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A historical observation

We find a new particle consistent with the SM Higgs boson!!



But there still some issues exist.

 The theory behind this is the SM?

 Origins of phenomena hard to be explained by the SM.

 dark matter candidate
 deviation in muon g-2
 baryon asymmetry
 number of generations
 mass hierarchy in quarks/leptons
 flavor mixing
 top quark forward-backward asymmetry
 ATIC anomaly
 and so on...



minimal Universal Extra Dimension (UED) model
has nice features.

 The theory behind this is the minimal UED?
   → The current LHC results are consistent with the model.

 Rich collider signatures

 Can minimal UED explain origins of the phenomena?

 dark matter candidate (explained)
 deviation in muon g-2
 baryon asymmetry
 number of generations
 mass hierarchy in quarks/leptons
 flavor mixing
 top quark forward-backward asymmetry
 ATIC anomaly
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Purpose of this talk

We consider three ways of extending minimal UED.

We also discuss associated interesting topics.

 UED on 6D geometry.

 UED with junction points(additional boundary).

 UED with tree-level brane-localized terms.



Purpose of this talk

We consider three ways of extending minimal UED.

We also discuss associated interesting topics.

 UED on 6D geometry.

 UED with junction points(additional boundary).

 UED with tree-level brane-localized terms.

 Retest LHC results prefer (6D) UEDs.

 Generations, mass hierarchy, CKM matrix are
   explained simultaneously via geometry.

 In lower R-1 case, anomalous strong coupling
   region emerges.



minimal Universal Extra Dimension on S1/Z2

Zooming up our world...

We consider the SM in higher dimension.

a SM particle

size of extra
 dimension
(compact)

Infinite # of heavy copies occur.
(Kaluza-Klein Particles)

the gauge symmetry of the QCD sector. We assume that the electroweak gauge symmetry

is spontaneously broken by the ordinary Higgs mechanism as it is in the case of mUED. It is

noted that the Vacuum Expectation Value (VEV) of the Higgs field can possess a constant

profile (even in the presence of brane-localized Higgs terms that have covariant forms in

4D) by tuning appropriate parameters [52].2 Note that the total action in equation (2.1) is

invariant under the transformation y → −y which exchanges the positions of the two fixed

points. This suggests that our theory has an accidental Z2 symmetry, called the KK parity,

which ensures the stability of the lightest KK particle thus making the same a viable dark

matter candidate. In figure 1 we illustrate the ‘geometry’ of the configuration through a

schematic diagram.
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Figure 1. A schematic diagram of the geometry of the orbifolded configuration. The thick red arc
(upper semi-circle) stands for the fundamental region of the background geometry of S1/Z2. The two
blue circular spots on diametrically opposite locations on the circle (along the horizontal) represent
the orbifold fixed points at which tree-level BLTs can appear. Every point on the dot-dashed red arc
(the lower semi-circle) is identified with the corresponding point on the fundamental region and these
are indicated by vertical arrows. The horizontal arrow depicts the accidental Z2 symmetry under the
reflection y → −y that is present in the set-up.

In the presence of brane-localized terms many new features emerge in the theory which

we never experience in a scenario like mUED. Here we take a glance at them.

• We find new contributions to the masses of the KK excitations. Because of the brane-

localized terms, the expressions that determine these masses get altered from those

in the mUED in a fundamental way. One can end up with a rather non-trivial mass

spectrum with large mass splittings among the KK excitations by tuning the coefficients

of the brane-localized terms.

• We also see alterations of some vertices containing KK particles. Orthonormal con-

ditions for the mode functions describing the profiles of various KK excitations are

modified affecting the values of some overlap integrals.

2
Another possibility of theories with non-constant (y-dependent) Higgs VEV have been pursued in refs. [56–

59].

– 6 –

simplest case:
S1/Z2 orbifold (with vertical identification)

Two fixed points:
needed for realizing 4D Weyl fermion

(No 5D Weyl fermion)
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Assumption: no tree-level brane-localized terms
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simplest case:
S1/Z2 orbifold (with vertical identification)

Two fixed points:
needed for realizing 4D Weyl fermion

(No 5D Weyl fermion)

Assumption: no tree-level brane-localized terms

Interesting points

 Dark matter candidate = Lightest KK particle
 125GeV Higgs is possible
 Loose constraint on mKK←Possibly detectable 

                                                  at the LHC
 



Issues after “Higgs” discovery

1. Enhancement of Higgs signal @ LHC: [F.Petriello] (2002)

KK tops
KK tops

& bosons

[GG -> H (via gluon fusion)] [H -> γγ]

enhanced suppressed

models with m1 <∼ 800 GeV. A measurement of the h → γγ width with an accuracy of ≈ 2%

is possible with the proposed photon collider option of future e+e− colliders [31]; this would

allow probes of the UED model with KK mass parameter m1 <∼ 1500 GeV.

Figure 4: The fractional deviation of R = σgg→h × Γh→γγ, the γγ production rate, in
the UED model as a function of mH ; from top to bottom, the results are for m1 =
500, 750, 1000, 1250, 1500 GeV.

3.3 h → γZ

We examine here the decay h → γZ, which proceeds in the SM through top quark and gauge

sector loops. Although the width of this process exceeds the h → γγ width for Higgs masses

in the range mH >∼ 130 GeV, the single photon and need to demand a leptonic Z decay for

reconstruction purposes render it less interesting at the LHC. However, since it potentially

provides another test of the detailed properties of the Higgs boson, we study modifications

of this decay arising from physics in UED.

15

Figure 1: The fractional deviation of the gg → h production rate in the UED model as a
function of mH ; from top to bottom, the results are for m1 = 500, 750, 1000, 1250, 1500 GeV.

3.2 h → γγ

We now study the decay h → γγ, which is the primary discovery mode at the LHC for a

Higgs with mass mH <∼ 150 GeV. At one loop, this process proceeds through both top quark

and gauge sector loops, with the latter involving the W± tower and its associated Goldstone

modes and ghosts. The decay width can be written as

Γh→γγ =
GF α2

8
√

2π3mH

|F |2 , (29)

where α is the electromagnetic coupling, and F = FW + 3Q2
t Ft. The SM result for F SM

t is

given in Eq. 25, and

F SM
W =

1

2
m2

H + 3M2
W − 3M2

W

(

m2
H − 2M2

W

)

C0(M
2
W ) . (30)

In the UED model there are additional contributions from the top quark KK tower, the W±

tower and its associated Goldstone modes, ghost KK states, and the H± tower defined in

Eq. 17. We set Ft = F SM
t +F KK

t and FW = F SM
W +F KK

G , with F KK
t denoting the top quark

12
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sm sm

Figure 1: The fractional deviation of the gg → h production rate in the UED model as a
function of mH ; from top to bottom, the results are for m1 = 500, 750, 1000, 1250, 1500 GeV.

3.2 h → γγ

We now study the decay h → γγ, which is the primary discovery mode at the LHC for a

Higgs with mass mH <∼ 150 GeV. At one loop, this process proceeds through both top quark

and gauge sector loops, with the latter involving the W± tower and its associated Goldstone

modes and ghosts. The decay width can be written as

Γh→γγ =
GF α2

8
√

2π3mH

|F |2 , (29)

where α is the electromagnetic coupling, and F = FW + 3Q2
t Ft. The SM result for F SM

t is

given in Eq. 25, and

F SM
W =

1

2
m2

H + 3M2
W − 3M2

W

(

m2
H − 2M2

W

)

C0(M
2
W ) . (30)

In the UED model there are additional contributions from the top quark KK tower, the W±

tower and its associated Goldstone modes, ghost KK states, and the H± tower defined in

Eq. 17. We set Ft = F SM
t +F KK

t and FW = F SM
W +F KK

G , with F KK
t denoting the top quark

12

models with m1 <∼ 800 GeV. A measurement of the h → γγ width with an accuracy of ≈ 2%

is possible with the proposed photon collider option of future e+e− colliders [31]; this would

allow probes of the UED model with KK mass parameter m1 <∼ 1500 GeV.

Figure 4: The fractional deviation of R = σgg→h × Γh→γγ, the γγ production rate, in
the UED model as a function of mH ; from top to bottom, the results are for m1 =
500, 750, 1000, 1250, 1500 GeV.

3.3 h → γZ

We examine here the decay h → γZ, which proceeds in the SM through top quark and gauge

sector loops. Although the width of this process exceeds the h → γγ width for Higgs masses

in the range mH >∼ 130 GeV, the single photon and need to demand a leptonic Z decay for

reconstruction purposes render it less interesting at the LHC. However, since it potentially

provides another test of the detailed properties of the Higgs boson, we study modifications

of this decay arising from physics in UED.

15

models with m1 <∼ 800 GeV. A measurement of the h → γγ width with an accuracy of ≈ 2%

is possible with the proposed photon collider option of future e+e− colliders [31]; this would

allow probes of the UED model with KK mass parameter m1 <∼ 1500 GeV.

Figure 4: The fractional deviation of R = σgg→h × Γh→γγ, the γγ production rate, in
the UED model as a function of mH ; from top to bottom, the results are for m1 =
500, 750, 1000, 1250, 1500 GeV.

3.3 h → γZ

We examine here the decay h → γZ, which proceeds in the SM through top quark and gauge

sector loops. Although the width of this process exceeds the h → γγ width for Higgs masses

in the range mH >∼ 130 GeV, the single photon and need to demand a leptonic Z decay for

reconstruction purposes render it less interesting at the LHC. However, since it potentially

provides another test of the detailed properties of the Higgs boson, we study modifications

of this decay arising from physics in UED.

15

126 126



2. Constraint on cutoff scale from Higgs vacuum stability:
[G.Bhattacharyya et al.] (2007)

[A.Datta,S.Raychaudhuri] (2012)

Higgs (126 GeV) < top quark (173.2 GeV)
(stabilizing vacuum) (destabilizing vacuum)used the same formulae as in Ref. [5], with a top quark mass chosen to be 173.2 GeV. Our

results are shown in Figure 1.

In Figure 1, we have plotted, as a function

of the compactification radius R−1, the ra-

tio Λ/R−1 = ΛR. The (blue) shaded region

shows the variation in this ratio as the mass of

the SM Higgs boson is varied from 115 GeV

to 127 GeV. Obviously, assuming tree-level

masses, the number of KK modes with mass

Mn = n/R which can participate in any pro-

cess will be given by the nearest integer less

than the ordinate for a given value of R−1,

plotted along the abscissa. It is clear that

this number will only vary between 2 and 4,

and can never reach higher values such as 10

and 20 without destabilising the electroweak

vacuum. Variation of the top quark mass be-

tween its experimentally allowed limits results

is some minor distortion of the curves shown

in Figure 1, but the conclusion remains un-

changed.

R   [TeV]−1

!
R

M   = 115 GeVH

M   = 127 GeVH

unstable vacuum

stable vacuum
 0

 2

 4

 6

 8

 10

 0.4  0.8  1.2  1.6  2

Figure 1: Variation with R−1 of the cutoff Λ,

presented in terms of the ratio Λ/R−1, as permit-

ted by stability of the electroweak vacuum.

A similar result also follows from the constraints presented in Ref. [6]. What has not been

studied in Ref. [6], however, and forms the main thrust of our work, is the serious implications

such a low cutoff implies for the phenomenology of the mUED model in the context of

collider searches. In the following discussions, we explore these consequences in two different

contexts, viz.

1. electroweak precision tests; and

2. collider searches for mUED signatures.

Before proceeding further, we pause at this point to recall how the masses and couplings of

the mUED model are generated. At the tree-level the masses Mn of all the KK excitations

at the level n (n ∈ Z) are given by

M2
n = M2

0 +
n2

R2
(1)

3

 RGE in 5D: power running
 Severe constraint on upper bound of

   UED cutoff scale

 Only small mass splits is allowed
    (hard to be detected @ LHC)



UED on 6D geometry

Takuya Kakuda (Niigata Univ.)
Kin-ya Oda (Kyoto Univ.)

Naoya Okuda (Osaka Univ.)
Ryoutaro Watanabe (Osaka Univ.)

In collaboration with

work will be completed

 dark matter candidate
 number of generations



 Cancellation of global SU(2) anomaly
       ← # of generation is three (mod 3)

 New type of scalar particles appear
       ← ~(6th components of 6D gauge bosons)

 Many possibilities of background geometry
 Unequally-spaced KK mass spectrum(@ tree-level)

New aspects in 6D
[B.A.Dobrescu,E.Poppitz] (2001)

mKK

1/R

1

2

3

√
3

√
2

√
5

mKK = m
R mKK =

√
m2+n2

R
S1(5D) S2(6D)T2(6D)

[original KK spectra]



● T2/(Z2× Z’2) orbifold UED

fixed points

Identified

Assumption

[ R.N.Mohapatra, A.Perez-Lorenzana] (2003)

● T2/Z4 orbifold UED

Identified Identified

fixed points

[B.A.Dobrescu,E.Ponton] (2004)

[G.Burdman,B.A.Dobrescu,E.Ponton] (2006)

● Real Projective Plane(RP2) UED

Identified

Assumption

No fixed point
globally

Unorientable
Manifold

[G.Cacciapaglia,A.Deandrea,J.Llodra-Perez] (2010) ● S2/Z2 orbifold UED

fixed 
points

Orbifold

[N. Maru, T. Nomura, J.Sato, M. Yamanaka] (2010)

[T.Appelquist, H-C.Cheng, B.A.Dobrescu] (2001)

● T2/Z2 orbifold UED

fixed points

Identified

Assumption

● Projective sphere(PS) UED

No fixed point
Unorientable

Manifold
[H. Dohi, K-y.Oda] (2010)

● S2 UED with a Stueckelberg field(S2)

No fixed point

Manifold

[H. Dohi, K.N, K-y.Oda, N.Okuda, R.Watanabe] (in progress)

T2-based

S2-based



Higgs vacuum stability bound in 6D UED 

 RGE in 6D: putting a
   stringent constraint on Λ.
   (larger # of KK states)

 using MS-bar mtop =
   160GeV.

Prelim
inary
[Maximal cutoff scales of 6D UEDs]



Higgs Signal strength @ LHC
Blue zones: combined 2σ allowed regions

Prelim
inary



Prelim
inary



Prelim
inary



Prelim
inaryS,T parameters estimation

Lower values of R-1(2σ)



UED with junction points
(additional boundary)

In collaboration with

paper in preparation

Yukihiro Fujimoto  (Kobe Univ.)
Tomoaki Nagasawa (Tomakomai National College of Tech.)

Satoshi Ohya (Harish-Chandra Research Inst.)
Makoto Sakamoto  (Kobe Univ.)

 number of generations
 mass hierarchy in quarks/leptons
 flavor mixing



Split chiral zero modes
In mUED, chiral fermion is realized by orbifold.

ψL(0) (Mbulk > 0)

One flat zero mode appears.



Split chiral zero modes
We go for an interval with fermion bulk mass (Mbulk).

Dirichlet boundary conditions (for right-handed)

ψL(0)
(Mbulk > 0)

Curved profile can be obtained.



Split chiral zero modes
Besides, we add two junction points.

Dirichlet boundary conditions (for right-handed)



Split chiral zero modes
Besides, we add two junction points.

Dirichlet boundary conditions (for right-handed)

ψL,1(0) ψL,2(0) ψL,3(0) (Mbulk > 0)

Three-generation structure is realized.



More one step in fermion

Dirichlet boundary conditions
“Transparent” conditions
(ψ/Ψ(y=left side) = ψ/Ψ(y=right side))

ψ(x,y)
Ψ(x,y)



More one step in fermion

Dirichlet boundary conditions
“Transparent” conditions
(ψ/Ψ(y=left side) = ψ/Ψ(y=right side))

ψ(x,y)
Ψ(x,y)

ψL,1(0) ψL,2(0) ψL,3(0) (Mbulk > 0)

y

ΨR,1(0) ΨR,2(0)

ΨR,3(0)

Flavor mixing structure appear naturally.



Split chiral zero modes
We can connect the two end points for a fermion.

Dirichlet boundary conditions (for right-handed)

connecting the two points



Split chiral zero modes
We can connect the two end points for a fermion.

Dirichlet boundary conditions (for right-handed)

ψL,1(0) ψL,2(0) ψL,3(0) (Mbulk > 0)

The system becomes periodic.

connecting the two points



ordinary Higgs boundary condition

Neumann boundary conditions

 Like minimal UED case:

uL,1(0) uL,2(0) uL,3(0) (Mbulk > 0)

y

uR,1(0) uR,2(0)

uR,3(0)

<Φ>

At this stage, it is hard to generate large hierarchy.



generalized Higgs boundary condition

generalized boundary conditions

2 Consistent BC’s of a Scalar Field

In this section, we investigate a complex scalar on an interval and clarify a class of general

consistent BC’s for the scalar field. Since the BC’s for scalars play a crucial role in our

mechanism to break gauge symmetries, we shall discuss the consistency of the allowed

BC’s from various different points of view. To this end, let us consider a complex scalar

field Φ(x, y) on an interval with an action

S =

∫

d4x

∫ L

0

dy
{

Φ∗∂µ∂µΦ+ Φ∗∂2
yΦ− V (|Φ|2)

}

, (1)

where xµ(µ = 0, 1, 2, 3) denotes the coordinate of the four-dimensional Minkowski space-

time and y is the coordinate of the extra dimension with 0 ≤ y ≤ L. Here, the 5d metric

is chosen as ηKN = diag(−,+,+,+,+).

In one-dimensional quantum mechanics, the most general BC’s of a wavefunction are

known to be characterized by U(2) parameters at a boundary or point singularity. [18]-[20]

If the probability current is required to vanish at a boundary, the U(2) parameters reduce

to a subfamily of U(2) at each boundary. Since an interval has two boundaries, at which

the probability current has to vanish in order to preserve the probability conservation, the

allowed boundary conditions on an interval are found to be given by the Robin boundary

condition5

Φ(0) + L+∂yΦ(0) = 0,

Φ(L)− L−∂yΦ(L) = 0, (2)

where L± are arbitrary real constants of mass dimension −1.

The boundary conditions (2) can also be obtained from the hermiticity requirement of

the action, which is necessary to ensure the unitarity of the theory. The condition S† = S

immediately leads to

j(y) ≡ −i
(

Φ∗(y)∂yΦ(y)− (∂yΦ
∗(y))Φ(y)

)

= 0 at y = 0, L, (3)

where we have assumed that the field and its derivatives become zero at |xµ| → ∞, as

usual. The equations (3) can be solved by rewriting it as [21]

|Φ− iL0∂yΦ|
2 = |Φ+ iL0∂yΦ|

2 at y = 0, L, (4)

where L0 is an arbitrary nonzero real constant of mass dimension −1. The above equa-

tions imply that Φ − iL0∂yΦ should be proportional to Φ + iL0∂yΦ at y = 0, L and the

5 In order to concentrate on the extra dimensional coordinate y, we will omit the xµ dependence unless
otherwise stated.

3

y
y=0 y=L

We can find the “warped” Higgs VEV form.



dR,2(0)

y

y

dR,1(0) dR,3(0)

uR,1(0) uR,2(0) uR,3(0)

qL,3(0)qL,2(0)qL,1(0)

[up type]

[down type]
(periodic)

<Φ(y)>

qL,2(0)qL,1(0) qL,3(0)

up & down quark mass matrix



dR,2(0)

y

y

dR,1(0) dR,3(0)

uR,1(0) uR,2(0) uR,3(0)

qL,3(0)qL,2(0)qL,1(0)

[up type]

[down type]
(periodic)

<Φ(y)>
Figure 9: An outlines of the wavefunctions profiles.

By use of the above information, we easily evaluate the Yukawa mass matrices for up and down
quarks as

−
� L3

0

dy
�
Y (u)U�φ(y)�U + Y (d)D�φ�D + h.c.

�
= −

�
u(0)

1L(x), u(0)
2L(x), u(0)

3L(x)
�
M(u)




u(0)

1R

u(0)
2R

u(0)
3R





−
�
d

(0)
1L(x), d

(0)
2L(x), d

(0)
3L(x)

�
M(d)




d(0)

1R

d(0)
2R

d(0)
3R



 + h.c.,

(49)

M(u) =




m(u)

11 m(u)
12 0

0 m(u)
22 m(u)

21

0 0 m(u)
33



 , M(d) =




m(d)

11 m(d)
12 m(d)

13

0 m(d)
22 m(d)

21

0 0 m(d)
33



 . (50)

Due to the modifications in the down singlet, a new nonzero component m(d)
13 appears in the matrix

M(d). Each component of theM(u) andM(d) is acquired by calculating the corresponding overlap
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1-3 mixing occurs due to the periodic profile

up & down quark mass matrix
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deforming minimal UED
We can consider a extended model without losing

existence of dark matter candidate.

the gauge symmetry of the QCD sector. We assume that the electroweak gauge symmetry

is spontaneously broken by the ordinary Higgs mechanism as it is in the case of mUED. It is

noted that the Vacuum Expectation Value (VEV) of the Higgs field can possess a constant

profile (even in the presence of brane-localized Higgs terms that have covariant forms in

4D) by tuning appropriate parameters [52].2 Note that the total action in equation (2.1) is

invariant under the transformation y → −y which exchanges the positions of the two fixed

points. This suggests that our theory has an accidental Z2 symmetry, called the KK parity,

which ensures the stability of the lightest KK particle thus making the same a viable dark

matter candidate. In figure 1 we illustrate the ‘geometry’ of the configuration through a

schematic diagram.

y

y�0

y�Ly��L

Figure 1. A schematic diagram of the geometry of the orbifolded configuration. The thick red arc
(upper semi-circle) stands for the fundamental region of the background geometry of S1/Z2. The two
blue circular spots on diametrically opposite locations on the circle (along the horizontal) represent
the orbifold fixed points at which tree-level BLTs can appear. Every point on the dot-dashed red arc
(the lower semi-circle) is identified with the corresponding point on the fundamental region and these
are indicated by vertical arrows. The horizontal arrow depicts the accidental Z2 symmetry under the
reflection y → −y that is present in the set-up.

In the presence of brane-localized terms many new features emerge in the theory which

we never experience in a scenario like mUED. Here we take a glance at them.

• We find new contributions to the masses of the KK excitations. Because of the brane-

localized terms, the expressions that determine these masses get altered from those

in the mUED in a fundamental way. One can end up with a rather non-trivial mass

spectrum with large mass splittings among the KK excitations by tuning the coefficients

of the brane-localized terms.

• We also see alterations of some vertices containing KK particles. Orthonormal con-

ditions for the mode functions describing the profiles of various KK excitations are

modified affecting the values of some overlap integrals.

2
Another possibility of theories with non-constant (y-dependent) Higgs VEV have been pursued in refs. [56–

59].
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Introducing (tree-level)
brane-localized terms

Broaden

Jets are hard. 

tree-level KK momentum
violating interactions exist.

 top quark forward-backward asymmetry
 ATIC anomaly
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non-minimal “QCD”

We observe that BLTs can indeed inflict major distortions in the mUED spectrum be-

yond recognition [37, 38]. On top of that, distortions in couplings also open up many phe-

nomenological possibilities. When considered together, these would provide a rather relaxed

framework which can make the confusion among mUED, nmUED, and SUSY (and also pos-

sibly, T -parity conserving little Higgs framework (see refs. [54, 55] and references therein))

get more complete.

The paper is organized as follows. In section 2 we discuss the theoretical framework that

include the BLTs for the strongly interacting sector indicating their nontrivial implications.

In section 3 we derive the mass spectrum and the couplings and highlight their features by

contrasting them with those in the mUED framework. The resulting phenomenology at the

LHC is taken up in section 4 where the emphasis is on estimating the production rates of the

strongly interacting level ‘1’ KK excitations as functions of the fundamental parameters of

the framework. Situations in nmUED are studied with a concrete example to demonstrate

the possibility of a near-complete faking of mUED and SUSY scenarios. In section 5 we

conclude. We also provide an appendix for the Feynman rules involving the interactions of

the strongly interacting KK particles from level ‘1’ which are used in this work.

2 Theoretical framework

We consider the strongly interacting (QCD) sector of a 5D UED scenario compactified on

S1/Z2 in the presence of brane-localized terms. Under a Z2 orbifold on S1, two fixed points

appear and some 4D terms, consistent with gauge symmetry and Lorentz invariance, can be

localized around them. Theoretical aspects of brane-localized kinetic terms (BLKTs) have

been studied in refs. [45–51]. We follow the notations of ref. [52], where a UED-type scenario

with brane localized terms only for the electroweak gauge bosons and Higgs sectors (and not

for the gluon and the fermion sectors) are considered. The total action for the QCD sector

can be expressed as:

SNMQCD = Sgluon + Sgluon,gf + Squark + SYukawa, (2.1)

with the superscript ‘gf’ standing for ‘gauge-fixing’ and where the different components of

the complete action are as follows:

Sgluon =

�
d4x

� L

−L
dy

�
− 1

4
Ga

MNGaMN +
�
δ(y − L) + δ(y + L)

��
− rG

4
Ga

µνG
aµν

��
,

(2.2)

Sgluon,gf =

�
d4x

� L

−L
dy

�
− 1

2ξG

�
∂µG

aµ − ξG∂yG
a
y

�2 − 1

2ξG,b

� �
∂µG

aµ + ξG,bG
a
y

�2
δ(y − L)

+
�
∂µG

aµ − ξG,bG
a
y

�2
δ(y + L)

��
, (2.3)
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[F.del Aguila,M.Perez-Victoria,J.Santiago] (2003,2004)
[T.Flacke,A.Menon.D.J.Phalen] (2009)

Squark =

�
d4x

� L

−L
dy

3�

i=1

�
iU iΓ

MDMUi + rQ
�
δ(y − L) + δ(y + L)

��
iU iγ

µDµPLUi

�

+ iDiΓ
MDMDi + rQ

�
δ(y − L) + δ(y + L)

��
iDiγ

µDµPLDi

�

+ iuiΓ
MDMui + rQ

�
δ(y − L) + δ(y + L)

��
iuiγ

µDµPRui
�

+ idiΓ
MDMdi + rQ

�
δ(y − L) + δ(y + L)

��
idiγ

µDµPRdi
��

,

(2.4)

SYukawa =

�
d4x

� L

−L
dy

3�

i,j=1

�
−
�
1 + rY (δ(y − L) + δ(y + L))

�

×
�
Y u
ijQiujΦ̃+ Y d

ijQidjΦ+ h.c.

��
. (2.5)

In the above set of expressions, y represents the compact extra spatial direction; M,N run

over 0, 1, 2, 3, y while µ, ν run over 0, 1, 2, 3. Representations of the 5D Minkowski metric

and the Clifford algebra are chosen as ηMN = diag(1,−1,−1,−1,−1) and ΓM
= {γµ, iγ5},

respectively. The 4D chiral projectors for the right and the left-handed states have the usual

definition of PR,L =
1±γ5

2 . Ga
M , Ui, Di, ui, di,Φ correspond to the 5D gluon, the 5D up-

and down-type SU(2)W doublet quarks from the i-th generation, the same for the SU(2)W

singlet quarks, SU(2)W Higgs doublet, respectively. ‘a’ is the SU(3)C adjoint index. To fix

the gauge symmetry for the 5D gluon sector, we introduce the bulk and the boundary gauge

fixing parameters, ξG and ξG,b, respectively. Y u
ij and Y d

ij are the 5D Yukawa matrices. Φ̃

respects the condition Φ̃ = iσ2Φ∗
with σ2 being the conventional Pauli matrix. Concrete

forms of the 5D covariant derivative for the fermions (DM ) and that for the gluon field are

given by

DM = ∂M − ig5sG
a
MT a, (2.6)

Ga
MN = ∂MGa

N − ∂NGa
M + g5sf

abcGb
MGc

N , (2.7)

where g5s is the 5D strong (QCD) coupling, T a
is the SU(3)C generator from the fundamental

representation and fabc
is the SU(3)C group structure constant.

In this paper, we consider the so-called “downstairs” picture where we only focus on the

fundamental region of the Z2-orbifold extended over [−L,L] with L = πR/2, R being the

radius of the compact extra dimension [58]. The Z2 orbifolding leads to a discrete symmetry

in the extra-dimensional (y) coordinate that can be expressed as

y + L ∼ −(y + L) (2.8)

with two fixed points at y = ±L. The 5D covariant forms of the brane-localized terms in

equations (2.2), (2.4), (2.5) can be shown to have their 4D counterparts which do not break

– 5 –

[Gluon part]

[Qaurk part] Brane terms are 4D gauge invariant.



where mG(n)
is the physical mass of the n-th KK gluon’s physical mass. Using equations

(2.9), (2.12), (2.13), we obtain the equation for the mode function fG(n)
of the n-th level

gluon as

∂2fG(n)
(y)

∂y2
= −m2

G(n)
fG(n)

(y). (2.14)

We should take the values of Ga
µ’s orbifold conditions as even at the both boundaries, then

the form of the basic solution is as follows:

fG(n)
(y) = NG(n)

×






cos(mG(n)
y)

CG(n)

for n even (even KK-parity)

− sin(mG(n)
y)

SG(n)

for n odd (odd KK-parity)

, (2.15)

where NG(n)
is a normalization factor. Hereafter, we use the following short-hand notations

CG(n)
= cos

�
mG(n)

πR

2

�
, SG(n)

= sin

�
mG(n)

πR

2

�
, TG(n)

= tan

�
mG(n)

πR

2

�
. (2.16)

In the unitary gauge, we choose the Neumann-type boundary conditions for gluon field

resulting in

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν + ∂yG
aµ
����

y=L
= 0, (2.17)

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν − ∂yG
aµ
����

y=−L
= 0. (2.18)

Using equation (2.15), we obtain the following set of transcendental equations that determine

the mass of the KK-gluons

rGmG(n)
=

�
−TG(n)

for n even

1/TG(n)
for n odd

. (2.19)

We can find a massless zero mode in the spectrum regardless of the value of rG, which

corresponds to the gluon of the ordinary 4D QCD. The set of gluon mode functions {fG(n)
}

obeys the following generalized orthonormal relation

� L

−L
dy

�
1 + rG (δ(y − L) + δ(y + L))

�
fG(m)

fG(n)
= δm,n, (2.20)

which determines the normalizations to have the following forms

N−2
G(n)

=






2rG +
1

C2
G(n)

�
πR

2
+

1

2mG(n)

sin(mG(n)
πR)

�
for n even

2rG +
1

S2
G(n)

�
πR

2
− 1

2mG(n)

sin(mG(n)
πR)

�
for n odd

. (2.21)
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mX'

�5

5
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15

�mX
�

5mX
�

2mX
�

cot� Π mX
�

2
�

�tan� Π mX
�

2
�

massless mode exists
irrespective of rG

value of KK mass
is changed

KK Mass spectrum

-π/2 m’X

It is instructive to note that the generic solutions for the actual masses at different

KK levels can be found graphically as their values at the intersection points of the curves

representing the trigonometric functions on the right hand side of the mass determining

condition in equation (3.2) (and its counter-part for even KK level which is not explicitly

shown there) and the straight lines representing the left hand side of the same. This is

illustrated in figure 2. The magenta curves represent the mass-determining condition for

alternate even KK modes while the cyan ones do the same for the alternate odd KK modes.

All these curves are intersecting the abscissa at integer values like 0, 1, 2, 3 and so on signalling

the actual masses at the n-th level to be just nR−1 (since M �
Q = MQ/R−1) i.e., for r�Q = 0

where r�Q = rQR−1, i.e., in the limit of vanishing brane-localized terms. It is clear from

this figure that a massless mode exists (at the origin) for the even mode with n = 0. For

demonstrative purposes only, we choose three straight lines that correspond to three values

of the brane-localized parameters r�X , viz., r�X = 5, 2,−1 as we go down from above. The

red (blue) blobs at the intersections of these straight lines and the magenta (cyan) curves

indicate the mass value (in units of m�
X) for the gluon or the quark at the even (odd) KK

level for the value of r�X that the straight line in context stands for. To elucidate further, it is

obvious that as we follow a particular curve (magenta and cyan, that correspond to even and

odd KK levels, respectively) the masses of the KK quark or KK gluon drops as r�X increases,

for a given KK level.

2 4 6 8 10
rG'

0.5

1.0

1.5

m'X�1�

2 4 6 8 10
rG'

500

1000

1500

2000

2500

mX �1� �GeV �

R�1�1500 �GeV�
R�1�1000 �GeV�
R�1�500 �GeV�

Figure 3. Ratio of actual mass of level ‘1’ KK gluon/quark and R−1 (left panel) and the corresponding
actual masses (right panel; for different values of R−1) plotted against the parameter r�X characterizing
the brane-localized term. The trivial case of m�

X(1)
= 1 (left panel) or mX(1)

= R−1 (right panel) is
retrieved when r�G = 0, i.e., in the limit of vanishing brane-localized term.

The left panel of figure 3 illustrates the variation of the ratio of the mass of level ‘1’ KK

gluon or quark and R−1 (i.e., of m�
X(1)

) as a function of r�X . By virtue of equation (3.2), this

dependence is blind to R−1. It is interesting to note that for r�X < 0, m�
X(1)

> 1 signifying

the actual KK mass to be larger than R−1. The reverse is true for r�X > 0. As we can see

from this panel that the variation flattens up quickly with increasing r�X .

In the right panel of figure 3 we show the actual variations of masses (i.e., of mX(1)
) for
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G1-Q1-Q0 gauge coupling
Nontrivial interference occurs between

mode functions of 1st KK quark & gluon.
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table are picked up directly from the contour-plots in figure 9. Note that the values 0.85 and

1.1 that are chosen for g�G1Q1Q0
in table 2 could result in ∼ 50% deviations from the nominal

values of the cross sections (which go as g�4G1Q1Q0
) for the strong production modes at the

LHC. This kind of a departure can be expected to be measured efficiently enough and thus

can be used for further inferences. It is then informative to find from table 2 that for an

experimentally estimated value of g�G1Q1Q0
and for a known set of masses for the KK gluon

and KK quarks, the value of R−1
is pretty distinct and thus can be estimated unambiguously.
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Figure 9. Contours of the coupling deviation-factor g�G1Q1Q0
in the mG1 − MQ1 mass-plane for

R−1
= 1 TeV (top, left), R−1

= 2 TeV (top, right), R−1
= 3 TeV (bottom, left) and R−1

= 5 TeV

(bottom, right).
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(bottom, right).
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After choosing R-1, the coupling becomes a function of
1st KK masses.
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8TeV run with R-1 = 1 TeV

There are anomalous regions.
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8TeV run with R-1 = 3 TeV

No anomalous region.



Summary
 UED on 6D geometry.

 UED with junction points(additional boundary).

 UED with tree-level brane-localized terms.

 Retest LHC results prefer (6D) UEDs.

 Generations, mass hierarchy, CKM matrix are
   explained simultaneously via geometry.

 In lower R-1 case, anomalous strong coupling
   region emerges.
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 Adding new particle.
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