Bare Higgs mass at Planck scale

Yuta Hamada (Kyoto)

with H. Kawai & K. Oda arXiv:1210.2538

2013.1.15 Osaka University

Finally, Higgs-like boson is discovered!!

BROKEN SYMMETRIES, MASSLESS PARTICLES AND GAUGE FIELDS

P.W. HIGGS

Tait Institute of Mathematical Physics, University of Edinburgh, Scotland

Received 27 July 1964

After half century!

Where is cutoff of SM?

- There are theoretical bounds on Higgs mass depending on cutoff scale of SM.
- Upper bound: Couplings should be perturbative up to cutoff scale .
- Lower bound: Current vacuum should be (meta)stable.

SM can be valid up to Planck scale

No sign of BSM ATLAS SUSY Searches* - 95% CL Lower Limits

(Status: Dec 2012)

MSUGRAVCMSSM 10 lip + 15 + 27,			•	
MSUCIPACINSSIN: 1: 100 + 10 + 10 + 100 ATLAS Pheno model: 0: 000 + 15 + 5 + 5, 100 + 100 + 15 + 5, ATLAS Officient of \$\bar{c}\$ (0 + 100 + 15 + 5, 100 +		MSUCDX/CMSSM Then + Ye + F		
MISCONNESSING 10 (Hg + 15 + C, man Pheno model: 0 (Hg + 15 + C, man GAUSE (H, MS P), 2 (hg (CS) + 15 + C, man (hg (H) (H, H), 1 (hg (H)		MSUGDA/CMSSM: Ulop + js + ET miss	Less a lever (at as constant and a lever a lev	
90 Find to index 1: 0 to 1 + 15 + 5 + c, max Find to 2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +		Dhana model: 0 lon + i's + ET.miss	Less by a lev (ALAS-CON-2012-14) 1.26 lev q = g mass	ATLAS
	88	Pheno model : 0 lep + j S + E _{7,miss}	L=5.8 b , 8 TeV (ATLAS-CONF-2012-119) 1.18 TeV g (TildSS (m(q) < 2 TeV, 19/m2))	Preliminany
Billing and Current of the first frame set the f	5	Pheno model : U lep + js + E _{7,miss}	L-5.8 fb." 8 TeV (ATLAS-CONF-2012-109) 1.38 TeV (ATLAS-CONF-2012-109)	ricininary
$ \begin{array}{c} \label{eq:generalized constraints} \\ \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	E.	Gluino med χ (g \rightarrow qq χ): 1 lep + j's + $E_{T,miss}$	L=4.7 m ⁻² , 7 TeV [1208.4688] 900 GeV g mass (m(χ ₁) < 200 GeV,m(χ ⁺) = ψ(m(χ))+m(g))	
$ \begin{array}{c} \\ \hline \\ $	8	GMSB (INLSP): 2 lep (OS) + j's + E, mins	L=4.7 fb ⁻⁷ , 7 TeV [1208.4688] 1.24 TeV	
$ \begin{array}{c} \label{eq:generalized constraints} \\ \la$	8	GMSB (t NLSP): 1-2 t + 0-1 lep + j's + E	L=4.7 fb ⁻¹ , 7 TeV [1210.1314] 1.20 TeV _ g Mass (tan β > 20)	
00 GGM (higgsino NLSP): + lep + E GGM (higgsino NLSP): + lep + E GGM (higgsino NLSP): + lep + E GGM (higgsino NLSP): + let	55	GGM (bino NLSP) : YY + E	L=4.8 (m ²), 7 TeV [1209.0753] 1.07 TeV g mass (m ²), > 50 GeV) Ldt	$= (2.1 - 13.0) \text{ fb}^{-1}$
GGM (higgsino bins, LSP): y + b + E issue 7 arc yrath inter; issu	20	GGM (wino NLSP) : γ + lep + E	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-144] 619 GeV g mass	1
GGM (higgsin NLSP) : Z + jets + E / mail image: in ry grads come sets + sig	1	GGM (higgsino-bino NLSP) : $\gamma + b + E'$	L-4.8 m ⁻¹ , 7 TeV [1211.1167] 900 GeV g mass (m(χ^2) > 220 GeV)	s = 7, 8 TeV
Gravitino LSP Immonger + E E <td></td> <td>GGM (higgsino NLSP) : Z + jets + ET mins</td> <td>L-5.8 (b) 8 TeV (ATLAS-CONF-2012-152) 690 GeV Q (March) > 200 GeV)</td> <td></td>		GGM (higgsino NLSP) : Z + jets + ET mins	L-5.8 (b) 8 TeV (ATLAS-CONF-2012-152) 690 GeV Q (March) > 200 GeV)	
g-bb ² / ₂ (virtual)): 0 lop + 3 b ² / ₂ + E ⁺ / ₂ may g-d ² / ₂ (virtual): 2 lop (SS) + I + E ⁺ / ₂ may g-d ² / ₂ (virtual): 3 lop + E ⁺ / ₂ may g-d ² / ₂ (Gravitino LSP : 'monoiet' + E-	L=10.5 tb ⁻¹ , 8 TeV (ATLAS-CONF-2012-147) 645 GeV F ^{T/2} SCale (m(G) > 10 ⁻⁴ eV)	
9 9		a show (virtual b): 0 len + 3 b i's + F	1 12 8 the latt AS CONF 2012 1451 124 TeV 0 MASS (m/2) < 200 GeV)	
$\begin{array}{c} y = y \\ y = y \\$	S D	g do (virtual) 2 lon (SS) + i'e + E		
GOUDD G	5.0	g→uy (virtualt): 2 jep (33) + js + E _{T,miss}		8 TeV results
9-00, [virtual], 0 (lep + multi-1s + £, max bb, -by; 10 (lep + 2b-)els + £, max bb, -by; 10 (lep + 2b-)els + £, max bb, -by; 112 (lep + b-)els + £, max bb, -by; 112 (lep + b-)els + £, max ti (leght), 1-by; 112 (lep + b-)els + £, max ti (leght), 1-by; 112 (lep + b-)els + £, max ti (leght), 1-by; 112 (lep + b-)els + £, max ti (leght), 1-by; 112 (lep + b-)els + £, max ti (leght), 1-by; 112 (lep + b-)els + £, max ti (leght), 1-by; 112 (lep + b-)els + £, max ti (leght), 1-by; 112 (lep + b-)els + £, max ti (leght), 1-by; 112 (lep + b-)els + £, max ti (leght), 1-by; 112 (lep + b-)els + £, max ti (leght), 1-by; 12 (leght),	8.2	$q \rightarrow u\chi$ (virtual t): 3 lep + JS + $E_{T,miss}$	contents of the particular contents of the second s	
$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + 1$	Pa	$g \rightarrow tt \chi_{u}$ (virtual t) 0 lep + multi-J's + $E_{T,miss}$	L=5.8 to (ATLAS-CONF-2012-103) 1.00 TeV g (TIGSS (m(g)) < 300 GeV)	7 TeV results
bb bb<	17 00	g→tty_(virtual 0 : 0 lep + 3 b-j's + E _{T miss}	L=12.8 fb ⁻ , 8 TeV [ATLAS-CONF-2012-145] 1,15 TeV g mass (m(χ ₁) < 200 GeV)	
$\frac{1}{\sqrt{2}} \int_{0}^{\infty} \frac{1}{\sqrt{2}} (12 \log p + 1/s + \frac{p}{2}, \frac{p}{2}, \frac{p}{2} \log p + \frac{p}{2}, \frac{p}{2} + \frac{p}{2} \log p + \frac{p}{2}, \frac{p}{2} \log p + \frac{p}{2} \log p + \frac{p}{2}, \frac{p}{2} \log p + \frac{p}$	60 m	$bb, b, \rightarrow b\chi$: 0 lep + 2-b-jets + $E_{\tau,min}$	L=12.8 fb ⁻ , 8 TeV [ATLAS-CONF-2012-163] 620 GeV D TBBSS (m(\chi) < 120 GeV)	
$\frac{\text{It}([ngh]_1, 1-b\bar{\chi}^{-1}, 1[2] \text{lep}(+b] \text{d}) + \mathcal{E}_{r,min}}{\text{It}(medium]_1, 1-b\bar{\chi}^{-1}, 1[ep+b] \text{d}) + \mathcal{E}_{r,min}} = \frac{1}{(1-b\bar{\chi}^{-1}, 1]ep+b] \text{d}} + \mathcal{E}$	200	\sim bb, b, $\rightarrow t\tilde{\chi}^*$: 3 lep + j's + $E_{T,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-151] 405 GeV D TIASS (m(\chi) = 2 m(\chi))	
$ \begin{array}{c} \mbox{tr} (medium) (1-by^{-1}_{2}, 11 \mbox{ep} + b-jet + E_{7,min} \\ \mbox{tr} (medium) (1-by^{-1}_{2}, 21 \mbox{ep} + E_{7,min} \\ \mbox{tr} (medium) (1-by^{-1}_{2}, 21 \mbox{ep} + E_{7,min} \\ \mbox{tr} (t, 1-ty^{-1}_{2}, 11 \mbox{ep} + b-jet + E_{7,min} \\ \mbox{tr} (t, 1-ty^{-1}_{2}, 21 \mbox{ep} + $	uct h	tt (light), t \rightarrow b χ^{-1} : 1/2'lep (+ b-jet) + E _{T miss}	L=4.7 fb/1, 7 TeV [1208.4305, 1209.2102]67 GeV [1 MASS (m(\chi)] = 55 GeV)	
$\frac{100}{900}$ $\frac{10}{900}$ $\frac{10}{10}$	Sq	tt (medium), t \rightarrow b $\tilde{\chi}^{*}$; 1 lep + b-jet + E,	L=13.0 m ⁻¹ , 8 TeV (ATLAS-CONF-2012-168) 160-350 GeV t mass (m(χ^2) = 0 GeV, m(χ^2) = 150 GeV)	
$\frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty$	p in	tt (medium), $t \rightarrow b \chi^*$: 2 lep + E	L=13.0 fb ⁺ , 8 TeV (ATLAS-CONF-2012-167) 160-440 GeV. 1 MQSS (mQ ⁺) = 0 GeV, m(1)-m(2 ⁺) = 10 GeV)	
$\frac{1}{10^{-1}} \int_{1}^{10^{-1}} \int_{1}^{10^{-1}$	St D	tt_t→ty : 1 lep + b-jet + E	L=13.0 fb ⁻¹ , 8 TeV (ATLAS-CONF-2012-166) 230-560 GeV. 1 MASS (m(\chi)) = 0)	
$\frac{1}{10^{-1}} \frac{1}{10^{-1}} \frac{1}{10} $	2 juli	tt, t-+ty": 0/1/2 lep (+ b-iets) + E-	L=4.7 fb ⁻¹ , 7 TeV (1208,1447,1208,2590,1209,4186) 238,465 GeV 1 (MBSS (m(y ²) = 0)	
$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$		tt (natural GMSB) : Z(→II) + b-jet + E ^{7,mas}	L=2.1 fb ⁻¹ , 7 TeV [1204.6736] 310 GeV t [1855 (115 < m(y) < 230 GeV)	
$\frac{1}{2} \sum_{x, x} \sum_{y} - \frac{1}{2} \sqrt{1} \left(\frac{1}{2} - \frac{1}{2} \sqrt{1} + \frac{1}{2} \sqrt{1} $		$ 11 \rightarrow \sqrt{2}$ len + F_{-}	L=4.7 fb ⁻¹ , 7 TeV (1208 2884) 85-195 GeV [mass (m ⁽²⁾) = 0)	
$\frac{1}{2}\sqrt{\frac{1}{2}} - \frac{1}{2}\sqrt{\frac{1}{2}}\sqrt{\frac{1}{$	> 7	2 2 2 3 Ju(N) Ju2 2 len + F	L=4.7 th ¹ / TeV (1208,2884) 110,340 GeV 7 ⁺ mass (m ²) < 10 GeV m ² + 1 ⁻ m ²)	
$\frac{1}{2} \frac{1}{2} \frac{1}$	2.2	2 2 - I vI I(Sv) FI I(Sv) : 3 len + F	La 11.0 th ⁻¹ 8 Tev (ATL AS_CONE-2812-154) [800 GaV 2 Mag 5 (m ² / ₂) = 0 m ² / ₂) at mband	
Direct χ pair prod. (AMSB): food Live χ Stable \tilde{g} R-hadrons: low β , $\beta\gamma$ (full detector) Stable t R-hadrons: low β , $\beta\gamma$ (full detector) GMSB: stable $\tilde{\tau}$ $\chi^{0} \rightarrow qqu$ (RPV): μ + heavy displaced vertex LFV: $pp \rightarrow \tilde{v} + X$, $\tilde{v} \rightarrow et\mu$ resonance LFV: $pp \rightarrow \tilde{v} + X$, $\tilde{v} \rightarrow et\mu$ resonance LFV: $pp \rightarrow \tilde{v} + X$, $\tilde{v} \rightarrow et\mu$ resonance $\chi^{0} \chi^{0} \chi^{0} \chi^{0} \chi^{0} \rightarrow eev_{\mu} e_{\mu}v$: 4 lep + $E_{\tau,mas}$ $\chi^{0} \chi^{0} \chi^{0} \chi^{0} \chi^{0} \chi^{0} \rightarrow eev_{\mu} e_{\mu}v$: 4 lep + $E_{\tau,mas}$ $\chi^{0} \chi^{0} \chi^{0} \chi^{0} \chi^{0} \chi^{0} \chi^{0} \rightarrow eev_{\mu} e_{\mu}v$: 4 lep + $E_{\tau,mas}$ $\chi^{0} \chi^{0} \chi^{0} \chi^{0} \chi^{0} \chi^{0} \chi^{0} \chi^{0} \rightarrow eev_{\mu} e_{\mu}v$: 4 lep + $E_{\tau,mas}$ $\chi^{0} \chi^{0} $	0	A1A2 -+ 0 W+ -07 +- 3 lon + ET miss	χ_1 middle χ_2 middle χ_1 middle χ_2 middle χ_1 middle χ_2 middle χ_2 middle χ_2 middle χ_2	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Diffect } \chi, \text{ pair prod. (winds)}, \text{ korg inversely} \\ \begin{array}{c} \text{Stable } \tilde{g}, \text{R-hadrons: low } \beta, \beta\gamma (\text{full detector}) \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde{t}, \text{Twy (stat isser)} \\ \hline \text{GMSB: stable } \tilde$		Direct + pair prod (AMSP) : long lived +		
Stable Q R-hadrons : low β , $\beta\gamma$ (full detector) Stable R R-hadrons : low β , $\beta\gamma$ (full detector) $G(BS) : stable T R-hadrons : low \beta, \beta\gamma (full detector)G(BS) : stable T R-hadrons : low \beta, \beta\gamma (full detector)L^{47.66-7}, TeV (f211.1397]G(BS) : Table Z R R^{-7}, TeV (f210.7481]TeV (R^{-7}, TeV (R^{-7}, TeV (R^{-7}, TeV (R^{-7}, TeV (R^{-7}, TeV (R^{-7}, TeV (R^{-7}$	8 0	Ctable 2 D badrana (AmSD), King-Iwed X		
$\frac{1}{2} \frac{1}{2} \frac{1}$	100	Stable g R-hadrons : low p, py (full detector)	L=4.7 tb (7 TeV [1211.1397] 905 GeV g mass	
$\frac{G}{2} = \frac{G}{2} + \frac{G}$	5 E	Stable t R-hadrons : low β, βγ (full detector)	L=4.7 fb 7 TeV [1211.1597] 683 GeV [[MASS	
$\frac{1}{10^{-1}} \xrightarrow{\text{Qqu}} (\text{RPV}) : \mu + \text{heavy displaced vertex} \\ LFV : pp \rightarrow v_{+}X, v_{-} \rightarrow 0 + \mu \text{ resonance} \\ LFV : pp \rightarrow v_{+}X, v_{-} \rightarrow 0 + \mu \text{ resonance} \\ LFV : pp \rightarrow v_{+}X, v_{-} \rightarrow 0 + \mu \text{ resonance} \\ \frac{1}{10^{-1}} \xrightarrow{\text{Tev}} [\frac{1}{2} \text{Tev}] (\frac{1}{2} \text{Tev}] (1$	p g	GMSB : stable 7	L=4.7 fb.", 7 TeV [1211.1897] 300 GeV T Mass (5 < tarβ < 20)	
$\frac{LFV: pp \rightarrow \bar{v}_{x} + X, \bar{v}_{x} \rightarrow e+\mu \text{ resonance}}{LFV: pp \rightarrow \bar{v}_{x} + X, \bar{v}_{x} \rightarrow e(\mu) + r \text{ resonance}}$ Bilinear RPV CMSSM: 1 lep + 7 j''s + $E_{\tau,mins}$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}\tilde{\chi}_{2}^{+}\tilde{\chi}_{2}^{+} \rightarrow W\tilde{\chi}_{0}^{0}, \tilde{\chi}_{0}^{0} \rightarrow eev_{\mu}, e\muv: 4 lep + E_{\tau,mins}$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} \rightarrow eev_{\mu}, e\muv: 4 lep + E_{\tau,mins}$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} \rightarrow eev_{\mu}, e\muv: 4 lep + E_{\tau,mins}$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{+} \rightarrow Qq$, $\tilde{\chi}_{1}^{0} \rightarrow eev_{\mu}, e\muv: 4 lep + E_{\tau,mins}$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} \rightarrow eev_{\mu}, e\muv: 4 lep + E_{\tau,mins}$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-} \rightarrow eev_{\mu}, e\muv: 4 lep + E_{\tau,mins}$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-} \rightarrow eev_{\mu}, e\muv: 4 lep + E_{\tau,mins}$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-} \rightarrow eev_{\mu}, e\muv: 4 lep + E_{\tau,mins}$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-} \rightarrow eev_{\mu}, e\muv: 4 lep + E_{\tau,mins}$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-} \rightarrow eev_{\mu}, e\muv: 4 lep + E_{\tau,mins}$ $\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-}eev_{\mu}, e\muv: 4 lep + E_{\tau,mins}$ $\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-}ev_{\mu}(arLas-conf-2012-1s3)$ $\tilde{\chi}_{1}^{-}eev_{\mu}^{-}quv: 4 lep + E_{\tau,mins}$ $\tilde{\chi}_{1}^{-}ev_{1}^{-}\chi_{1}^{-}\tilde{\chi}_{1}^{-}ev_{\mu}(arLas-conf-2012-1s3)$ $\tilde{\chi}_{1}^{-}ev_{1}^{-}\chi_{1}^{-}ev_{\mu}^{-}quv: 4 lep + E_{\tau,mins}$ $\tilde{\chi}_{1}^{-}ev_{1}^{-}\chi_{1}^{-}vvv (statas-conf-2012-1s3)$ $\tilde{\chi}_{1}^{-}ev_{1}^{-}\chi_{1}^{-}vvv (statas-conf-2012-1s3)$ $\tilde{\chi}_{1}^{-}ev_{1}^{-}\chi_{1}^{-}vvv (statas-conf-2012-1s3)$ $\tilde{\chi}_{1}^{-}ev_{1}^{-}\chi_{1}^{-}vvv (statas-conf-2012-1s3)$ $\tilde{\chi}_{1}^{-}ev_{1}^{-}\chi_{1}^{-}vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv$		$\chi \rightarrow qq\mu$ (RPV) : μ + heavy displaced vertex	L=4.4 fb ⁻¹ , 7 TeV [1210.7451] 700 GeV q mass (0.3x10 ⁻¹ < λ ₂₁₁ < 1.5x10 ⁻¹ , 1 mm < ct < 1 m,g	decoupled)
$ \begin{array}{c} \text{LFV}: pp \rightarrow \widetilde{v}_{+} X, \widetilde{v}_{-} \rightarrow e(\mu) + \tau \text{ resonance} \\ \text{Bilinear RPV CMSSM}: 1 lep + 7 j's + E_{T, \text{mins}} \\ \widetilde{\chi}_{+}^{*} \widetilde{\chi}_{-}^{*} \widetilde{\chi}_{+}^{*} \rightarrow W \widetilde{\chi}_{0}^{*}, \widetilde{\chi}_{0}^{*} \rightarrow eev_{\mu}, e\muv : 4 lep + E_{T, \text{mins}} \\ 1 \left[(L_{+} L \rightarrow \widetilde{\chi}_{+} _{-}^{*}) + W \widetilde{\chi}_{0}^{*}, \widetilde{\chi}_{0}^{*} \rightarrow eev_{\mu}, e\muv : 4 lep + E_{T, \text{mins}} \\ 1 \left[(L_{+} L \rightarrow \widetilde{\chi}_{+} _{-}^{*}) + W \widetilde{\chi}_{0}^{*}, \widetilde{\chi}_{0}^{*} \rightarrow eev_{\mu}, e\muv : 4 lep + E_{T, \text{mins}} \\ 1 \left[(L_{+} L \rightarrow \widetilde{\chi}_{+} _{-}^{*}) + W \widetilde{\chi}_{0}^{*}, \widetilde{\chi}_{0}^{*} \rightarrow eev_{\mu}, e\muv : 4 lep + E_{T, \text{mins}} \\ 0 \rightarrow qqq; 3 \left] 3 \left] eff \text{ resonance} pair \\ g \rightarrow qqq; 3 \left] 3 \left[eff \text{ resonance} pair \\ Scalar gluon : 2 \right] eff \text{ resonance} pair \\ Scalar gluon : 2 \right] eff \text{ resonance} pair \\ WIMP \text{ interaction (D5, Dirac \chi) : monojet + E \\ T, \text{mins} \end{array} $ $10^{-1} 1 10 $ $10^{-1} 1 10 $		LFV : pp→v _e +X, v _e →e+µ resonance	L=4.6 fb ⁻¹ , 7 TeV (Preliminary) 1.61 TeV V ₂ (MBSS (k ² ₃₁₁ =0.10, k ₁₃₂ =0.05)	
$\frac{2}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$		LFV : pp $\rightarrow \tilde{v}_{*}+X, \tilde{v}_{*}\rightarrow e(\mu)+\tau$ resonance	L=4.6 fb ⁻¹ , 7 TeV [Preliminary] 1.10 TeV V ₂ MBSS (λ_{201}^2 =0.10, λ_{10200}^2 =0.05)	
$ \frac{1}{2} 1$	2	Bilinear RPV CMSSM : 1 lep + 7 j's + E _{7,min}	L=4.7 m ⁻¹ , 7 TeV [ATLAS-CONF-2012-140] 1.2 TeV Q = g MASS (ct _{LSP} < 1 mm)	
$\frac{1}{10^{-1}} \frac{1}{10^{-1}} \frac{1}{10} $	R.	$\overline{\chi}^* \overline{\chi}_{,x} \overline{\chi}^* \rightarrow W \overline{\chi}^0, \overline{\chi}^0 \rightarrow eev_{,u}, e\mu v : 4 lep + E_{,u}$	L=13.0 fb ⁴ , 8 TeV (ATLAS-CONF-2012-153) 700 GeV $\widetilde{\chi}_{1}^{*}$ mass (m $\widetilde{\chi}_{2}^{0}$) > 300 GeV, λ ₂₂₁ or λ ₁₂₂ > 0)	
$\begin{array}{c} g \rightarrow qqq \ 3 \ jef resonance pair \\ Scalar gluon \ 2 \ jef resonance pair \\ WIMP interaction (D5, Dirac \chi) monojet + E \\ T_{mass} \end{array} \qquad \begin{array}{c} t \rightarrow t \ r \rightarrow$		$11.1 \rightarrow 17, 7 \rightarrow eev euv : 4 lep + E_{ev}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-153] 430 GeV [MaSS (m(x)) > 100 GeV, m(y)=m(t)=m(t), h_{12} or h_{12} > 0)	
Scalar gluon : 2-jet resonance pair WIMP interaction (D5, Dirac χ) : monojet + E T, miss L=4.6 fb ⁻¹ , 7 TeV (1210.4826) 100-287 GeV Sgluon mass (ind. limit from 1110.2093) VIMP interaction (D5, Dirac χ) : monojet + E T, miss L=4.6 fb ⁻¹ , 7 TeV (1210.4826) 100-287 GeV M* scale (m _x < 80 GeV, limit of < 687 GeV for p8)		$q \rightarrow qqq^3$ -jef resonance pair	L=4.6 m ⁻¹ , 7 TeV [1210.4813] 666 GeV g mass	
WIMP interaction (D5, Dirac χ) .' monojet" + E L=10.5 m ³ , 8 TeV [ATLAS CONF-2012 [427] 704 GeV M* scale (m _χ < 80 GeV, timit of < 687 GeV for p6) 10 ⁻¹ 1 10 Mass scale [TeV/		Scalar gluon : 2-iet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4826] 100-287 GeV SQIUON M85S (incl. limit from 1110.2693)	
10 ⁻¹ 1 10 Mass scale [Te\/	WIN	P interaction (D5, Dirac χ) . monojet + E	1=10.5 fb ⁻¹ 8 TeV (ATLAS-CONF-2012 (147) 704 GeV M* SCBID (m, < 80 GeV, limit of < 687 GeV for D8)	
10 ⁻¹ 1 10 Mass scale [Te\/				
10 10 10 Mass scale (TeV/			40-1 4 40	
Mass scale [Te//			10 1 10	
	10			

Given current situation, it is important to examine scenario in which SM is valid towards Planck scale. This talk assumes such situation.

Bare mass and coupling at Planck scale cutoff

- Because of Higgs discovery, we can discuss SM bare Lagrangian at Planck scale.
 - Bare Lagrangian is important because it reflects Planck scale physics.
 - We evaluate **bare** Higgs mass/coupling (Note: This is <u>not</u> MS-bar running mass).
 - We compute **quadratic divergence** in **bare** Higgs mass up to **2-loop** orders.
- We find $m_B^2=0$, $\lambda_B=0$ is possible.

Plan

- 1. Now we can evaluate bare mass
- 2. Quartic coupling can take zero at Planck scale
- 3. Bare Higgs mass can take zero at Planck scale

Now we can evaluate bare mass

"We compute quadratic divergence in bare Higgs mass up to 2-loop orders."

ϕ^4 example

- We explain our procedure by taking concrete evaluation for ϕ^4 theory.
- \bullet Bare Lagrangian with cutoff Λ

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi_B)^2 - \frac{m_B^2}{2} \phi_B^2 - \frac{\lambda_B}{4!} \phi_B^4$$

• Our analysis corresponding to the case

$$m^2_{
m phys} \ll \Lambda^2$$

• Quadratic divergence is dominant.

Bare mass determined to fix m_{phys}=0

 Bare mass consists of quadratic divergent part and logarithmic divergent part which is proportional to m_{phys}².

$$m_B^2 = a \Lambda^2 + b m_{phys^2} \log(\Lambda^2 / m_{phys^2})$$

• In order to obtain quadratic divergence in m_B^2 , we determine m_B^2 order by order so that physical mass is zero

$$m_B^2 = m_{B,\,0\text{-loop}}^2 + m_{B,\,1\text{-loop}}^2 + m_{B,\,2\text{-loop}}^2 + \cdots$$

No IR divergences

Bare Higgs mass result for ϕ^4 theory

• From these conditions, we get

$$m_{B,1\text{-loop}}^2 = - \frac{\lambda_B}{2} I_1$$
$$m_{B,2\text{-loop}}^2 = - \frac{5}{72} \lambda_B^2 I_2$$

$$I_1 := \int \frac{d^4p}{(2\pi)^4} \frac{1}{p^2} \propto \Lambda^2$$

$$I_2 := \int \frac{d^4 p}{(2\pi)^4} \frac{d^4 q}{(2\pi)^4} \frac{1}{p^2 q^2 (p+q)^2} \propto \Lambda^2$$

SM calculation

For SM Higgs sector

 $\mathcal{L} = (D_{\mu}\phi_B)^{\dagger}(D^{\mu}\phi_B) - m_B^2\phi_B^{\dagger}\phi_B - \lambda_B(\phi_B^{\dagger}\phi_B)^2$

Landau gauge and symmetric phase are good

• In Landau gauge, gauge field propagator is

$$-rac{i}{k^2}\left(g_{\mu
u}-rac{k_\mu k_
u}{k^2}
ight)$$

• We work in symmetric phase $\langle \varphi \rangle = 0$ as we are interested only in quadratic divergent terms.

$$m_{B,1\text{-loop}}^2 = -\left(6\lambda_B + \frac{3}{4}g_{YB}^2 + \frac{9}{4}g_{2B}^2 - 6y_{tB}^2\right)I_1$$

SM 2-loop calculation

SM 2-loop calculation

$$m_{B,2\text{-loop}}^{2} = -\left\{9y_{tB}^{4} + y_{tB}^{2}\left(-\frac{7}{12}g_{YB}^{2} + \frac{9}{4}g_{2B}^{2} - 16g_{3B}^{2}\right) + \frac{77}{16}g_{YB}^{4} + \frac{243}{16}g_{2B}^{4} + \lambda_{B}\left(-18y_{tB}^{2} + 3g_{YB}^{2} + 9g_{2B}^{2}\right) - 10\lambda_{B}^{2}\right\}I_{2}.$$

Relation of 1 - and 2-loops We need to relate quadratic divergent

• We employ following regularization

integrals I_1 and I_2 .

$$\int d^4k \frac{1}{k^2} = \int_{\varepsilon}^{\infty} d\alpha \int d^4k \, e^{-\alpha k^2}$$

to get: $I_1 = \frac{1}{\varepsilon} \frac{1}{16\pi^2}$ $I_2 = \frac{1}{\varepsilon} \frac{1}{(16\pi^2)^2} \ln \frac{2^6}{3^3} \simeq 0.005 I_1$
Employing **naive momentum cutoff** by Λ ,
we get $I_1 = \frac{\Lambda^2}{16\pi^2}$ $1/\varepsilon = \Lambda^2$

19

Regularization dependence

$$egin{aligned} I_2 &= rac{1}{arepsilon} rac{1}{(16\pi^2)^2} \ln rac{2^6}{3^3} \simeq 0.005 \, I_1 \ m_{B,2 ext{-loop}}^2 &= -iggl\{ rac{9y_{tB}^4 + y_{tB}^2 \left(-rac{7}{12}g_{YB}^2 + rac{9}{4}g_{2B}^2 - 16g_{3B}^2
ight) + rac{77}{16}g_{YB}^4 + rac{243}{16}g_{2B}^4 \ + \lambda_B \left(-18y_{tB}^2 + 3g_{YB}^2 + 9g_{2B}^2
ight) - 10\lambda_B^2 iggr\} I_2. \end{aligned}$$

- Relation of I₁ and I₂ is regularization dependent.
- If 0.005×(couplings in front of I₂) is large, result suffer from regularization dependence.
- Our two loop computation helps to check it.

Plan

1. Now we can evaluate bare mass

2. Quartic coupling can take zero at Planck scale

3. Bare Higgs mass can take zero at Planck scale

Quartic coupling can take zero at Planck scale

"Quartic coupling vanishes at Planck scale if $m_t = 171 \text{GeV}$ "

Approximating bare parameters by MS-bar

- In bare mass formula, there are dimensionless bare parameters
- We approximate **dimensionless bare parameters** by MS-bar ones at UV cutoff scale Λ .
- We apply two-loop RGE to get MS-bar couplings.

SM running couplings

 $m_t^{\text{pole}} = 173.3 \text{ GeV}$ $\alpha_s(m_Z) = 0.1184$ 1.2±*g* $m_H = 125.7 \,\mathrm{GeV}$ 1.0 0.8 0.6 0.4 \log_{10} 15 10 5

$\lambda \simeq 0$ at high energy 0.10 $m_t^{\rm pole} = 173.3 \pm 2.8\,{\rm GeV}$ 0.05 $\gamma(\mu)$ small m_t 0.00 large m_t -0.0515 20 5 10 log₁₀

$\lambda \simeq$ 0 at high energy

Quartic coupling vanishes at M_P for m_t = 171GeV

Plan

- 1. Now we can evaluate bare mass
- 2. Quartic coupling can take zero at Planck scale
- 3. Bare Higgs mass can take zero at Planck scale

Bare Higgs mass can take zero at Planck scale

"Bare Higgs mass vanishes at Planck scale cutoff if m_t=170GeV."

Bare mass as function of cutoff

• Now we can evaluate bare mass in units of I_1 as function of cutoff Λ

$$\frac{m_B^2}{\Lambda^2/16\pi^2} = \frac{m_{B,1\text{-loop}}^2}{I_1} + \frac{m_{B,2\text{-loop}}^2}{I_2}\frac{I_2}{I_1}$$

$$\begin{split} m_{B,1\text{-loop}}^2 &= -\left(6\lambda_B + \frac{3}{4}g_{YB}^2 + \frac{9}{4}g_{2B}^2 - 6y_{tB}^2\right)I_1\\ m_{B,2\text{-loop}}^2 &= -\left\{9y_{tB}^4 + y_{tB}^2\left(-\frac{7}{12}g_{YB}^2 + \frac{9}{4}g_{2B}^2 - 16g_{3B}^2\right) + \frac{77}{16}g_{YB}^4 + \frac{243}{16}g_{2B}^4\right.\\ &+ \lambda_B\left(-18y_{tB}^2 + 3g_{YB}^2 + 9g_{2B}^2\right) - 10\lambda_B^2\right\}I_2.\end{split}$$

$$\lambda_B^i \simeq \lambda_{\overline{ ext{MS}}}^i(\mu = \Lambda)$$
 29

Top mass dependece

 $m_t^{\text{pole}} = 173.3 \pm 2.8 \,\text{GeV}$ Alekhin, Djouadi, Moch

Top mass dependece

 $m_t^{\text{pole}} = 173.3 \pm 2.8 \,\text{GeV}$ Alekhin, Djouadi, Moch

Regularization dependence is small

$$\begin{split} m_B^2 &= \left[0.22 + 0.18 \left(\frac{m_t^{\text{pole}} - 173.3 \,\text{GeV}}{2.8 \,\text{GeV}} \right) - 0.02 \left(\frac{\alpha_s(m_Z) - 0.1184}{0.0007} \right) \right. \\ &\left. - 0.01 \left(\frac{m_H - 125.7 \,\text{GeV}}{0.6 \,\text{GeV}} \right) \pm 0.02_{\text{th}} \right] \frac{M_{\text{Pl}}^2}{16\pi^2}. \end{split}$$

$$m_{B,\,\rm 2-loop}^2\simeq -0.005\,M_{\rm Pl}^2/16\pi^2$$

• As advertised, we can see that two loop correction can be safely neglected.

Both m_B^2 and λ_B almost vanish ($\Lambda = M_{Pl}$)

Both m_B^2 and λ_B almost vanish ($\Lambda = M_{Pl}$)

Bare Higgs mass becomes zero if $m_t=170$ GeV. Quadratic coupling vanishes if $m_t=171$ GeV.

Discussion

Vanishing bare mass?

• fine tuning problem

$$m_B^2 + \delta m^2 = m_H^2$$

Quadratic divergence is canceled.

- One possibility:
 - Both are fine tuned: $\underline{m_B^2=0}$ and $\underline{\delta m^2=0}$.
 - For this to be true, fine tuning may be achieved in framework beyond ordinary QFT(?)

Or, nonzero bare mass as string threshold correction?

- Interpretation for m_B^2 at Planck scale cutoff as string threshold correction
- Integrating out string massive modes,

$$m_B^2 \sim C \frac{g_s^2}{16\pi^2} m_s^2 \\ m_s := (\alpha')^{-1/2}$$

C : a model dependent constant

Neutrino mass

- If we assume see-saw mechanism,
- Our analysis corresponding to the case where M_R is small: $m_{\nu} \sim y_D^2 v^2 / M_R \sim 0.1 \,\mathrm{eV}$ $y_D \lesssim 10^{-2}$

• The case where M_R is large is also interesting.

 $M_R \lesssim 10^{10} \, {\rm GeV}$

Supersymmetry

- When supersymmetry is softly broken,
 - There are no quadratic divergence,
 - Our study cannot apply.

- In the case of split supersymmetry,
 - It is possible to perform a parallel analysis. (work in progress)

Works in progress

- Small bare mass as string threshold corrections?
 - \star Integrating out string massive modes,

Neutrino mass?

C : computable constant $m_s := (lpha')^{-1/2}$

- ★ Assuming seesaw and $M_R > 10^{10}$ GeV, neutrino Yukawa's contribute too.
- Split SUSY?
 - ★ Similar analysis apply.

• <u>A lot to do. Join!!</u>

Summary

- We can discuss bare Lagrangian at Planck scale.
- We compute quadratic divergence in bare Higgs mass up to 2-loop orders.
 - We find 2-loop contribution is small.
 - Negligible regularization dependence.
- At Planck scale,
 - Bare Higgs mass vanishes for $m_t = 170 \text{GeV}$.
 - Quartic coupling vanishes for $m_t = 171 \text{GeV}$.

Backup slides

	ATLAS m _{top} su	immary - July 20	012, L _{int} = 35 pl	b ⁻¹ - 4.7 fb ⁻¹ (*Preliminary)
ATLAS CONF-201	2010, I+jets* 1-033, L _{int} = 35 pb ⁻¹		•	169	.3 ± 4.0 ± 4.9
ATLAS Eur. Phys.	2011, I+jets J. C72 (2012) 2046, L _{int}	= 1.04 fb ⁻¹		174	$.5 \pm 0.6 \pm 2.3$
ATLAS CONF-2012	2011, all jets* 2-030, L _{int} = 2.05 fb ⁻¹			174	.9 ± 2.1± 3.8
ATLAS CONF-2012	2011, dilepton* 2-082, L _{int} = 4.7 fb ⁻¹			- 175	.2 ± 1.6 ± 3.0 ± (stat.) ± (syst.)
Tevatro 173	on Average July 2 3.2 \pm 0.6 \pm 0.8	2011	нен		
				ATLAS	Preliminary
1	50	160	170	180	190 m _{top} [GeV]

CMS Preliminary

Note: It's not running mass!

- $m_{phys}^2 = m_{bare}^2 + (radiative corrections).$
- In mass independent renormalization (dim reg):
 - 1. m_{bare}^2 is tuned to cancel Λ^2 and to make $\underline{m_{phys}^2 = 0}$.
 - 2. A mass parameter is inserted as <u>perturbation</u>.
 - 3. <u>Running mass</u> obtained as **multiplicative** renormalization of this mass parameter.
- What we compute is **additive** renormalization constant, tuned before above prescription.

Cutoff vs $\overline{\mathbf{MS}}$

We have approximated the bare couplings by the running ones in the \overline{MS} scheme. The resulting error can be evaluated once the cutoff scheme is explicitly specified.

$$\begin{split} \lambda^i_{\overline{\mathrm{MS}}}(\mu) &= \lambda^i_B + \sum_{jk} c^{ijk}(\mu/\Lambda) \ \lambda^j_B \lambda^k_B + O(\lambda^3_B), \\ c^{ijk}(x) &:= f^{ijk} + b^{ijk} \ln x + O(x^2), \end{split}$$

This expression is valid for

$$\left. \frac{\lambda^i_{\overline{\rm MS}}}{16\pi^2} \ln(\mu/\Lambda) \right| \, \ll \, 1 \qquad \mu \, \ll \, \Lambda$$

Thus we have

$$\lambda_{\overline{\mathrm{MS}}}^{i}(\mu) = \lambda_{B}^{i} + \sum_{jk} \left(f^{ijk} + b^{ijk} \ln \frac{\mu}{\Lambda} \right) \, \lambda_{B}^{j} \lambda_{B}^{k}$$

On the other hand, from the RGE, we get

$$\lambda_{\overline{\mathrm{MS}}}^{i}(\Lambda) = \lambda_{\overline{\mathrm{MS}}}^{i}(\mu) + \sum_{jk} b^{ijk} \lambda_{\overline{\mathrm{MS}}}^{j}(\mu) \lambda_{\overline{\mathrm{MS}}}^{k}(\mu) \ln \frac{\Lambda}{\mu}$$

From these equations, we obtain

$$\lambda_{\overline{\mathrm{MS}}}^{i}(\Lambda) = \lambda_{B}^{i} + \sum_{jk} f^{ijk} \lambda_{B}^{j} \lambda_{B}^{k}$$

This gives the relation between the bare and the MS couplings at the same scale.

With the above correction, the formula for the bare Higgs mass is modified by

$$\Delta m_B^2 = -\sum_{ijk} a^i f^{ijk} \lambda_{\overline{\rm MS}}^j(\Lambda) \, \lambda_{\overline{\rm MS}}^k(\Lambda)$$

 $\Lambda|_{m^2=0} \implies \Lambda|_{m^2=0} e^{\delta t}$ $\delta t = \frac{\sum_{ijk} a^{i} f^{ijk} \lambda_{\overline{\mathrm{MS}}}^{j}(\Lambda) \lambda_{\overline{\mathrm{MS}}}^{k}(\Lambda)}{\sum_{ijk} a^{i} b^{ijk} \lambda_{\overline{\mathrm{MS}}}^{j}(\Lambda) \lambda_{\overline{\mathrm{MS}}}^{k}(\Lambda)}$

The ambiguity for the vanishing scale would be at most $e^{\delta t} \lesssim 10$