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A historical observation
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We find a new particle consistent with the SM Higgs boson!!



But there still some issues exist.

Q The theory behind this is the SM?

Q Origins of phenomena hard to be explained by the SM.

mdark matter candidate

mdeviation in muon g-2

& baryon asymmetry

mnumber of generations

mmass hierarchy in quarks/leptons

& flavor mixing

& top quark forward-backward asymmetry
5 ATIC anomaly

& and so on...



minimal Universal Extra Dimension (UED) model
has nice features.
Q The theory behind this is the minimal UED?
— The current LHC results are consistent with the model.
Q Rich collider signatures

@ Can minimal UED explain origins of the phenomena?

dark matter candidate (explained)
mdeviation in muon g-2

& baryon asymmetry

mnumber of generations

mass hierarchy in quarks/leptons

flavor mixing

top quark forward-backward asymmetry
5 ATIC anomaly
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minimal Universal Extra Dimension (UED) model
has nice features.

Q The theory behind this is the minimal UED?
— The current LHC results are consistent with the model.
Q Rich collider signatures

Q Can minimal UED explain origins of the phenomena?

gdark matter candidate (explalned)
mdeviation in muon g-2
& baryon asymmetry
mnumber of generations
mmass hierarchy in quarks/leptons

flavor mixing

& top quark forward-backward asymmetry
mATIC anomaly

| It is hard to explaln the issues »
in minimal UED. 1



Purpose of this talk

We consider three ways of extending minimal UED.

We also discuss associated interesting topics.

Q UED on 6D geometry.
Q UED with junction points(additional boundary).

Q UED with tree-level brane-localized terms.



Purpose of this talk

We consider three ways of extending minimal UED.

We also discuss associated interesting topics.

Q UED on 6D geometry.
B Retest LHC results prefer (6D) UEDs.

Q UED with junction points(additional boundary).
B Generations, mass hierarchy, CKM matrix are

explained simultaneously via geometry.

@ UED with tree-level brane-localized terms.
B In lower R-1 case, anomalous strong coupling
region emerges.



minimal Universal Extra Dimension on S1/Z»

We consider the SM in higher dimension.

Zooming up our yorld... . .

# ot heavy Copies BCCUF.
(Kaluza-Klein Particles)

dimension
£ (compact)

simplest case:
% Sl/Zz orbifold (with vertical identification)

— Two fixed points:
" needed for realizing 4D Weyl fermion
(No SD Weyl fermion)




minimal Universal Extra Dimension on S1/Z,»

We consider the SM in higher dimension.
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dimension
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simplest case:
SllZz orbifold (with vertical identification)

g— Two fixed points:
" needed for realizing 4D Weyl fermion

(No 5D Weyl fermion)

" Assumption: no tree-level brane-localized terms



minimal Universal Extra Dimension on S1/Z,»

We consider the SM in higher dimension.

(Kaluza-Klein Particles)

Zooming uv ur world...
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dimension
4 (compact)

Interesting points




Issues after ‘“Higgs” discovery ]

[F.Petriello] (2002)

[GG -> H (via gluon fusion)]
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[6.Bhattacharyya et al.] (2007)
[A.Datta,S.Raychaudhuri] (2012)

Higgs (126 GeV) < top quark (173.2 GeV)
(stabilizing vacuum)  (destabilizing vacuum)

10 5
aewewn 1 M RGE in 5D: power running
8 F :
B Severe constraint on upper bound of
r ) UED cutoff scale
< 4

__ Mg=1156ev ;[ Only small mass splits is allowed
— stable vacuum — (hal'd to be detected @ LHC)
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UED on 6D geometry

dark matter candidate
number of generations

In collaboration with
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work will be completed



New aspects in 6D

[B.A.Dobrescu, E.Poppitz] (2001)
-» Cancellation of global SU(2) anomaly

< # of generation is three (mod 3)
-» New type of scalar particles appear
< ~(6th components of 6D gauge bosons)
- Many possibilities of background geometry
-2 Unequally-spaced KK mass spectrum(@ tree-level)
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[H Dohi, K-y. Oda] (2010)

[H. Dohi, K.N, K-y.Oda, N.Okuda, R.Watanabe] (in progress)

T.Appelquist, H-C.Cheng, B.A.Dobrescu] (2001) [R.N.Mohapatra, A.Perez-Lorenzana] (2003) 1
) [6.Burdman,B. A.Dobrescu, E.Ponton] (2006) §
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2l |Peo=ERatoaE (Rl Ry = R) ‘;\
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Higgs vacuum stability bound in 6D UED

= )\ T2/7, B RGE in 6D: putting a
o4\ (R~! = 1000GeV)| stringent constraint on A.
9 (larger # of KK states)
B using MS-bar my,p =
o1p 160GeV.
o referen(;e energy[GeV]
[Maximal cutoff scales of 6D UEDs]
o895, PS [=1,2,3
?‘e\"& S%/Zs l=1,2,3,4

T%/Z, , RP? m? +n* < 5.8
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Higgs Signal strength @ LHC
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5.1 parameters estimation "‘od
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UED with junction points
(additional boundary)

number of generations
mmass hierarchy in quarks/leptons
flavor mixing

In collaboration with
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Satoshi Ohya (Harish-Chandra Research Inst.)
Makoto Sakamoto (Kobe Univ.)

paper in preparation



Split chiral zero modes
In mUED, chiral fermion is realized by orbifold.

U(x,y) S/ Zs
D ——

‘\/’

(—v5)¥ = ¥ (orbifold boundary condition)

0 - (Mbunc> 0)

One flat zero mode appears.



Split chiral zero modes
We go for an interval with fermion bulk mass (Myux).

W (z,y)
<

‘\/’

Dirichlet boundary conditions (for right-handed)

(Mbpuik > 0)

Curved profile can be obtained.



Split chiral zero modes
Besides, we add two junction points.

W(z,y)

'\'\/v/'

Dirichlet boundary conditions (for right-handed)




Split chiral zero modes
Besides, we add two junction points.

W(z,y)

‘\'\/‘/’

Dirichlet boundary conditions (for right-handed)

(Mbpuik > 0)

>

Three-generation structure is realized.



More one step in fermion

W(x,y)
L Yxy)
@ Dirichlet boundary conditions

73 “Transparent” conditions
(p/Y¥(y=left side) = @/¥(y=right side))




More one step in fermion

P(x,y)
. — — :
U
O iDirici\lef boumilaryicondi'rions
-y M Transparent” tondjtions
E(lIJ/ ‘I’éyzlef’r side) '= W/ ‘*]’(y:righf side))

Flavor mixing structure appear naturally.



Split chiral zero modes
We can connect the two end points for a fermion.

if“ ; connecting the two points

Dirichlet boundary conditions (for righf-handed)/




Split chiral zero modes
We can connect the two end points for a fermion.

ifié ; connecting the two points

Dirichlet boundary conditions (for right-handed)

(Mbpuik > 0)

The system becomes periodic.



ordinary Higgs boundary condition
3 Like minimal UED case:

(z,y)

“— Neumann boundary condifions:

At this stage, it is hard to generate large hierarchy.



generalized Higgs boundary condition

O(z,y)
\generalized boundary c:ondh‘iornsj
®0)+ L 0,P(0) =0
O(L) — L_9,8(L) =0 (—00 < Ly < o0)

A

y

y=0 ' y=L
We can find the “warped” Higgs VEV form.




[up type]

up & down quark mass matrlx
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up & down quark mass matrix
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Obtained CKM matrix

Wlth good preasmn

Gate, 0975 000

~60 % larger than exp. Value

VekMm| =




Obtained CKM matrix

Wlth good premswn

i
0975 0.0498

VexkMm| =

~60 % larger than exp. Value

We can (almost) explain the three issues of

H generations

M large mass hierarchy
B CKM (small) mixing

simultaneously via geometry.



Obtained CKM matrix

Wlth good premsmn

B
0975 0.0498

VexkMm| =

~60 % larger than exp. Value

We can (almost) explain the three issues of

H generations

M large mass hierarchy
B CKM (small) mixing

simultaneously via geometry.

ey NEXt theme: deriving leptons’ large mixing



UED with tree-level brane-
localized terms

dark matter candidate

& top quark forward-backward asymmetry(?)
B ATIC anomaly(?)

In collaboration with
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deforming minimal UED

We can consider a extended model without losing
existence of dark matter candidate.

y+0
Introducing (tree-level)

brane-localized terms

G(2)

BROADEN

tree-level KK momentum
violating interactions exist.

il

il



non-minimal “QCD”
[F.del Aguila,M.Perez-Victoria,J.Santiago] (2003,2004)
[Gluon part] [T.Flacke, A.Menon.D.J.Phalen] (2009)
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[Qaurk part] Brane terms are 4D gauge invariant.
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KK Mass spectrum
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G1-Q1-Qo gauge coupling

Nontrivial interference occurs between
mode functions of 1st KK quark & gluon.

g'G1 Q1 Qp g'G1 Q71 Qg
L -1.0 0[4 0.8

-1.1

0:6

-1.4

14 -12 -10 -08 -06 -04 -02 0.0}¢
rg' |

quark coefficient

gluon coefficient |



After choosing R-1, the coupling becomes a function of
1st KK masses.
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STeV run with R-1 =1 TeV

pp > G1G; (\/s =8 TeV, R~ = 1TeV) pp ->G1Q; (\/s =8 TeV, R = 1TeV)
TR e ————— 2000 T e —

ry')
ry")

rQ'(
I'Q'(

quark coeficient

_1.5 1. ' ." '- V - - - - ::\ .

gluon coefficient

There are anomalous regions.



8TeV run with R-1 =3 TeV

pp ->G1G; (\/s =8 TeV,R " =3 TeV)

pp->G1Qs (s =8TeV, R1=3Tev) pp—->Q1Qs (ys =8TeV, R'=3Tev)

20} -

-1

No anomalous region.



Summary

Q UED on 6D geometry.
B Retest LHC results prefer (6D) UEDs.

Q UED with junction points(additional boundary).
B Generations, mass hierarchy, CKM matrix are

explained simultaneously via geometry.

Q UED with tree-level brane-localized terms.
B In lower R-1 case, anomalous strong coupling
region emerges.
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deviation in muon g-2
baryon asymmetry



Summary

@ UED on 6D geometry.
B Retest LHC results prefer (6D) UEDs.

Q UED with junction points(additional boundary).
B Generations, mass hierarchy, CKM matrix are

explained simultaneously via geometry.

Q UED with tree-level brane-localized terms.
B In lower R-1 case, anomalous strong coupling
region emerges.

deviation in muon g-2
baryon asymmetry

B Adding new particle.
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