Toward the understanding of QCD phase structure at finite temperature and density

Shinji Ejiri
Niigata University

WHOT-QCD collaboration
S. Ejiri¹, S. Aoki², T. Hatsuda³, K. Kanaya²,
Y. Nakagawa¹, H. Ohno⁴, H. Saito², and T. Umeda⁵

¹Niigata Univ., ²Univ. of Tsukuba, ³RIKEN, ⁴Bielefeld Univ., ⁵Hiroshima Univ.

Osaka Univ., 2012/10/2
QCD phase structure at high temperature and density

Lattice QCD Simulations

- Phase transition lines T
- Equation of state
- Direct simulation: Impossible at $\mu \neq 0$.

![Diagram showing phase transitions and possible states in QCD](image-url)
Histogram method

- Problem of Complex Determinant at $\mu \neq 0$
 - Boltzmann weight: complex at $\mu \neq 0$
 - Monte-Carlo method is not applicable.

$$\langle O \rangle_{(m,T,\mu)} = \frac{1}{Z} \int DU \, O \left(\text{det} M(m,\mu) \right)^{N_f} e^{-S_g}$$

- Distribution function in Density of state method (Histogram method)
 X: order parameters, total quark number, average plaquette etc.

$$W(X;m,T,\mu) \equiv \int DU \, \delta(X-\hat{X})(\text{det}M(m,\mu))^{N_f} e^{-S_g}$$

- Expectation values

$$\langle O[X] \rangle_{(m,T,\mu)} = \frac{1}{Z} \int dX \, O[X] W(X,m,T,\mu)$$

$$Z(m,T,\mu) = \int dX \, W(X,m,T,\mu)$$
(β, m, μ)-dependence of the Distribution function

- Distributions of plaquette P (1x1 Wilson loop for the standard action)

$$W(P', \beta, m, \mu) \equiv \int DU \delta(\hat{P} - P') (\det M(m, \mu))^N_f e^{6N_{\text{site}} \beta \hat{P}}$$

$$S_g = -6N_{\text{site}} \beta \hat{P}$$

$$R(P, \beta, \beta_0 m, m_0, \mu) \equiv W(P, \beta, m, \mu) / W(P, \beta_0, m_0, 0) \quad \text{(Reweight factor)}$$

$$R(P') = e^{6N_{\text{site}} (\beta - \beta_0) P'} \left\langle \delta(\hat{P} - P') \frac{\det M(m, \mu)}{\det M(m_0, 0)} \right\rangle_{(\beta_0, \mu=0)} \equiv e^{6N_{\text{site}} (\beta - \beta_0) P'} \left\langle \left(\frac{\det M(m, \mu)}{\det M(m_0, 0)} \right)^N_f \right\rangle_{P'}$$

Effective potential:

$$V_{\text{eff}}(P, \beta, m, \mu) = -\ln[W(P, \beta m, \mu)] = V_{\text{eff}}(P, \beta_0, m_0, 0) - \ln R(P, \beta, \beta_0 m, m_0, \mu)$$

$$\ln R(P) = 6N_{\text{site}} (\beta - \beta_0) P + \ln \left\langle \left(\frac{\det M(m, \mu)}{\det M(m_0, 0)} \right)^N_f \right\rangle_P$$

independent of β_0
Sign problem

\[
\langle \left(\frac{\det M(m, \mu)}{\det M(m_0, 0)} \right)^{N_f} \rangle_{X \text{ fixed}} = \langle e^{i\theta} \left| \frac{\det M(m, \mu)}{\det M(m_0, 0)} \right|^{N_f} \rangle_{X \text{ fixed}}
\]

\(\theta\): complex phase of \((\det M)^{N_f}\)

- Sign problem: If \(e^{i\theta}\) changes its sign frequently,

\[
W(X) \sim \langle e^{i\theta} \left| \frac{\det M(m, \mu)}{\det M(m_0, 0)} \right| \rangle_{X \text{ fixed}} \ll \text{(statistical error)}
\]
Overlap problem

\[
\langle OR \rangle = \frac{1}{Z} \int ORW(X) \, dX = \frac{1}{Z} \int \exp(-V_{\text{eff}}(X) + \ln(OR)) \, dX
\]

\[V_{\text{eff}}(X) = -\ln W(X)\]

- \(W \) is computed from the histogram.
- Distribution function around \(X \) where
 \(V_{\text{eff}}(X) - \ln(OR) \) is minimized: important.
- \(V_{\text{eff}} \) must be computed in a wide range.

\(V_{\text{eff}}(X) \)
\[\downarrow \]
\(\text{reliable range} \)

\(-\ln(OR) \)
\[\downarrow \]

If \(X \)-dependence is large.

\(V_{\text{eff}}(X) - \ln(OR) \)
\[\downarrow \]
\(\text{reliable range} \)

Out of the reliable range
Distribution function in quenched simulations

Effective potential in a wide range of P: required.

Plaquette histogram at $K=1/m_q=0$.

![Histogram Graph](image1)

Derivative of V_{eff} at $\beta=5.69$

![Derivative Graph](image2)

$N_{\text{site}} = 24^3 \times 4$, 5 β points, quenched.

dV_{eff}/dP is adjusted to $\beta=5.69$, using

These data are combined by taking the average.

$$
\frac{dV_{\text{eff}}}{dP}(\beta_2) = \frac{dV_{\text{eff}}}{dP}(\beta_1) - 6N_{\text{site}}(\beta_2 - \beta_1)
$$
Distribution functions for Ω_R and P

Expectation value of Polyakov loop and its susceptibility by the reweightuing method at $\mu=0$.

- If $W(P,\Omega)$ is a Gaussian distribution,
 - The peak position of $W(P,\Omega)$ $(<P>, <\Omega>)$
 - The width of $W(P,\Omega)$ susceptibilities χ_P, χ_Ω
- If $W(P,\Omega)$ have two peaks, first order transition
μ-dependence of the effective potential

\[Z(T, \mu) = \int dX \, W(X, T, \mu), \quad V_{\text{eff}}(X) = -\ln W(X) \]

\(X \): order parameters, total quark number, average plaquette, quark determinant etc.

Crossover

\[V_{\text{eff}}(X, T, \mu) \]

Correlation length: short

\(V(X) \): Quadratic function

Critical point

Correlation length: long

Curvature: Zero

1st order phase transition

Two phases coexist

Double well potential

hadron

QGP

CSC?
Quark mass dependence of the critical point

- Where is the physical point?
- Extrapolation to finite density
 - investigating the quark mass dependence near $\mu=0$
- Critical point at finite density?

![Diagram showing the dependence of quark masses on quark mass and chempotentital](image-url)
Distribution function in the heavy quark region

- We study the properties of $W(X)$ in the heavy quark region.
- Performing quenched simulations + Reweighting.
- We find the critical surface.
- Standard Wilson quark action + plaquette gauge action, $S_g = -6N_{\text{site}}\beta P$
- Lattice size: $24^3 \times 4$
- 5 simulation points; $\beta=5.68-5.70$.

(WHOT-QCD, Phys.Rev.D84, 054502(2011))

Hopping parameter expansion

$$N_f \ln \left(\frac{\det M(K, \mu)}{\det M(0,0)} \right) = N_f \left(288N_{\text{site}}K^4 P + 12 \cdot 2^{N_t}N_s^3K^{N_t}(\cosh(\mu/T)\Omega_R + i\sinh(\mu/T)\Omega_I) + \cdots \right)$$

P: plaquette, $\Omega=\Omega_R+i\Omega_I$: Polyakov loop

$$\det M(0,0) = 1$$
Effective potential near the quenched limit ($\mu=0$)

WHOT-QCD, Phys.Rev.D84, 054502(2011)

at phase transition point

Quenched Simulation
($m_q=\infty, K=0$

$K \sim 1/m_q$ for large m_q

Critical point for $N_f=2$:
$K_{cp}=0.0658(3)(8)$

$$\frac{T_c}{m_\pi} \approx 0.02$$

$$V_{\text{eff}}(P, \beta, m, \mu) = -\ln[W(P, \beta m, \mu)] = V_{\text{eff}}(P, \beta_0, m_0, 0) - \ln R(P, \beta, \beta_0 m, m_0, \mu)$$

$$\ln R(P) = 6 N_{\text{site}} (\beta - \beta_0) P + \ln \left\langle \left(\frac{\det M(m, \mu)}{\det M(m_0, 0)} \right)^{N_f} \right\rangle_P$$

- detM: Hopping parameter expansion,
- First order transition at $K = 0$ changes to crossover at $K > 0$.

$V_{\text{eff}}(P, \beta, m, \mu) = -\ln[W(P, \beta m, \mu)] = V_{\text{eff}}(P, \beta_0, m_0, 0) - \ln R(P, \beta, \beta_0 m, m_0, \mu)$
Order of the phase transition
Polyakov loop distribution

Effective potential of $|\Omega|$ on the pseudo-critical line at $\mu=0$

- The pseudo-critical line is determined by χ_Ω peak.

- Double-well at small K – First order transition
- Single-well at large K – Crossover

Critical point: $\kappa^4 \approx 2.0 \times 10^{-5}$
Polyakov loop distribution in the complex plane
($\mu=0$)

\[\kappa^4 = 0.0 \]

\[\kappa^4 = 5.0 \times 10^{-6} \]

\[\kappa^4 = 1.0 \times 10^{-5} \]

\[\kappa^4 = 1.5 \times 10^{-5} \]

\[\kappa^4 = 2.0 \times 10^{-5} \]

\[\kappa^4 = 2.5 \times 10^{-5} \]

Critical point

- on β_{pc} measured by the Polyakov loop susceptibility.
Distribution function of Ω_R at finite density

$$W(\Omega_R, \beta, K, \mu) = \int DU \delta(\Omega_R - \hat{\Omega}_R)(\det M(k))^{N_f} e^{-6N_{\text{site}}\hat{P}}$$

- Hopping parameter expansion

$$\frac{W(\beta, K, \mu)}{W(\beta_0, 0, 0)} = \langle \exp\left[6(\beta - \beta_0) + 288N_fK^4\right]N_{\text{site}}\hat{P} - 12 \times 2^{N_i} N_f N_s^3 K^{N_i} \cosh(\mu/T)\hat{\Omega}_R + i\theta \rangle_{\Omega_R; \beta_0, K=\mu=0}$$

- Adopting $\beta_0 \equiv \beta + 48N_fK^4$,

$$\left(\theta = 12 \cdot 2^{N_i} N_s^3 N_f K^{N_i} \sinh(\mu/T)\hat{\Omega}_I\right)$$

- Effective potential:

$$V_{\text{eff}}(\Omega_R; \beta, K, \mu) = -\ln W(\Omega_R; \beta, K, \mu)$$

$$V_{\text{eff}}(\beta, K, \mu) = V_{\text{eff}}(\beta_0, 0, 0) - 12 \times 2^{N_i} N_f N_s^3 K^{N_i} \cosh(\mu/T)\Omega_R - \ln\langle e^{i\theta} \rangle_{\Omega_R; \beta_0, K=\mu=0}$$

$$\equiv V_0(\beta, K, \mu) - \ln\langle e^{i\theta} \rangle_{\Omega_R; \beta_0, K=\mu=0}$$

Phase-quenched part \hspace{1cm} Phase average

- V_0 is $V_{\text{eff}}(\mu=0)$ when we replace $K^{N_i} \Rightarrow K^{N_i} \cosh(\mu/T)$

(at $\mu=0$, $V_{\text{eff}}(\beta, K, 0) = V_{\text{eff}}(\beta_0, 0, 0) - 12 \times 2^{N_i} N_f N_s^3 K^{N_i} \Omega_R$)
Avoiding the sign problem

\(\theta: \text{complex phase} \quad \theta \equiv \text{Im ln det } \mathcal{M} \approx 12 \cdot 2^N s^3 N_f K^N \sinh(\mu/T) \Omega \)

- Sign problem: If \(e^{i\theta} \) changes its sign,
 \[
 \langle e^{i\theta} \rangle_{P,\Omega_R \text{ fixed}} \ll (\text{statistical error})
 \]

- Cumulant expansion
 \[
 \langle e^{i\theta} \rangle_{P,\Omega_R} = \exp \left[i\langle \theta \rangle_C - \frac{1}{2} \langle \theta^2 \rangle_C - \frac{i}{3!} \langle \theta^3 \rangle_C + \frac{1}{4!} \langle \theta^4 \rangle_C + \cdots \right]
 \]
 \[
 \text{cumulants} \quad \langle \theta \rangle_C = \langle \theta \rangle_{P,\Omega_R}, \quad \langle \theta^2 \rangle_C = \langle \theta^2 \rangle_{P,\Omega_R} - \langle \theta \rangle^2_{P,\Omega_R}, \quad \langle \theta^3 \rangle_C = \langle \theta^3 \rangle_{P,\Omega_R} - 3\langle \theta^2 \rangle_{P,\Omega_R} \langle \theta \rangle_{P,\Omega_R} + 2\langle \theta \rangle^3_{P,\Omega_R}, \quad \langle \theta^4 \rangle_C = \cdots
 \]

 - Odd terms vanish from a symmetry under \(\mu \leftrightarrow -\mu \) (\(\theta \leftrightarrow -\theta \))

Source of the complex phase

If the cumulant expansion converges, No sign problem.
Convergence in the large volume (V) limit

The cumulant expansion is good in the following situations.

- If the phase is given by $\theta = \sum x \theta_x$

 - No correlation between θ_x.

$$\langle e^{i\theta} \rangle_{P,\Omega_R} = \langle e^{i\sum x \theta_x} \rangle_{P,\Omega_R} \approx \prod_x \langle e^{i\theta_x} \rangle_{P,\Omega_R} = \exp \left[\sum_x \sum_n \frac{i^n}{n!} \langle \theta_x^n \rangle_C \right]$$

$$\langle e^{i\theta} \rangle_{P,\Omega_R} = \exp \left[\sum_n \frac{i^n}{n!} \langle \theta^n \rangle_C \right] \Rightarrow \langle \theta^n \rangle_C \approx \sum_x \langle \theta_x^n \rangle_C \sim O(V)$$

 - Ratios of cumulants do not change in the large V limit.
 - Convergence property is independent of V,
 although the phase fluctuation becomes larger as V increases.
 - The application range of μ can be measured on a small lattice.

- When the distribution function of θ is perfectly Gaussian, the average of the phase is give by the second order, $\langle e^{i\theta} \rangle_{P,\Omega_R} = \exp \left[-\frac{1}{2} \langle \theta^2 \rangle_C \right]$
Cumulant expansion

\[\beta^* = 5.69 \]

\[K^4(\mu) \sinh(\mu/T) = 0.00002 \]

\[\ln\left(e^{i\theta} \right)_{\Omega_R} = -\frac{1}{2} \langle \theta^2 \rangle_C + \frac{1}{4!} \langle \theta^4 \rangle_C - \frac{1}{6!} \langle \theta^6 \rangle_C + \ldots \]

\[K^4(\mu) \sinh(\mu/T) = 0.00005 \]

\[K^4(\mu) \sinh(\mu/T) = 0.0001 \]

- The effect from higher order terms is small near the critical point of phase-quenched part.

\[K_{cp}^{N_t}(0) = K_{cp}^{N_t}(\mu) \cosh(\mu/T) > K_{cp}^{N_t}(\mu) \sinh(\mu/T) \approx 0.00002 \]
Effect from the complex phase factor

- Polyakov loop effective potential for each $K^N_t \cosh(\mu/T)$ at the pseudo-critical (β, K).
 - Solid lines: complex phase omitted, i.e., $\sinh(\mu/T) = 0$
 - Dashed lines: complex phase is estimated with $\sinh(\mu/T) = \cosh(\mu/T)$

The effect from the complex phase factor is very small except near $\Omega_R=0$.

\[
\theta \approx 12 \cdot 2^{N_t} N_s^3 N_f K^N_t \sinh(\mu/T) \Omega_I
\]

\[
V_{\text{eff}}(\Omega_R) = V_0(\Omega_R) - \ln \langle e^{i\theta} \rangle_{\Omega_R: \text{fixed}}
\]

\[
\approx V_0(\Omega_R) + \frac{1}{2} \langle \theta^2 \rangle_{\Omega_R: \text{fixed}}
\]
Critical line in 2+1-flavor finite density QCD

- The effect from the complex phase is very small for the determination of K_{c_p}.

\[N_f = 2 \text{ at } \mu = 0: \quad K_{c_p} = 0.0658(3)(8) \]

(WHOT-QCD, Phys.Rev.D84, 054502(2011))

\[N_f = 2+1 \]

\[
\ln \left(\frac{(\text{det } M(K_{ud}))^2 \text{det } M(K_s)}{\text{det } M(0)^3} \right) = 288 N_{\text{site}} (2K_{ud}^4 + K_s^4) P + 12 \times 2^{N_f} N_s^3 \left(2K_{ud}^{N_f} \cosh \left(\frac{\mu_{ud}}{T} \right) + K_s^{N_f} \cosh \left(\frac{\mu_s}{T} \right) \right) \Omega_R + \cdots
\]

The critical line is described by

\[
2K_{ud}^{N_f} \cosh \left(\frac{\mu_{ud}}{T} \right) + K_s^{N_f} \cosh \left(\frac{\mu_s}{T} \right) = 2K_{c_p(N_f=2)}^{N_f}
\]

Critical line for $\mu_u = \mu_d = \mu_s = \mu$

Critical line for $\mu_u = \mu_d = \mu$, $\mu_s = 0$
Distribution function in the light quark region
WHOT-QCD Collaboration, in preparation,
(Nakagawa et al., arXiv:1111.2116)

• Perform phase quenched simulations
• Add the effect of the complex phase by the reweighting.
• Calculate the probability distribution function.

• Goal
 – The critical point
 – The equation of state

 Pressure, Energy density, Quark number density, Quark number susceptibility, Speed of sound, etc.
Probability distribution function by phase quenched simulation

• We perform phase quenched simulations with the weight:

$$W(P', F', \beta, m, \mu) = \int DU \delta(\hat{P} - P')\delta(\hat{F} - F') (\text{det} M(m, \mu))^N_f e^{-S_g}$$

$$= \int DU \delta(\hat{P} - P')\delta(\hat{F} - F') e^{i\theta} \text{det} M(m, \mu)^N_f e^{-S_g}$$

$$= \langle e^{i\theta} \rangle_{P', F'} \times W_0(P', F', \beta, m, \mu)$$

expectation value with fixed P,F

histogram

P: plaquette

$$F(\mu) = \frac{N_f}{N_{\text{site}}} \ln \left| \frac{\text{det} M(\mu)}{\text{det} M(0)} \right|$$

$$\theta \equiv N_f \text{ Im } \ln \text{ det } M$$

Distribution function of the phase quenched.

$$W_0(P', F') = \int DU \delta(\hat{P} - P')\delta(\hat{F} - F') \text{det} M|_{N_f} e^{6N_{\text{site}}\beta P}$$
μ-dependence of the effective potential

Curvature of the effective potential

Crossover

$$-\ln[W(P,\beta)]$$

Critical point

$$-\ln[W_0(P,\beta)] - \ln[\langle e^{i\theta} \rangle]$$

1st order phase transition

$$-\ln[W_0(P,\beta)] - \ln[\langle e^{i\theta} \rangle]$$

hadron

QGP

CSC

μ

T

phase effect

Curvature: Zero

phase effect

Curvature: Negative
Curvature of the effective potential

- If the distribution is Gaussian,

\[
W_0(P, F) \approx \sqrt{\frac{6N_{\text{site}}}{2\pi\chi_P}} \exp\left[-\frac{6N_{\text{site}}}{2\chi_P} (P - \langle P \rangle)^2\right] \times \sqrt{\frac{N_{\text{site}}}{2\pi\chi_F}} \exp\left[-\frac{N_{\text{site}}}{2\chi_F} (F - \langle F \rangle)^2\right]
\]

\[
\chi_P = 6N_{\text{site}} \langle (P - \langle P \rangle)^2 \rangle \\
\chi_F = N_{\text{site}} \langle (F - \langle F \rangle)^2 \rangle
\]

\[
\frac{\partial^2 (-\ln W_0)}{\partial P^2}(\langle P \rangle, \langle F \rangle) = \frac{6N_{\text{site}}}{\chi_P}
\]

\[
\frac{\partial^2 (-\ln W_0)}{\partial F^2}(\langle P \rangle, \langle F \rangle) \approx \frac{N_{\text{site}}}{\chi_F}
\]

at the peak of the distribution
Complex phase distribution

- We should not define the complex phase in the range from $-\pi$ to π.
- When the distribution of q is perfectly Gaussian, the average of the complex phase is given by the second order (variance),

$$\left\langle e^{i\theta} \right\rangle_{P,F} = \exp\left[-\frac{1}{2} \left\langle \theta^2 \right\rangle_C \right]$$

- Gaussian distribution \rightarrow The cumulant expansion is good.
- We define the phase

$$\theta(\mu) = N_f \Im \left(\ln \frac{\det M(\mu)}{\det M(0)} \right) = N_f \int_0^{\mu/T} \Im \left[\frac{\partial \ln \det M}{\partial (\mu/T)} \right] \frac{d\mu}{T}$$

- The range of θ is from $-\infty$ to ∞.
Distribution of the complex phase

- Well approximated by a Gaussian function.
- Convergence of the cumulant expansion: good.

\[\langle e^{i\theta} \rangle_{P,F} \approx \exp \left[-\frac{1}{2} \langle \theta^2 \rangle \right] \]

\[\frac{1}{2} \langle \theta^2 \rangle_{\langle P \rangle, \langle F \rangle} \approx \frac{1}{2} \langle \theta^2 \rangle_{\beta_0, \mu_0} \]

at the peak of \(W_0 \) in each simulation.
Simulations

$8^3 \times 4$ lattice \quad $m_\pi / m_\rho \approx 0.8$

- Simulation point in the $(\beta, \mu_0/T)$

- Peak of $W_0(P,F)$ for each μ

2-flavor QCD Iwasaki gauge + clover Wilson quark action

Random noise method is used.
The curvature for F decreases as μ increases.
Effect from the complex phase

- Rapidly changes around the pseudo-critical point.
Critical point at finite μ

- zero curvature: expected at a large μ.

Diagram:
- T axis
- μ axis
- Small $\langle \theta^2 \rangle_c$
- Large χ_F^{-1}
- Complex phase gives negative curvature
- Confinement phase
- Small χ_F^{-1}
- Large $\langle \theta^2 \rangle_c$
- Deconfinement phase
- Pion condensation phase in phase quenched
Curvature of the effective potential

- Without the complex phase effect

\[
\frac{\partial^2 \left(- \ln W_0 \right)}{\partial F^2} \left(\langle P \rangle, \langle F \rangle \right) \approx \frac{N_{\text{site}}}{\chi_F}
\]

\[
\chi_F = N_{\text{site}} \left\langle \left(F - \langle F \rangle \right)^2 \right\rangle
\]
Phase average

- 2nd order cumulant

\[
\ln \left< e^{i\theta} \right>_{P,F} \approx -\frac{1}{2} \left< \theta^2 \right>_{P,F} \\
\frac{1}{2} \frac{1}{\left< P \right> \left< F \right>} \approx \frac{1}{2} \left< \theta^2 \right>_{\beta_0, \mu_0}
\]
Curvature of the effective potential

- The effect of the phase included.

zero curvature
Critical point
Peak position of $W(P,F)$

- The slopes are zero at the peak of $W(P,F)$.

$$\frac{\partial \ln W}{\partial P}(P,F,\beta,\mu) = \frac{\partial \ln W_0}{\partial P}(P,F,\beta,\mu) + \frac{\partial \ln \langle e^{i\theta} \rangle_{P,F}}{\partial P}$$

$$= \frac{\partial \ln W_0}{\partial P}(P,F,\beta_0,\mu_0) + 6N_{site}(\beta - \beta_0) + \frac{\partial \ln R}{\partial P}(P,F,\mu,\mu_0) + \frac{\partial \ln \langle e^{i\theta} \rangle_{P,F}}{\partial P}$$

$$-0$$

- If these terms are canceled,

$$W(P,F,\beta,\mu) \approx W_0(P,F,\beta_0,\mu_0) \times \text{(const.)}$$

- $W(\beta, \mu)$ can be computed by simulations around (β_0, μ_0).
QCD phase diagram

\[W_0(P, F, \beta, m, \mu) \times \left\langle e^{i\theta} \right\rangle_{P,F} = W(P, F, \beta, m, \mu) \]

phase-quenched QCD

finite-density QCD

\[\langle e^{i\theta} \rangle = 0 \]

pion condensed phase

color superconductor phase?
Summary

• We studied the quark mass and chemical potential dependence of the nature of QCD phase transition.

• The shape of the probability distribution function changes as a function of the quark mass and chemical potential.

• To avoid the sign problem, the method based on the cumulant expansion of θ is useful.

• Our results by phase quenched simulations suggest the existence of the critical point at high density.

• To find the critical point at finite density, further studies in light quark region are important applying this method.
Backup
Complex phase

• Gaussian distribution → The cumulant expansion is good.
• We define the phase

\[\theta(\mu) = N_f \text{Im} \ln \frac{\det M(\mu)}{\det M(0)} = N_f \int_0^{\mu/T} \text{Im} \left[\frac{\partial \ln \det M}{\partial (\mu/T)} \right] \mu d\left(\frac{\mu}{T} \right) \]

– The range of \(\theta \) is from \(-\infty\) to \(\infty\).
• At the same time, we calculate \(F \) as a function of \(\mu \),

\[F(\mu) = N_f \ln \left| \frac{\det M(\mu)}{\det M(0)} \right| = N_f \int_0^{\mu/T} \text{Re} \left[\frac{\partial \ln \det M}{\partial (\mu/T)} \right] \mu d\left(\frac{\mu}{T} \right) \]

• The reweighting factor is also computed,

\[C(\mu) = N_f \ln \left| \frac{\det M(\mu)}{\det M(\mu_0)} \right| = N_f \int_{\mu_0/T}^{\mu/T} \text{Re} \left[\frac{\partial \ln \det M}{\partial (\mu/T)} \right] \mu d\left(\frac{\mu}{T} \right) \]
Distribution function for P and Ω_R

$$W(P, \Omega_R, \beta, \kappa) = \int DU \delta(P - \hat{P}) \delta(\Omega_R - \hat{\Omega}_R) (\det M(\kappa))^N_f e^{-6N_{\text{site}}\hat{P}}$$

$$\frac{W(\beta, K, \mu)}{W(\beta_0, 0, 0)} = \frac{\left< \delta(P-\hat{P})\delta(\Omega_R-\hat{\Omega}_R)e^{6N_{\text{site}}(\beta-\beta_0)P}\left(\frac{\det M(K, \mu)}{\det M(0,0)}\right)^{N_f}\right>_{(\beta_0, K=\mu=0)}}{\left< \delta(P-\hat{P})\delta(\Omega_R-\hat{\Omega}_R)\right>_{(\beta_0, K=\mu=0)}} \equiv \left< e^{6N_{\text{site}}(\beta-\beta_0)\hat{P}}\left(\frac{\det M(K, \mu)}{\det M(0,0)}\right)^{N_f}\right>_{P, \Omega_R}$$

- Effective potential
 $$V_{\text{eff}}(P, \Omega_R; \beta, \kappa) = -\ln W(P, \Omega_R; \beta, \kappa)$$

- Hopping parameter expansion
 $$V_{\text{eff}}(\beta, \kappa) - V_{\text{eff}}(\beta_0, 0) = -\left(6(\beta - \beta_0) + 288N_fK^4\right)N_{\text{site}}P - 12 \times 2^{N_i} N_f N_s^3 K^{N_i} \cosh(\mu/T)\Omega_R - \ln \left< e^{i\theta} \right>_{P, \Omega_R}$$

 \[\equiv V_0(\beta, \kappa) - \ln \left< e^{i\theta} \right>_{P, \Omega_R} \quad \left(\theta = 12 \cdot 2^{N_i} N_s^3 N_f K^{N_i} \sinh(\mu/T)\hat{\Omega}_I \right)\]

 Phase-quenched part

- 2 parameters in V_0:
 \[\beta + 48N_fK^4 \equiv \beta^*, \quad K^{N_i} \cosh(\mu/T)\]

 – V_0 is the same as $V_{\text{eff}}(\mu=0)$ when $K^{N_i} \Rightarrow K^{N_i} \cosh(\mu/T)$

- 1 parameter in θ:
 \[K^{N_i} \sinh(\mu/T) = K^{N_i} \cosh(\mu/T) \tanh(\mu/T) < K^{N_i} \cosh(\mu/T)\]
Order of phase transitions and Distribution function

\[W(P, \Omega_R, \beta, \kappa) = \int DU \delta(P - \hat{P}) \delta(\Omega - \hat{\Omega}) (\det M(\kappa))^{N_f} e^{-6N_{\text{site}}P} \]

\[V_{\text{eff}}(P, \Omega_R; \beta, \kappa) = -\ln W(P, \Omega_R; \beta, \kappa) \]

- Peak position of \(W \):
 \[\frac{dV_{\text{eff}}}{dP} = \frac{dV_{\text{eff}}}{d\Omega_R} = 0 \]

- Lines of zero derivatives for first order

- Crossover
- 1 intersection
- First order transition
- 3 intersections
Derivatives of V_{eff} in terms of P and Ω_R

Phase-quenched part: when $\ln\langle e^{i\theta} \rangle$ is neglected,

$$V_{\text{eff}}(\beta, \kappa) - V_{\text{eff}}(\beta_0, 0) = -(6(\beta - \beta_0) + 288N_fK^4)N_{\text{site}} P - 12 \times 2^{N_t} N_fN_s^3K^{N_t} \cosh(\mu/T)\Omega_R$$

$$\frac{dV_{\text{eff}}(\beta, K)}{dP} \frac{dV_{\text{eff}}(\beta_0, 0)}{dP} = -(6(\beta - \beta_0) + 288N_fK^4)N_{\text{site}}$$

measured at $\kappa = 0$

$$\frac{dV_{\text{eff}}}{dP}$$

Ω_R P

- Contour lines of $\frac{dV_{\text{eff}}}{dP}$ and $\frac{dV_{\text{eff}}}{d\Omega_R}$ at $(\beta, \kappa) = (\beta_0, 0)$ correspond to the lines of the zero derivatives at (β, κ).
lines of \(\frac{dV_{\text{eff}}}{dP} = 0\) and \(\frac{dV_{\text{eff}}}{d\Omega_R} = 0\) in the \((P,\Omega)\) plane

\[
\frac{dV_{\text{eff}}(\beta_0,0)}{dP} = 6N_{\text{site}}(\beta - \beta_0 + 48N_fK^4_s) = 6N_{\text{site}}(\beta^* - \beta_0)
\]

\[
\frac{dV_{\text{eff}}(\beta_0,0)}{d\Omega_R} = 12 \times 2^N_t N_f N_s^3 K^N_t \cosh\left(\frac{\mu}{T}\right)
\]

- Small K: lines of \(\frac{dV_{\text{eff}}}{d\Omega_R} = 0\) : S-shape \(\rightarrow\) first order
- Large K: lines of \(\frac{dV_{\text{eff}}}{d\Omega_R} = 0\) : straight line \(\rightarrow\) crossover