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Remarks on Lattice Fermions



Problems in Lattice Fermion

• Naive discretization of fermion action is not good:

• Species doublers

• Chirality on a lattice

• Discretization error

• etc



Lattice Fermions
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We propose a new framework for investigating two-flavor lattice QCD with finite temperature and

density. We consider the Karsten-Wilczek fermion formulation, in which a species-dependent imaginary

chemical potential term can reduce the number of species to two without losing chiral symmetry. This

lattice discretization is useful for study on finite-ðT;!Þ QCD since its discrete symmetries are appropriate

for the case. To show its applicability, we study strong-coupling lattice QCD with temperature and

chemical potential. We derive the effective potential of the scalar meson field and obtain a critical line of

the chiral phase transition, which is qualitatively consistent with the phenomenologically expected phase

diagram. We also discuss that Oð1=aÞ renormalization of imaginary chemical potential can be controlled

by adjusting a parameter of a dimension-3 counterterm.
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I. INTRODUCTION

Quantum chromodynamics (QCD) under extreme con-
ditions with temperature and density is one of the most
challenging topics in hadron physics. In particular, under-
standing of the finite-ðT;!Þ QCD phase diagram can
reveal various aspects of in-medium QCD including
quark-gluon plasma , which requires fully nonperturbative
analysis of QCD (See for example Ref. [1]). One of the
most powerful tools to investigate such nonperturbative
aspects of QCD is lattice QCD. Indeed, lattice QCD simu-
lations have been applied to finite-temperature QCD, and
have succeeded in revealing the critical or crossover behav-
iors due to confinement and deconfinement transitions
(See for example Ref. [2]). However, the Monte Carlo
simulation cannot be easily applied to QCD with chemical
potential because of the notorious sign problem (See refer-
ences in Ref. [3]). So far several prescriptions to bypass
this problem have been proposed, including the imaginary
chemical potential method, the Taylor expansion, the
Fugacity expansion, and the histogram method, but all of
them have their own flaws and limitations (See references
in Ref. [4]). Apart from numerical simulations, analytical
lattice calculations have been also developed. One of the
classical and reliable methods is the strong-coupling
expansion [5–9]. This method has been applied to the
QCD phase diagram and has produced successful results
[10–18]. In these works, (unrooted) staggered fermions
[19–22] have been used, thus the corresponding continuum

theory is four-flavor QCD although the physical two or
three-flavor QCD are desirable.
In this paper we propose a new framework of investigat-

ing the two-flavor finite-ðT;!Þ QCD phase diagram by
using the Karsten-Wilczek (KW) lattice fermion [23],
which is one type of minimal-doubling fermions [23–25]
or ‘‘flavored-chemical-potential (FCP) fermions’’ [26]. In
this formulation the degeneracy of the 16 species is lifted
by a species-dependent (imaginary) chemical potential
term, instead of introducing a species-dependent mass
term in the Wilson fermion. What is special in this case
is that the number of massless flavors can be reduced to two
without breaking Uð1Þ chiral symmetry. The phase struc-
ture in the parameter space for this lattice fermion has been
recently studied in Ref. [26].
In the present paper we show that the KW discretization

has the same discrete symmetries [27–29] as the finite-
density lattice QCD system, and it works to investigate the
two-flavor finite-ðT;!Þ QCD phase diagram. We apply the
KW fermion to the strong-coupling lattice QCD with
temperature and density. We derive the mesonic effective
potential as a function of ðT;!Þ and elucidate a critical line
of the chiral phase transition. The result is qualitatively
consistent with predictions from the phenomenological
models. Toward a practical application to numerical simu-
lations, we argue that theOð1=aÞ renormalization of imagi-
nary chemical potential can be controlled by adjusting a
relevant parameter !3 of the dimension-3 counterterm.
In Sec. II we investigate the KW fermion and discuss its

symmetries. In Sec. III we study the strong-coupling lattice
QCD and derive the QCD phase diagram. Section IV is
devoted to a summary and discussion.
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STAGGERED WILSON FERMION



Wilson Fermion

• Number of doublers : 16 → 1

• Flavor sensitive “mass term”

• Momentum dependent mass term

MW(p) = r
4�

µ=1

(1� cos pµ) �̄D2
µ�

[Wilson ’74]



Staggered Wilson Fermion

• Number of doublers : 4 → 2 or 1

• Flavor sensitive “mass term”

• Momentum dependent mass term

MstW(p) = ? �̄D2
µ�

[Adams ’10] [Hoelbling ’10]



Staggered Fermion
• Lattice action

• Chirality : 

S =
1
2

�

n,µ

�µ�̄n(�n+µ̂ � �n�µ̂) +
�

n

m�̄n�n

�µ = (�1)n1+···+nµ�1 � �µ

�n = (�1)n1+···+n4 � �5



Staggered Wilson term

1. Adams type flavored-mass term

MA(p) = �x�1�2�3�4

�

sym

cos p1 cos p2 cos p3 cos p4

� � �5

�5 =

�

���

+1 0 0 0
0 +1 0 0
0 0 �1 0
0 0 0 �1

�

���

4-link hopping

2-flavor staggered
(w/o rooting)

[Adams ’10] [Golterman-Schmit ’84]



Staggered Wilson term

2. Hoelbling type flavored-mass term

MH(p) = i�µ��µ��

�

sym

cos pµ cos p�

� � �µ�� 2-link hopping

1-flavor staggered
(w/o rooting)

�µ�� =

�

���

+2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 �2

�

���

[Hoelbling ’10]



Dirac Spectrum
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Lattice Fermions

#species chiral spinor

Naive 16 ○ 4

Wilson 1 × 4

Staggered 4 ○ 1

St. Wilson 2 or 1 × 1

Minimal dbl. 2 ○ 4



HOW TO USE ST. WILSON ?



How to Use Wilson
1. Chiral symmetry broken explicitly by Wilson term

2. Mass renormalization

3. Fine tuning required for quark mass

Chiral limit

Existence of the parity-broken phase
(Aoki phase) [Aoki ’84]



How to Use St. Wilson?
1. Chiral symmetry broken explicitly by Wilson term

2. Mass renormalization

3. Fine tuning required for quark mass

Chiral limit

Existence of the parity-broken phase?
(Aoki phase)



Wilson Phase Structure

• Phase diagram
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Wilson Phase Structure

• Phase diagram
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Pion Mass

MMc

m2
�0

= m2
�±

m2
�± = 0

m2
�0

A :
�
�̄(i�5 � �3)�

�
= 0B :

�
�̄(i�5 � �3)�

�
�= 0

2nd order phase transition
cf. [Sharpe-Singleton ’98]



St. Wilson Phase Structure

1. QCD-like theory

• Gross-Neveu model

2. Strong-coupling lattice QCD

• Hopping parameter expansion

• Effective potential

[Creutz-TK-Misumi ’11]

[Misumi-Nakano-TK-Ohnishi ’12]



STRONG-COUPLING 
LATTICE QCD



Strong-coupling Analysis

1. Hopping parameter expansion

• Diagrammatic method

• Difficulty in treating vacua

2. Effective potential method

•Link variable integral



Hopping Parameter Expansion
• Staggered Wilson with 2-link hopping

• Hoelbling type : 

• Hopping parameter

DstW = Dst + r(2 + MH) + m0

K�1 = 2(m0 + 2r)

MH = diag(+2, 0, 0,�2)



• 1-pt. function :

• Parity symmetric :

• Parity broken :

= +

+

µ

µ ν

� =
1

16K2
, � = ±

�
1

16K2

�
1� 1

16K2

�

� = 1, � = 0

Hopping Parameter Expansion



• 2-pt. function : 

• Pion mass : 

��̄a
0�a

0�̄a
x�a

x�, ��̄a
0i�0�

a
0�̄a

xi�x�a
x�

|K| > 1/4 �� m2
� < 0

coshm� = 1 +
1� 16K2

6K2

Existence of Aoki phase

Analysis with effective potential

Hopping Parameter Expansion



Summary

• Staggered Wilson fermion phase structure

• Gross-Neveu model

• Strong-coupling lattice QCD

Existence of Aoki phase as well as Wilson

Chiral limit

[Creutz-TK-Misumi ’11]

[Misumi-Nakano-TK-Ohnishi ’12]



MINIMALLY-DOUBLED FERMION



WHY 2-FLAVOR QCD?



Quarks
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Effectively two massless quarks



Nielsen-Ninomiya’s Theorem

• Chirality of the lattice fermion has to be canceled out

• There should be doublers, but how many?

#doublers ≧ 2



Lattice Fermions

#species chiral spinor

Naive 16 ○ 4

Wilson 1 × 4

Staggered 4 ○ 1

St. Wilson 2 or 1 × 1

Minimal dbl. 2 ○ 4



Minimally-doubled Fermion
• #doublers = 2

• Exact chiral symmetry

• Ultra-locality

DKW(p) = i
4�

µ=1

�µ sin pµ + ir�4

3�

j=1

(1� cos pj)

[Karsten ’81] [Wilczek ’87]
[Creutz ’08] [Borici ’08]

[Creutz-Misumi ’10]

Wilson-like term
not mass, but (imaginary) chemical potential

[Misumi ’12]



• Weak point :

• KW fermion : 

• P & CT

• Cubic symmetry

Symmetry is not enough to restore Lorentz symmetry 
in the continuum limit.

Minimally-doubled Fermion



• Weak point :

• KW fermion : 

• P & CT

• Cubic symmetry

Symmetry is not enough to restore Lorentz symmetry 
in the continuum limit.

What’s the meaning 
of this symmetry?

Minimally-doubled Fermion



Symmetry of KW Fermion

• P & CT

• Cubic symmetry

SKW =
�

x

�
1
2

4�

µ=1

�̄x�µ(Ux,x+µ̂�x+µ̂ � Ux,x�µ̂�x�µ̂)

+
r

2

3�

j=1

�̄xi�4(2�x � Ux,x+ĵ�x+ĵ � Ux,x�ĵ�x�ĵ)

�



Symmetry of KW Fermion

• P & CT

• Cubic symmetry

SKW =
�

x

�
1
2

4�

µ=1

�̄x�µ(Ux,x+µ̂�x+µ̂ � Ux,x�µ̂�x�µ̂)

+
r

2

3�

j=1

�̄xi�4(2�x � Ux,x+ĵ�x+ĵ � Ux,x�ĵ�x�ĵ)

�

Specifying temporal direction



Symmetry of Finite Density

• P & CT

• Cubic symmetry

Snaive =
�

x

�
3�

j=1

�̄x�j(Ux,x+ĵ�x+ĵ � Ux,x�ĵ�x�ĵ)

+ �̄x�4(eµUx,x+4̂�x+4̂ � e�µUx,x�4̂�x�4̂)

�



Symmetry of Finite Density

• P & CT

• Cubic symmetry

Snaive =
�

x

�
3�

j=1

�̄x�j(Ux,x+ĵ�x+ĵ � Ux,x�ĵ�x�ĵ)

+ �̄x�4(eµUx,x+4̂�x+4̂ � e�µUx,x�4̂�x�4̂)

�

Specifying temporal direction



KW fermion Finite density

Same symmetry



KW fermion Finite density

Same symmetry

Same universality class in continuum limit



Renormalization Effect
• KW term → flavored chemical potential

• additive (imaginary) chemical potential renormalization

• Counter term :

SKW = i�4

3�

j=1

(1� cos pj)

µ3 �̄xi�4�x

cf. Wilson fermion

Tuning this μ3



STRONG-COUPLING ANALYSIS
IN 

FINITE DENSITY
[Misumi-TK-Ohnishi ’12]



Strong-coupling Analysis

1. Link variable integral

2. Bosonization & fermion integral

3. Determine the vacuum from the effective potential

Applied to finite temperature & density



Meson Fields

•  Chiral :

•  Vector (imaginary chemical potential) : ��̄i�4�� = �4

��̄�� = �

� �i�†��

Effective potential for these mesons

Fe↵(�,⇡4;T, µ, µ3) = ...
Please see [Misumi-TK-Ohnishi ’12]



Chiral Phase Diagram
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•  Critical density/temperature ratio

• KW fermion :

• Staggered :

• Phenomenology :

R0
KW =

µc(T = 0)
Tc(µB = 0)

� 2.3

R0
st � 1

R0
ph � 5.5

Chiral Phase Diagram



•  Tricritical point ratio

• KW fermion :

• Staggered :

• Monte-Carlo simulation :

Rtri
KW =

µtri
B

T tri
� 3.4

Rtri
st � 2.0

Rtri
MC � 3

Chiral Phase Diagram



• 3-dimensional diagram : (µB , T, µ3)

-3
-2

-10 1 2 3 4 5
0

0.5

1

1.5

2

Baryon Chemical Potential

Temperature

2nd order

1st order

Chiral Phase Diagram



Summary

• KW-type minimally-doubled fermion

• Finite density 2-flavor QCD with exact chiral symmetry

•  QCD phase diagram

• close to phenomenological result



• Staggered Wilson fermion

• Chiral limit and Aoki phase

• Minimally-doubled fermion

• Applicability to finite density 

Summary


