct search results tanβ=12-15 H' LEP precision tests MNR=50 GeV Z' search results mZ'= 1000-2000 GeV N<sub>R</sub> $g=y=\lambda 5=O(0.01-0.1)$ Particle mass =O(0.1-1) TeV 100GeV h, H

Ш1

DN

### Multi Higgs [h and H]

Large Mixing  $[\alpha \sim \pi/4]$  [ $\leftarrow \Omega h^2 = 0.11$ ] All the *ffh, ffH* coupling constants are 1/Sqrt[2] of the SM *ff* $\varphi_{SM}$  values.

 $\Rightarrow \Gamma(h,H \rightarrow ff) \sim (1/2) \Gamma(\varphi_{SM} \rightarrow ff) \\ \Gamma(h,H \rightarrow VV) \sim (1/2) \Gamma(\varphi_{SM} \rightarrow VV) \\ \sigma(pp \rightarrow h,H) \sim (1/2) \sigma(pp \rightarrow \varphi_{SM})$ 

But,  $B(h \rightarrow X) \sim B(H \rightarrow X) \sim B(\varphi_{SM} \rightarrow X)$ 

Two SM-like light Higgs bosons with about a half width

Similar to Type I 2HDM, but no charged Higgs states H<sup>+</sup>, H<sup>-</sup>.

Easily testable at the LHC and the ILC

### Invisible Higgs decays

Higgs decays into  $\Psi_1 \Psi_1$  via the same coupling as the DM annihilation





ILC may be able to test the Higgs invisible decay at the 1 %level

### Physics of Z'

#### Z' Mass: 500 GeV - a few TeV $\Gamma(Z' \rightarrow XX) \propto (B-L \text{ charge})^2$

Decay rates determined by B-L charges

Invisible decay = 40 %

$$\begin{array}{ll} \mathsf{Z}' \rightarrow \ \mathsf{v}_{\mathsf{L}} \mathsf{v}_{\mathsf{L}} & 0.15 \\ \mathsf{Z}' \rightarrow \ \Psi_{1} \ \Psi_{1} & 0.13 \\ \mathsf{Z}' \rightarrow \ \Psi_{2} \ \Psi_{2} \ \rightarrow \ \mathsf{v}_{\mathsf{L}} \mathsf{v}_{\mathsf{L}} \ \Psi_{1} \ \Psi_{1} \ \text{etc} & 0.12 \end{array}$$

Production Cross section at the LHC:

For  $v_s = 3.5$  TeV and  $m_z'=2$ TeV, we have  $g_{B-L}=0.2$ , then

 $\sigma(pp \rightarrow Z') = 70 \text{ fb}$ 

Model can be tested by measuring (invisible) decays of the Z' boson

7000 of Z' are produced for 100fb<sup>-1</sup>



### light RH neutrinos

- light RH neutrinos are a good feature of the scenario of radiative Dirac masses
- RH neutrinos are produced from Z'
- It decays via Dirac mass term
- Reconstructing jje or jjµ, RH neutrino can be tested at the LHC/ILC/CLIC

| ${\rm BR}(\nu_R \to XY)$ |          |            |             |  |
|--------------------------|----------|------------|-------------|--|
| $W^{\pm}\ell^{\mp}$      | $Z\nu_L$ | $h^0  u_L$ | $H^0 \nu_L$ |  |
| 0.53                     | 0.28     | 0.10       | 0.09        |  |



#### Summary

• Radiative seesaw scenario is interesting:

Natural scale of neutrino mass, dark matter Testability and strong connection with EWSB

- A model with the gauged  $U(1)_{B-L}$  (SSB at the multi TeV scale)
- After the SSB of B-L , a remnant global U(1)<sub>DM</sub> forbids neutrino Yukawa couplings at tree and also guarantees stability of DM.
- The SSB also gives Dirac mass of  $\Psi^1$  (DM) as well as Majorana mass of  $v_R\,$  at tree level, Dirac Yukawa coupling is also induced at one-loop
- Type-I seesaw occurs at two-loop level, and tiny neutrino masses can be explaind w/o excessive fine tuning
- A light  $v_R$  (O(100)GeV), unique Higgs sector (two SM-like Higgs bosons) and Z' physics are predicted (testable at colliders)

