Split Seesaw Mechanism and Flavor Symmetry

Seminar @ Osaka University

17 April 2012

Ryo Takahashi (NTHU, Taiwan → Osaka University)

Reference

A. Adulpravitchai, RT, JHEP 1109 (2011) 127

Contents

1. Introduction
2. Split seesaw mechanism
3. A_4 flavor models in split seesaw mechanism
4. Summary
1. Introduction

♦ The standard model (SM) in particle physics has achieved a great success as a renormalizable effective theory.
1. Introduction

♣ The standard model (SM) in particle physics has achieved a great success as a renormalizable effective theory.

♣ However, there are some unsolved problems:
1. Introduction

♠ The standard model (SM) in particle physics has achieved a great success as a renormalizable effective theory.

♠ However, there are some unsolved problems:
 e.g.
 • Property of neutrinos;
1. Introduction

♠ The standard model (SM) in particle physics has achieved a great success as a renormalizable effective theory.

♠ However, there are some unsolved problems:
 e.g.
 • Property of neutrinos;
 - non-vanishing and tiny masses

 • Candidate for dark matter (LSP? LKP? sterile neutrino?)

 • Origin of baryon asymmetry of the Universe

 • Stabilization of the Higgs mass (SUSY? extra-dimension?)

 • Inflation

 • Dark energy

Mass Scales: ln(m)

<table>
<thead>
<tr>
<th>100 GeV</th>
<th>1 GeV</th>
<th>τ</th>
<th>b</th>
<th>c</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>µ</td>
<td>s</td>
<td></td>
<td></td>
<td>d</td>
<td>u</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• \(\nu: \sqrt{\Delta m^2} \sim 0.01 \text{ eV} \)
1. Introduction

♣ The standard model (SM) in particle physics has achieved a great success as a renormalizable effective theory.

♣ However, there are some unsolved problems:

 e.g.

 • Property of neutrinos;
 - non-vanishing and tiny masses
 - Dirac or Majorana

 • Candidate for dark matter (LSP? LKP? sterile neutrino?)

 • Origin of baryon asymmetry of the Universe

 • Stabilization of the Higgs mass (SUSY? extra-dimension?)

 • Inflation

 • Dark energy

\[
\begin{array}{cccc}
\text{Mass Scales: ln(m)} & 100 \text{ GeV} & 1 \text{ GeV} & \text{1 GeV} \\
\tau & b & c & t \\
\mu & s & d & u \\
e & \text{_} & \text{_} & \text{_} \\
\end{array}
\]

\[\nu: \sqrt{\Delta m^2} \sim 0.01 \text{ eV}\]
1. Introduction

♣ The standard model (SM) in particle physics has achieved a great success as a renormalizable effective theory.

♣ However, there are some unsolved problems:
 e.g.

 ● Property of neutrinos;
 - non-vanishing and tiny masses
 - Dirac or Majorana
 - PMNS structure
 \[\theta_{12} : \text{large}, \theta_{23} : \text{maximal}, \theta_{13} : \text{non-zero} \]

 \[\nu : \sqrt{\Delta m^2} \sim 0.01 \text{ eV} \]
1. Introduction

♦ The standard model (SM) in particle physics has achieved a great success as a renormalizable effective theory.

♦ However, there are some unsolved problems:

 - Property of neutrinos;
 - non-vanishing and tiny masses
 - Dirac or Majorana
 - PMNS structure
 \[\theta_{12} : \text{large, } \theta_{23} : \text{maximal, } \theta_{13} : \text{non-zero} \]
 - Candidate for dark matter (LSP? LKP? sterile neutrino?)

\[
\begin{array}{cccc}
\text{100 GeV} & \text{1 GeV} & \tau & b \\
\text{ \ } & \text{ \ } & \mu & s \\
\text{ \ } & \text{ \ } & \text{e} & d \\
\text{ \ } & \text{ \ } & \text{} & u \\
\end{array}
\]

- \[\nu : \sqrt{\Delta m^2} \sim 0.01 \text{ eV}\]
1. Introduction

♠ The standard model (SM) in particle physics has achieved a great success as a renormalizable effective theory.

♠ However, there are some unsolved problems:
e.g.

- **Property of neutrinos;**
 - non-vanishing and tiny masses
 - Dirac or Majorana
 - PMNS structure

\[\theta_{12} : \text{large}, \ \theta_{23} : \text{maximal}, \ \theta_{13} : \text{non-zero} \]

- **Candidate for dark matter (LSP? LKP? sterile neutrino?)**
- **Origin of baryon asymmetry of the Universe**

\[
\begin{array}{cccc}
100 \text{ GeV} & \tau & b & t \\
1 \text{ GeV} & \mu & s & c \\
\text{e} & d & u \\
\end{array}
\]

\[\nu : \sqrt{\Delta m^2} \sim 0.01 \text{ eV} \]
1. Introduction

♠ The standard model (SM) in particle physics has achieved a great success as a renormalizable effective theory.
♠ However, there are some unsolved problems:
 e.g.
 • Property of neutrinos;
 - non-vanishing and tiny masses
 - Dirac or Majorana
 - PMNS structure
 \[\theta_{12} : \text{large, } \theta_{23} : \text{maximal, } \theta_{13} : \text{non-zero} \]
 • Candidate for dark matter (LSP? LKP? sterile neutrino?)
 • Origin of baryon asymmetry of the Universe
 • Stabilization of the Higgs mass (SUSY? extra-dimension?)

\begin{table}[h]
\begin{center}
\begin{tabular}{cccc}
\hline
Mass Scales: ln(m) & 100 GeV & 1 GeV & t
\hline
τ & & &
\hline
μ & & &
\hline
s & & &
\hline
d & & &
\hline
e & & &
\hline
c & & &
\hline
u & & &
\hline
\end{tabular}
\end{center}
\end{table}

\[v : \sqrt{\Delta m^2} \sim 0.01 \text{ eV} \]
1. Introduction

♠ The standard model (SM) in particle physics has achieved a great success as a renormalizable effective theory.
♠ However, there are some unsolved problems:
 e.g.
 • Property of neutrinos;
 - non-vanishing and tiny masses
 - Dirac or Majorana
 - PMNS structure
 \[\theta_{12} : \text{large}, \theta_{23} : \text{maximal}, \theta_{13} : \text{non-zero} \]
 • Candidate for dark matter (LSP? LKP? sterile neutrino?)
 • Origin of baryon asymmetry of the Universe
 • Stabilization of the Higgs mass (SUSY? extra-dimension?)

<table>
<thead>
<tr>
<th>Mass Scales: ln(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 GeV</td>
</tr>
<tr>
<td>1 GeV</td>
</tr>
<tr>
<td>(\tau)</td>
</tr>
<tr>
<td>(\mu)</td>
</tr>
<tr>
<td>(\nu)</td>
</tr>
<tr>
<td>(e)</td>
</tr>
<tr>
<td>(d)</td>
</tr>
<tr>
<td>(s)</td>
</tr>
<tr>
<td>(b)</td>
</tr>
<tr>
<td>(t)</td>
</tr>
<tr>
<td>(c)</td>
</tr>
<tr>
<td>(u)</td>
</tr>
</tbody>
</table>

\[\nu : \sqrt{\Delta m^2} \sim 0.01 \text{ eV} \]
1. Introduction

- Property of neutrinos; hep-ph/0510213, good review!

 - non-vanishing and tiny masses

 \(\nu \) mass scale: \(m_\nu \sim \mathcal{O}(0.01) \) eV

 - type I\(\sim \)III seesaw, split seesaw, \(\cdots \)

\[
\begin{array}{cccc}
\text{Mass Scales: } & \text{ln(m)} \\
100 \text{ GeV} & \tau \cdot & b \cdot & t \\
1 \text{ GeV} & \mu \cdot & s \cdot & c \\
e \cdot & d \cdot & u \\
\end{array}
\]

- \(\nu: \sqrt{\Delta m^2} \sim 0.01 \text{ eV} \)
1. Introduction

- Property of neutrinos; hep-ph/0510213, good review!
 - non-vanishing and tiny masses
 \(\nu \) mass scale: \(m_\nu \sim \mathcal{O}(0.01) \text{ eV} \)
 - type I\(\sim \)III seesaw, split seesaw, \(\cdots \)
 - PMNS structure

 best fit:

 G.L. Fogli \textit{et al.}, 1106.6028 [hep-ph]
 \[
 \sin^2 \theta_{12} = 0.306, \quad \sin^2 \theta_{23} = 0.42, \quad \sin^2 \theta_{13} = 0.021
 \]

 T. Schwetz \textit{et al.}, 1108.1376 [hep-ph]
 \[
 \sin^2 \theta_{12} = 0.312, \quad \sin^2 \theta_{23} = 0.52, \quad \sin^2 \theta_{13} = 0.013
 \]
1. Introduction

- Property of neutrinos; hep-ph/0510213, good review!
 - non-vanishing and tiny masses
 \(\nu \) mass scale: \(m_\nu \sim \mathcal{O}(0.01) \) eV
 - type I\(\sim \)III seesaw, split seesaw, \(
 - PMNS structure
 best fit:

 G.L. Fogli \textit{et al.}, 1106.6028 [hep-ph]
 \[\sin^2 \theta_{12} = 0.306, \quad \sin^2 \theta_{23} = 0.42, \quad \sin^2 \theta_{13} = 0.021 \]
 T. Schwetz \textit{et al.}, 1108.1376 [hep-ph]
 \[\sin^2 \theta_{12} = 0.312, \quad \sin^2 \theta_{23} = 0.52, \quad \sin^2 \theta_{13} = 0.013 \]

 Tri-Bimaximal mixing: Harrison, Perkins, Scott & Xing
 \[\sin^2 \theta_{12} = 1/3, \quad \sin^2 \theta_{23} = 1/2, \quad \sin^2 \theta_{13} = 0 \]

 \cdot discrete flavor symmetry: \(S_3, D_4, Q_4, D_5, D_6, Q_6, A_4, \cdots \)
1. Introduction

- Property of neutrinos, hep-ph/0510213, good review!
 - non-vanishing and tiny masses
 - active ν mass scale: $m_\nu \sim \mathcal{O}(0.01)$ eV
 - type I~III seesaw, split seesaw, · · ·
 - PMNS structure
 best fit:

 G.L. Fogli $et \ al.$, 1106.6028 [hep-ph]
 $\sin^2 \theta_{12} = 0.306, \quad \sin^2 \theta_{23} = 0.42, \quad \sin^2 \theta_{13} = 0.021$

 T. Schwetz $et \ al.$, 1108.1376 [hep-ph]
 $\sin^2 \theta_{12} = 0.312, \quad \sin^2 \theta_{23} = 0.52, \quad \sin^2 \theta_{13} = 0.013$

 Tri-Bimaximal mixing: Harrison, Perkins, Scott & Xing
 $\sin^2 \theta_{12} = 1/3, \quad \sin^2 \theta_{23} = 1/2, \quad \sin^2 \theta_{13} = 0$
 · discrete flavor symmetry: $S_3, D_4, Q_4, D_5, D_6, Q_6, A_4, \cdots$
1. Introduction

- Candidate for dark matter (DM);
 hep-ph/0404175, 0907.1912 [hep-ph], 1006.2483 [hep-ph], good reviews!

 - The first evidence for the presence of DM was provided by Zwicky in a study of the Coma cluster of galaxies.
1. Introduction

- **Candidate for dark matter (DM);**
 hep-ph/0404175, 0907.1912 [hep-ph],
 1006.2483 [hep-ph], good reviews!

 - The first evidence for the presence of DM was provided by Zwicky in a study of the Coma cluster of galaxies.
 - Various cosmological observations have indicated that DM governs about 23% of the Universe.
1. Introduction

- Candidate for dark matter (DM);
 hep-ph/0404175, 0907.1912 [hep-ph],
 1006.2483 [hep-ph], good reviews!

 - The first evidence for the presence of DM was provided by Zwicky in a study of the Coma cluster of galaxies.

 - Various cosmological observations have indicated that DM governs about 23% of the Universe.

- DM Candidates;
 superparticle (neutralino, gravitino, axino),
 Kaluza-Klein particle, axion, Q-balls,
 sterile neutrino, Higgs in GHU model,
 light scalar, superheavy DM,
 CHArged massive particles (CHAMPs),
 GIMPs, mirror particle, self interacting DM,
1. Introduction

- Candidate for dark matter (DM);
 hep-ph/0404175, 0907.1912 [hep-ph], 1006.2483 [hep-ph], good reviews!

 - The first evidence for the presence of DM was provided by Zwicky in a study of the Coma cluster of galaxies.
 - Various cosmological observations have indicated that DM governs about 23% of the Universe.
 - DM Candidates;
 superparticle (neutralino, gravitino, axino),
 Kaluza-Klein particle, axion, Q-balls,
 sterile neutrino, Higgs in GHU model,
 light scalar, superheavy DM,
 CHArged massive particles (CHAMPs),
 GIMPs, mirror particle, self interacting DM,
1. Introduction

- Sterile neutrino as a candidate for DM;
 - In a simple extension of the SM, 3 sterile (right-handed) neutrinos, which are singlets under the SM gauge group, are added: (0906.2968 [hep-ph], good review!)

\[
\begin{align*}
\begin{pmatrix} \nu_L & \nu_R \\ 0 & M_D \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix} & \Rightarrow |\nu_a\rangle = \cos \theta |\nu_L\rangle + \sin \theta |\nu_R\rangle \\
|\nu_s\rangle & = -\sin \theta |\nu_L\rangle + \cos \theta |\nu_R\rangle,
\end{align*}
\]

\[
\Gamma = \frac{G_F^2 M_s^5}{96\pi^3} \theta^2 \Rightarrow \tau_s \sim 10^{20}\text{sec} \left(\frac{\text{keV}}{M_s}\right)^5 \theta^{-2}
\]
1. Introduction

- Sterile neutrino as a candidate for DM;
 - In a simple extension of the SM, 3 sterile (right-handed) neutrinos, which are singlets under the SM gauge group, are added: (0906.2968 [hep-ph], good review!)

\[
\begin{pmatrix}
\nu_L \\
\nu_R
\end{pmatrix}
\begin{pmatrix}
\nu_L & \nu_R \\
0 & M_D \\
M_D & M_R
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
|\nu_a\rangle = \cos \theta |\nu_L\rangle + \sin \theta |\nu_R\rangle \\
|\nu_s\rangle = -\sin \theta |\nu_L\rangle + \cos \theta |\nu_R\rangle
\end{pmatrix}, \quad \theta \sim \frac{M_D}{M_R}
\]

\[
\nu_s \xrightarrow{\theta} \nu_a \\
Z^0 \\
\bar{\nu}_a
\]

\[
\Gamma = \frac{G_F^2 M_s^5}{96\pi^3} \theta^2 \Rightarrow \tau_s \sim 10^{20} \text{sec} \left(\frac{\text{keV}}{M_s}\right)^5 \theta^{-2}
\]

- Dodelson and Widrow pointed out that a life-time of the sterile neutrino can be longer than the age of the Universe and a cosmological density \(\Omega_s = \Omega_{\text{DM}} \sim 0.2\) can be realized if the sterile neutrino mass is in the \(\mathcal{O}(\text{keV})\) scale.
1. Introduction

- Sterile neutrino as a candidate for DM;
 - One important bound comes from the X-ray telescopes:

\[\gamma \rightarrow W^+ W^- + \nu_s \nu_a \]

- The other comes from small scales cosmic structure like the Lyman \(\alpha \) forest.
- The mass range \((1-20)\text{keV}\) of sterile neutrino is favored by the pulsar kicks as well as DM.
1. Introduction

● Sterile neutrino as a candidate for DM;
 - One important bound comes from the X-ray telescopes:
 \[\nu_s \rightarrow W^+ \rightarrow \gamma \]
 \[W^+ \rightarrow \nu_a, l^- \]

 - The other comes from small scales cosmic structure like the Lyman \(\alpha \) forest.
1. Introduction

- Sterile neutrino as a candidate for DM;
 - One important bound comes from the X-ray telescopes:
 - The other comes from small scales cosmic structure like the Lyman α forest.
 - The mass range (1-20)keV of sterile neutrino is also favored by the pulsar kicks as well as DM.
1. Introduction

- Sterile neutrino as a candidate for DM;
 e.g. bounds on sterile neutrino parameters

\[\sin^2 \theta_{1e} \]

\[m_s \text{ (keV)} \]
1. Introduction

- **Origin of baryon asymmetry of the Universe;**
 - The current our Universe is composed of only matter (not anti-matter);

 \[
 \eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_\gamma} \sim 6 \times 10^{-10}
 \]
1. Introduction

- Origin of baryon asymmetry of the Universe;
 - The current our Universe is composed of only matter (not anti-matter);

 Baryon asymmetry: \(\eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \sim 6 \times 10^{-10} \)

- Sakharov’s conditions;
 (i) there is a fundamental process that \(\mathcal{B} \),
 (ii) C and CP invariances are violated,
 (iii) there is a deviation from thermal equilibrium acting on the \(\mathcal{B} \) process
1. Introduction

- Origin of baryon asymmetry of the Universe;
 - The current our Universe is composed of only matter (not anti-matter);

 Baryon asymmetry: \(\eta_B \equiv \frac{n_B - n_B}{n_\gamma} \sim 6 \times 10^{-10} \)

- Sakharov’s conditions;
 1. there is a fundamental process that \(B \),
 2. C and CP invariances are violated,
 3. there is a deviation from thermal equilibrium acting on the \(B \) process

- Candidate for baryogenesis;
 - Leptogenesis, GUT baryogenesis, String scale baryogenesis,
 - GUT baryogenesis after preheating, AD baryogenesis,
 - Hybridized AD baryogenesis, No-scale AD baryogenesis,
 - Baryogenesis from primordial BHs, Single field baryogenesis,
1. Introduction

- Origin of baryon asymmetry of the Universe;
 - The current our Universe is composed of only matter (not anti-matter);

 \[\eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_\gamma} \sim 6 \times 10^{-10} \]

- Sakharov’s conditions;
 (i) there is a fundamental process that \(\mathcal{B} \),
 (ii) C and CP invariances are violated,
 (iii) there is a deviation from thermal equilibrium acting on the \(\mathcal{B} \) process

- Candidate for baryogenesis;
 Leptogenesis, GUT baryogenesis, String scale baryogenesis,
 GUT baryogenesis after preheating, AD baryogenesis,
 Hybridized AD baryogenesis, No-scale AD baryogenesis,
 Baryogenesis from primordial BHs, Single field baryogenesis,
1. Introduction

- Fundamental idea of leptogenesis; hep-ph/0212305, hep-ph/0401240, good reviews!
 - $B - L$ can be generated if there is a CP violation in a decay process of heavy right-handed neutrinos.
1. Introduction

- Fundamental idea of leptogenesis; hep-ph/0212305, hep-ph/0401240, good reviews!
 - $B - L$ can be generated if there is a CP violation in a decay process of heavy right-handed neutrinos.
 - Generated $B - L$ is converted into B via sphaleron process, which conservs $B - L$ but not B and L.
1. Introduction

- Fundamental idea of leptogenesis;

 - $B - L$ can be generated if there is a CP violation in a decay process of heavy right-handed neutrinos.

 - Generated $B - L$ is converted into B via sphaleron process, which conservs $B - L$ but not B and L.

\[
\nu_R \rightarrow l H \quad \nu_R \rightarrow l H \quad \nu_R \rightarrow l H \quad \nu_R \rightarrow l H
\]

\[
M_R \sim 10^{9-10} \text{ GeV} \quad \Rightarrow \quad \eta_B \sim 6 \times 10^{-10}
\]
1. Introduction

- **Extra-dimensional theory;**
 - An extra-dimensional theory was considered by Kaluza and Klein in order to unify the gravitational and electromagnetic interactions in 1921 (1926).
1. Introduction

- **Extra-dimensional theory;**
 - An extra-dimensional theory was considered by Kaluza and Klein in order to unify the gravitational and electromagnetic interactions in 1921 (1926).
 - Extra-dimensional spacetime has been broadly discussed in particle physics, cosmology, and string theories etc.
 so far.
1. Introduction

- **Extra-dimensional theory;**
 - An extra-dimensional theory was considered by Kaluza and Klein in order to unify the gravitational and electromagnetic interactions in 1921 (1926).
 - Extra-dimensional spacetime has been broadly discussed in particle physics, cosmology, and string theories etc. so far.
 - As physics beyond the SM, Arkani-Hamed, Dimopoulous, Dvali proposed a solution to the hierarchy problem in the context of large extra-dimension.
1. Introduction

• Extra-dimensional theory;

• Extra-dimensional spacetime has been broadly discussed in particle physics, cosmology, and string theories etc. so far.

• As physics beyond the SM, Arkani-Hamed, Dimopoulos, Dvali proposed a solution to the hierarchy problem in the context of large extra-dimension. Randall and Sundrum also proposed a warped five-dimensional model to naturally realize the EW scale from the Plack scale.
1. Introduction

- Extra-dimensional theory;

- Extra-dimensional spacetime has been broadly discussed in particle physics, cosmology, and string theories etc. so far.

- As physics beyond the SM, Arkani-Hamed, Dimopoulos, Dvali proposed a solution to the hierarchy problem in the context of large extra-dimension. Randall and Sundrum also proposed a warped five-dimensional model to naturally realize the EW scale from the Plack scale. Appelquist, Cheng, Dobrescu considered a possibility of universal extra-dimension (UED) model, which gives a DM candidate (LKP).
1. Introduction

- Extra-dimensional theory;

- As physics beyond the SM, Arkani-Hamed, Dimopoulos, Dvali proposed a solution to the hierarchy problem in the context of large extra-dimension. Randall and Sundrum also proposed a warped five-dimensional model to naturally realize the EW scale from the Plack scale. Appelquist, Cheng, Dobrescu considered a possibility of universal extra-dimension (UED) model, which gives a DM candidate (LKP). Gauge-Higgs Unification scenario with Hosotani mechanism is also very interesting extra-dimensional scenario where the Higgs can be a DM candidate.
1. Introduction

• **Extra-dimensional theory;**

![Diagram of extra-dimensional theories]

- As physics beyond the SM, Arkani-Hamed, Dimopoulos, Dvali proposed a solution to the hierarchy problem in the context of large extra-dimension. Randall and Sundrum also proposed a warped five-dimensional model to naturally realize the EW scale from the Plack scale. Appelquist, Cheng, Dobrescu considered a possibility of universal extra-dimension (UED) model, which gives a DM candidate (LKP). **Gauge-Higgs Unification scenario with Hosotani mechanism** is also very interesting extra-dimensional scenario where the Higgs can be a DM candidate.
1. Introduction

- Extra-dimensional theory;

- Split seesaw mechanism considers a flat five-dimension to obtain *splitting* mass spectra of sterile neutrinos without a large hierarchy among model parameters.
1. Introduction

Outline of my talk

DM candidate
sterile ν of $M \sim O(\text{keV})$
1. Introduction

Outline of my talk

DM candidate sterile ν of $M \sim O(\text{keV})$

BAU Leptogenesis $M \sim O(10^{9-10}\text{ GeV})$
1. Introduction

Outline of my talk

DM candidate
sterile ν of $M_1 \sim O(\text{keV})$

BAU
Leptogenesis
$M_{2,3} \sim O(10^{9-10} \text{ GeV})$
1. Introduction

Outline of my talk

- DM candidate sterile ν of $M_1 \sim O(\text{keV})$
- large mass hierarchy

- BAU Leptogenesis $M_{2,3} \sim O(10^{9-10} \text{GeV})$
1. Introduction

Outline of my talk

DM candidate
sterile ν of $M_1 \sim O(\text{keV})$

\ll

large mass hierarchy

BAU
Leptogenesis
$M_{2,3} \sim O(10^{9-10} \text{GeV})$

Flat 5D

Split Seesaw mechanism
1. Introduction

Outline of my talk

DM candidate sterile ν of $M_1 \sim O(\text{keV})$

large mass hierarchy

BAU Leptogenesis $M_{2,3} \sim O(10^{9-10}\,\text{GeV})$

Flat 5D

Split Seesaw mechanism

Active neutrino mass $M_\nu \sim O(0.01\,\text{eV})$
1. Introduction

Outline of my talk

- DM candidate
 - sterile ν of $M_1 \sim O(\text{keV})$

- Large mass hierarchy
 - $M_{2,3} \sim O(10^{9-10} \text{ GeV})$

- Split Seesaw mechanism
 - PMNS
 - A4 flavor models

- Flat 5D

- BAU
 - Leptogenesis
 - Active neutrino mass $M_\nu \sim O(0.01 \text{ eV})$
2. Split seesaw mechanism

- Canonical type I seesaw mechanism;

\[\mathcal{L} = i \bar{\nu}_R i \gamma^\mu \partial_\mu \nu_R i + \left(\lambda_{i\alpha} \bar{\nu}_R i L_\alpha \phi - \frac{1}{2} M_{R,ij} \bar{\nu}^c R_i \nu_R j + \text{h.c.} \right) \]

\[\downarrow \text{after integrating out } \nu_R \]

\[M_\nu = \lambda^T M_R^{-1} \lambda \langle \phi^0 \rangle^2 \quad \text{if} \quad \lambda \langle \phi^0 \rangle \ll M_R \]
2. Split seesaw mechanism

A. Kusenko, F. Takahashi, T.T. Yanagida

\[S = \int d^4x dy M \left(\overline{\Psi} \Gamma^A \partial_A \Psi + m \overline{\Psi} \Psi \right) \]

Wave function profile of 0-mode (right-handed neutrino):

\[\Psi(0)^R(y,x) = \sqrt{\frac{2}{m_\ell}} e^{\frac{2m}{m_\ell}y} \Psi(x), \quad \Psi(0)^R(x) = \nu_R(x) \]

SM brane \((y = 0)\)

Hidden brane \((y = \ell)\)
2. Split seesaw mechanism

A. Kusenko, F. Takahashi, T.T. Yanagida

- Bulk action:
 \[S = \int d^4x dy M (i \bar{\Psi} \Gamma^A \partial_A \Psi + m \bar{\Psi} \Psi) \]

- Wave function profile of 0-mode (right-handed neutrino):
 \[\Psi_R^{(0)}(y, x) = \sqrt{\frac{2m}{e^{2m\ell} - 1}} \frac{1}{\sqrt{M}} e^{my} \psi_R^{(0)}(x), \quad \psi_R^{(0)}(x) = \nu_R(x) \]
2. Split seesaw mechanism

A. Kusenko, F. Takahashi, T.T. Yanagida

- Effective bulk action for the three right-handed neutrinos;

\[S = \int d^4 x \, dy \left\{ M \left(i \bar{\Psi}_{iR}^{(0)} \Gamma^A \partial_A \Psi_{iR}^{(0)} + m_i \bar{\Psi}_{iR}^{(0)} \Psi_{iR}^{(0)} \right) + \delta(y) \left(\frac{\kappa_i}{2} v_{B-L} \bar{\Psi}_{iR}^{(0) c} \Psi_{iR}^{(0)} + \tilde{\lambda}_i \bar{\Psi}_{iR}^{(0)} L_{\alpha} \phi + h.c. \right) \right\} \]

- Wave function profiles of 0-modes (right-handed neutrinos);

\[\Psi_{iR}^{(0)}(y, x) = \sqrt{\frac{2m_i}{e^{2m_i \ell} - 1}} \frac{1}{\sqrt{M}} e^{m_i y} \psi_{iR}^{(0)}(x), \quad \psi_{iR}^{(0)}(x) = \nu_{iR}(x) \]
2. Split seesaw mechanism

A. Kusenko, F. Takahashi, T.T. Yanagida

- Effective bulk action for the three right-handed neutrinos;

\[S = \int d^4 x \, d y \left\{ M \left(i \bar{\Psi}^{(0)}_{iR} \Gamma^A \partial_A \Psi^{(0)}_{iR} + m_i \bar{\Psi}^{(0)}_{iR} \Psi^{(0)}_{iR} \right) \right. \]
\[\left. + \delta(y) \left(\frac{\kappa_i}{2} v_{B-L} \bar{\Psi}^{(0)}_{iR} \psi^{(0)}_{iR} + \tilde{\lambda}_{i\alpha} \bar{\Psi}^{(0)}_{iR} L_\alpha \phi + \text{h.c.} \right) \right\} \]

- Wave function profiles of 0-modes (right-handed neutrinos);

\[\Psi^{(0)}_{iR}(y, x) = \sqrt{\frac{2m_i}{e^{2m_i} - 1}} \frac{1}{\sqrt{M}} e^{m_i y} \psi^{(0)}_{iR}(x), \quad \psi^{(0)}_{iR}(x) = \nu_{iR}(x) \]

- Effective (4D) Majorana masses;

\[M_{R,i} = \kappa_i v_{B-L} \frac{2m_i}{M(e^{2m_i} - 1)} \propto \frac{1}{e^{2m_i}} \quad \text{if} \quad 1 \ll m_i \ell \]

- Effective (4D) Yukawa couplings;

\[\lambda_{i\alpha} = \frac{\tilde{\lambda}}{\sqrt{M}} \sqrt{\frac{2m_i}{e^{2m_i} - 1}} \propto \frac{1}{\sqrt{e^{2m_i}}} \quad \text{if} \quad 1 \ll m_i \ell \]
2. Split seesaw mechanism

A. Kusenko, F. Takahashi, T.T. Yanagida

• Effective (4D) Majorana masses;

\[M_{R,i} = \kappa_i v_{B-L} \frac{2m_i}{M(e^{2m_i\ell} - 1)} \propto \frac{1}{e^{2m_i\ell}} \text{ if } 1 \ll m_i\ell \]

• Effective (4D) Yukawa couplings;

\[\lambda_{i\alpha} = \sqrt{\frac{\lambda}{M}} \sqrt{\frac{2m_i}{e^{2m_i\ell} - 1}} \propto \frac{1}{\sqrt{e^{2m_i\ell}}} \text{ if } 1 \ll m_i\ell \]

• Seesaw formula in split seesaw mechanism;

\[M_\nu = \lambda^T M_R^{-1} \lambda \langle \phi^0 \rangle^2 \]

• Splitting mass spectra of the right-handed (sterile) neutrinos;

\((M_{R,1}, M_{R,2}, M_{R,3}) = (1 \text{ keV}, 10^{11} \text{ GeV}, 10^{12} \text{ GeV}) \),

for \((m_1\ell, m_2\ell, m_3\ell) \approx (24.2, 3.64, 2.26) \) where we take \(M = 5 \times 10^{17} \text{ GeV}, \ell^{-1} = 10^{16} \text{ GeV}, v_{B-L} = 10^{15} \text{ GeV}, \kappa_i = 1. \)
Outline of my talk

DM candidate
sterile ν of $M_1 \sim O(\text{keV})$

\ll

large mass hierarchy

BAU
Leptogenesis
$M_{2,3} \sim O(10^{9-10}\text{ GeV})$

Flat 5D

Split Seesaw mechanism

Active neutrino mass
$M_\nu \sim O(0.01 \text{ eV})$
Outline of my talk

DM candidate sterile ν of $M_1 \sim O(\text{keV})$

\ll large mass hierarchy

Flat 5D

Split Seesaw mechanism

PMNS

A4 flavor models

BAU

Leptogenesis

$M_{2,3} \sim O(10^{9-10}\text{ GeV})$

Active neutrino mass

$M_\nu \sim O(0.01\text{ eV})$
3. A_4 flavor models in split seesaw mechanism

- The alternating group (A_N) is formed by even permutations among N objects.
3. A_4 flavor models in split seesaw mechanism

- The alternating group (A_N) is formed by even permutations among N objects.
- The A_4 group is formed by even permutations among 4 objects:
 \[(x_1, x_2, x_3, x_4) \rightarrow (x_i, x_j, x_k, x_l)\] e.g. \((x_3, x_2, x_1, x_4)\)
3. A_4 flavor models in split seesaw mechanism

- The alternating group (A_N) is formed by even permutations among N objects.
- The A_4 group is formed by even permutations among 4 objects:
 $$(x_1, x_2, x_3, x_4) \rightarrow (x_i, x_j, x_k, x_l) \text{ e.g. } (x_3, x_2, x_1, x_4)$$
- The A_4 symmetry can be understood by specific rotations of tetrahedron:
3. A_4 flavor models in split seesaw mechanism

- The alternating group (A_N) is formed by even permutations among N objects.
- The A_4 group is formed by even permutations among 4 objects:
 $$(x_1, x_2, x_3, x_4) \rightarrow (x_i, x_j, x_k, x_l) \text{ e.g. } (x_3, x_2, x_1, x_4)$$
- The A_4 symmetry can be understood by specific rotations of tetrahedron:

- The A_4 group has 3 singlets and one 3 representations.
3. A_4 flavor models in split seesaw mechanism

- The alternating group (A_N) is formed by even permutations among N objects.

- The A_4 group is formed by even permutations among 4 objects:
 $$(x_1, x_2, x_3, x_4) \rightarrow (x_i, x_j, x_k, x_l) \text{ e.g. } (x_3, x_2, x_1, x_4)$$

- The A_4 symmetry can be understood by specific rotations of tetrahedron:

- The A_4 group has 3 singlets and one 3 representations.

- The A_4 is the smallest non-Abelian discrete group which has the 3 representation.
3. A_4 flavor models in split seesaw mechanism

- The alternating group (A_N) is formed by even permutations among N objects.
- The A_4 group is formed by even permutations among 4 objects:

 $$(x_1, x_2, x_3, x_4) \rightarrow (x_i, x_j, x_k, x_l) \text{ e.g. } (x_3, x_2, x_1, x_4)$$
- The A_4 symmetry can be understood by specific rotations of tetrahedron:

- The A_4 group has 3 singlets and one 3 representations.
- The A_4 is the smallest non-Abelian discrete group which has the 3 representation.
- An introduction of A_4 as a flavor symmetry might be well motivated for the 3 generations of the SM fermions.
3. A_4 flavor models in split seesaw mechanism

Barry-Rodejohann (BR) classification for A_4 flavor models

<table>
<thead>
<tr>
<th>Type</th>
<th>L_α</th>
<th>E_α</th>
<th>Ψ_{iR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>1, 1', 1''</td>
<td>· · ·</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>1, 1', 1''</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
<td>· · ·</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>3</td>
<td>1, 1', 1''</td>
</tr>
<tr>
<td>F</td>
<td>1, 1', 1''</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>1, 1', 1''</td>
<td>1, 1', 1''</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>1, 1, 1</td>
<td>· · ·</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>1, 1, 1</td>
<td>1, 1, 1</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
<td>1, 1, 1</td>
<td>3</td>
</tr>
</tbody>
</table>
3. A_4 flavor models in split seesaw mechanism

Barry-Rodejohann (BR) classification for A_4 flavor models

<table>
<thead>
<tr>
<th>Type</th>
<th>L_α</th>
<th>E_α</th>
<th>Ψ_{iR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>1, 1', 1''</td>
<td>...</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>1, 1', 1''</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>3</td>
<td>1, 1', 1''</td>
</tr>
<tr>
<td>F</td>
<td>1, 1', 1''</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>1, 1', 1''</td>
<td>1, 1', 1''</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>1, 1, 1</td>
<td>...</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>1, 1, 1</td>
<td>1, 1, 1</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
<td>1, 1, 1</td>
<td>3</td>
</tr>
</tbody>
</table>

- Type A, C, and H models do not have the right-handed neutrinos.
3. A_4 flavor models in split seesaw mechanism

Barry-Rodejohann (BR) classification for A_4 flavor models

<table>
<thead>
<tr>
<th>Type</th>
<th>L_α</th>
<th>E_α</th>
<th>Ψ_{iR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>1, 1', 1''</td>
<td>...</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>1, 1', 1''</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>3</td>
<td>1, 1', 1''</td>
</tr>
<tr>
<td>F</td>
<td>1, 1', 1''</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>1, 1', 1''</td>
<td>1, 1', 1''</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>1, 1, 1</td>
<td>...</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>1, 1, 1</td>
<td>1, 1, 1</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
<td>1, 1, 1</td>
<td>3</td>
</tr>
</tbody>
</table>

- Type A, C, and H models do not have the right-handed neutrinos.
3. A_4 flavor models in split seesaw mechanism

Barry-Rodejohann (BR) classification for A_4 flavor models

<table>
<thead>
<tr>
<th>Type</th>
<th>L_α</th>
<th>E_α</th>
<th>Ψ_{iR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$\mathbf{3}$</td>
<td>1, 1', 1''</td>
<td>...</td>
</tr>
<tr>
<td>B</td>
<td>$\mathbf{3}$</td>
<td>1, 1', 1''</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>$\mathbf{3}$</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td>$\mathbf{3}$</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>$\mathbf{3}$</td>
<td>3</td>
<td>1, 1', 1''</td>
</tr>
<tr>
<td>F</td>
<td>1, 1', 1''</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>$\mathbf{3}$</td>
<td>1, 1', 1''</td>
<td>1, 1', 1''</td>
</tr>
<tr>
<td>H</td>
<td>$\mathbf{3}$</td>
<td>1, 1, 1</td>
<td>...</td>
</tr>
<tr>
<td>I</td>
<td>$\mathbf{3}$</td>
<td>1, 1, 1</td>
<td>1, 1, 1</td>
</tr>
<tr>
<td>J</td>
<td>$\mathbf{3}$</td>
<td>1, 1, 1</td>
<td>3</td>
</tr>
</tbody>
</table>

- Type B, D, F, and J models assign the right-handed neutrinos to the 3 under the A_4 symmetry.
- We found that these models cannot be embedded into the split seesaw mechanism.
3. A_4 flavor models in split seesaw mechanism

Barry-Rodejohann (BR) classification for A_4 flavor models

<table>
<thead>
<tr>
<th>Type</th>
<th>L_α</th>
<th>E_α</th>
<th>Ψ_{iR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>1, 1', 1''</td>
<td>...</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>1, 1', 1''</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>3</td>
<td>1, 1', 1''</td>
</tr>
<tr>
<td>F</td>
<td>1, 1', 1''</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>1, 1', 1''</td>
<td>1, 1', 1''</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>1, 1, 1</td>
<td>...</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>1, 1, 1</td>
<td>1, 1, 1</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
<td>1, 1, 1</td>
<td>3</td>
</tr>
</tbody>
</table>

- Bulk mass term for $\Psi_R = (\Psi_{1R}, \bar{\Psi}_{2R}, \bar{\Psi}_{3R})^T$:

$$m \bar{\Psi}_R \Psi_R = m(\bar{\Psi}_{1R} \Psi_{1R} + \bar{\Psi}_{2R} \Psi_{2R} + \bar{\Psi}_{3R} \Psi_{3R})$$

⇒ Degeracy problem: $m_1 = m_2 = m_3$

⇒ cannot realize mass *splitting* in split seesaw mechanism.
2. Split seesaw mechanism

A. Kusenko, F. Takahashi, T.T. Yanagida

- Effective (4D) Majorana masses;
 \[M_{R,i} = \kappa_i v_{B-L} \frac{2m_i}{M(e^{2m_i\ell} - 1)} \propto \frac{1}{e^{2m_i\ell}} \text{ if } 1 \ll m_i\ell \]

- Effective (4D) Yukawa couplings;
 \[\lambda_{i\alpha} = \frac{\tilde{\lambda}}{\sqrt{M}} \sqrt{\frac{2m_i}{e^{2m_i\ell} - 1}} \propto \frac{1}{\sqrt{e^{2m_i\ell}}} \text{ if } 1 \ll m_i\ell \]

- Seesaw formula in split seesaw mechanism;
 \[M_\nu = \lambda^T M^{-1}_R \lambda \langle \phi^0 \rangle^2 \]

- Splitting mass spectra of the right-handed (sterile) neutrinos;
 \[(M_{R,1}, M_{R,2}, M_{R,3}) = (1 \text{ keV}, 10^{11} \text{ GeV}, 10^{12} \text{ GeV}), \]
 for \((m_1\ell, m_2\ell, m_3\ell) \approx (24.2, 3.64, 2.26) \) where we take
 \[M = 5 \times 10^{17} \text{ GeV}, \ell^{-1} = 10^{16} \text{ GeV}, v_{B-L} = 10^{15} \text{ GeV}, \kappa_i = 1. \]
3. A_4 flavor models in split seesaw mechanism

Barry-Rodejohann (BR) classification for A_4 flavor models

<table>
<thead>
<tr>
<th>Type</th>
<th>L_α</th>
<th>\bar{E}_α</th>
<th>$\bar{\Psi}_{iR}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>$1, 1', 1''$</td>
<td>\cdots</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>$1, 1', 1''$</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
<td>\cdots</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>3</td>
<td>$1, 1', 1''$</td>
</tr>
<tr>
<td>F</td>
<td>$1, 1', 1''$</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>$1, 1', 1'', 1, 1', 1''$</td>
<td>$1, 1', 1''$</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>$1, 1, 1$</td>
<td>\cdots</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>$1, 1, 1$</td>
<td>$1, 1, 1$</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
<td>$1, 1, 1$</td>
<td>3</td>
</tr>
</tbody>
</table>

- **Bulk mass term for $\Psi_R = (\Psi_{1R}, \bar{\Psi}_{2R}, \bar{\Psi}_{3R})^T$:**

 \[
m\bar{\Psi}_R\Psi_R = m(\bar{\Psi}_{1R}\Psi_{1R} + \bar{\Psi}_{2R}\Psi_{2R} + \bar{\Psi}_{3R}\Psi_{3R})
 \]

 \Rightarrow Degeracy problem: $m_1 = m_2 = m_3$

 \Rightarrow cannot realize mass *splitting* in split seesaw mechanism.
3. A_4 flavor models in split seesaw mechanism

Barry-Rodejohann (BR) classification for A_4 flavor models

<table>
<thead>
<tr>
<th>Type</th>
<th>L_α</th>
<th>E_α</th>
<th>Ψ_{iR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>1, 1', 1''</td>
<td>...</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>1, 1', 1''</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>3</td>
<td>1, 1', 1''</td>
</tr>
<tr>
<td>F</td>
<td>1, 1', 1''</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>1, 1', 1''</td>
<td>1, 1', 1''</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>1, 1, 1</td>
<td>...</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>1, 1, 1</td>
<td>1, 1, 1</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
<td>1, 1, 1</td>
<td>3</td>
</tr>
</tbody>
</table>

- The type E model was proposed by Ma in 2005.
- Detailed numerical analyses were given by Lavoura and Kuhbock in 2006.
- This model is a simple extension of the SM. ⇒ later on
Barry-Rodejohann (BR) classification for A_4 flavor models

<table>
<thead>
<tr>
<th>Type</th>
<th>L_α</th>
<th>E_α</th>
<th>Ψ_{iR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$\bar{3}$</td>
<td>$1', 1'', 1''$</td>
<td>...</td>
</tr>
<tr>
<td>B</td>
<td>$\bar{3}$</td>
<td>$1', 1'', 1''$</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>$\bar{3}$</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td>$\bar{3}$</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>$\bar{3}$</td>
<td>3</td>
<td>$1', 1'', 1''$</td>
</tr>
<tr>
<td>F</td>
<td>$1', 1'', 1''$</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>$\bar{3}$</td>
<td>$1', 1'', 1'', 1', 1', 1''$</td>
<td>...</td>
</tr>
<tr>
<td>H</td>
<td>$\bar{3}$</td>
<td>$1', 1', 1'$</td>
<td>...</td>
</tr>
<tr>
<td>I</td>
<td>$\bar{3}$</td>
<td>$1', 1', 1'$</td>
<td>$1', 1', 1'$</td>
</tr>
<tr>
<td>J</td>
<td>$\bar{3}$</td>
<td>$1', 1', 1'$</td>
<td>3</td>
</tr>
</tbody>
</table>

• Frampton and Matsuzaki pointed out that a simple model in a class of type G cannot give a realistic active neutrino mass spectrum.
3. A_4 flavor models in split seesaw mechanism

Barry-Rodejohann (BR) classification for A_4 flavor models

<table>
<thead>
<tr>
<th>Type</th>
<th>L_α</th>
<th>E_α</th>
<th>$\bar{\Psi}_{iR}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>1, 1 ′, 1 ″</td>
<td>...</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>1, 1 ′, 1 ″</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>3</td>
<td>1, 1 ′, 1 ″</td>
</tr>
<tr>
<td>F</td>
<td>1, 1 ′, 1 ″</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>1, 1 ′, 1 ″</td>
<td>1, 1 ′, 1 ″</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>1, 1, 1</td>
<td>...</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>1, 1, 1</td>
<td>1, 1, 1</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
<td>1, 1, 1</td>
<td>3</td>
</tr>
</tbody>
</table>

- Type I model is the first complete supersymmetric model of flavor based on A_4 symmetry together with the $SU(4)_C \otimes SU(2)_L \otimes SU(2)_R$ Pati-Salam gauge symmetry.
- This model does not suffer from the degeneracy problem.
3. A_4 flavor models in split seesaw mechanism

- Ma model (2005):

<table>
<thead>
<tr>
<th>Field</th>
<th>L_α</th>
<th>Ψ_{1R}</th>
<th>Ψ_{2R}</th>
<th>Ψ_{3R}</th>
<th>ϕ</th>
<th>$\varphi_{\nu,t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_4</td>
<td>3</td>
<td>1</td>
<td>1'</td>
<td>1''</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
3. A_4 flavor models in split seesaw mechanism

- Ma model (2005):

<table>
<thead>
<tr>
<th>Field</th>
<th>L_{α}</th>
<th>Ψ_{1R}</th>
<th>Ψ_{2R}</th>
<th>Ψ_{3R}</th>
<th>ϕ</th>
<th>$\varphi_{\nu,t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_4</td>
<td>3</td>
<td>1</td>
<td>1'</td>
<td>1''</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- Neutrino Dirac Mass matrix:

$$M_D = \begin{pmatrix} rf_1y_1' & f_1y_1' & f_1y_1' \\ rf_2y_2' & \omega f_2y_2' & \omega^2 f_2y_2' \\ rf_3y_3' & \omega^2 f_3y_3' & \omega f_3y_3' \end{pmatrix} \frac{u}{\Lambda} v_{ew}, \quad \langle \varphi_{\nu,t} \rangle \equiv \begin{pmatrix} ru \\ u \\ u \end{pmatrix}$$

- Right-handed Majorana mass matrix:

$$M_R = \begin{pmatrix} af_1^2 & 0 & 0 \\ 0 & 0 & bf_2f_3 \\ 0 & bf_2f_3 & 0 \end{pmatrix} v_{B-L}, \quad f_i \equiv \frac{1}{\sqrt{M}} \sqrt{\frac{2m_i}{e^{2m_i\ell} - 1}}$$

- Light neutrino mass matrix after the seesaw mechanism:

$$M_{\nu} = \begin{pmatrix} r^2x & ry & ry \\ ry & x & y \\ ry & y & x \end{pmatrix} m_{\nu}, \quad \begin{cases} x \equiv \frac{(y_1')^2}{a} + \frac{2y_2'y_3'}{b}, \\ y \equiv \frac{(y_1')^2}{a} - \frac{y_2'y_3'}{b}, \end{cases} \quad m_{\nu} \equiv \frac{v_{ew}^2}{v_{B-L}} \left(\frac{u}{\Lambda} \right)^2$$
3. A_4 flavor models in split seesaw mechanism

- Fitting the experimentally observed values:

$$
M_\nu = \begin{pmatrix}
 r^2x & ry & ry \\
 ry & x & y \\
 ry & y & x
\end{pmatrix}
\Rightarrow
\begin{cases}
\theta_{23} = \frac{\pi}{4}, \theta_{13} = 0 @ LO, \\
\Delta m^2_{21}(x, y, r), \Delta m^2_{31}(x, y, r), \\
\sin^2 \theta_{12}(x, y, r)
\end{cases}
$$

Active neutrino mass scale requires

$$
x m_\nu, y m_\nu \simeq \sqrt{\Delta m^2_{i1}} \sim \mathcal{O}(10^{-2}) \text{ eV} \quad (i = 2, 3)
$$
3. A_4 flavor models in split seesaw mechanism

- Fitting the experimentally observed values:

$$M_{\nu} = \begin{pmatrix} r^2x & ry & ry \\ ry & x & y \\ ry & y & x \end{pmatrix} m_{\nu} \Rightarrow \begin{cases} \theta_{23} = \frac{\pi}{4}, \theta_{13} = 0 @ LO, \\ \Delta m_{21}^2(x, y, r), \Delta m_{31}^2(x, y, r), \\ \sin^2 \theta_{12}(x, y, r) \end{cases}$$

Active neutrino mass scale requires

$$xm_{\nu}, ym_{\nu} \simeq \sqrt{\Delta m_{i1}^2} \sim \mathcal{O}(10^{-2}) \text{ eV} \quad (i = 2, 3)$$

- Cosmological constraints on the left-right mixing angle in keV sterile neutrino DM scenario:

$$\theta^2 = \frac{\sum_\alpha |(M_D)_{1\alpha}|^2}{M_{R,1}^2} < 5.8 \times 10^{-9} \left(\frac{5 \text{ keV}}{M_{R,1}}\right)^5 \Leftarrow \text{X-ray bound}$$

$$M_D = \begin{pmatrix} rf_1y_1'' & f_1y_1'' & f_1y_1'' \\ rf_2y_2'' & \omega f_2y_2'' & \omega^2 f_2y_2'' \\ rf_3y_3'' & \omega^2 f_3y_3'' & \omega f_3y_3'' \end{pmatrix} \frac{u}{\Lambda} v_{ew}, \quad M_R = \begin{pmatrix} af_1^2 & 0 & 0 \\ 0 & 0 & bf_2f_3 \\ 0 & bf_2f_3 & 0 \end{pmatrix} v_{B-L}$$

$$\Rightarrow \frac{|y_{1\nu}|^2}{a} m_{\nu} \simeq (x + 2y)m_{\nu} < 1.4 \times 10^{-5} \text{ eV} \neq \mathcal{O}(10^{-2}) \text{ eV}$$
3. A_4 flavor models in split seesaw mechanism

- What’s happened?

$$\theta^2(<10^{-8}) = \sum_{\alpha} |(M_D)_{1\alpha}|^2/M_{R,1}^2 \approx m_ \nu / M_{R,1} \sim 10^{-6}$$

<table>
<thead>
<tr>
<th></th>
<th>w/ flavor sym. (e.g. A_4)</th>
<th>w/o flavor sym.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_D</td>
<td>$\propto \begin{pmatrix} rf_1 y_1^\nu & f_1 y_1^\nu & f_1 y_1^\nu \ r f_2 y_2^\nu & \omega f_2 y_2^\nu & \omega^2 f_2 y_2^\nu \ r f_3 y_3^\nu & \omega^2 f_3 y_3^\nu & \omega f_3 y_3^\nu \end{pmatrix}$</td>
<td>$\propto \begin{pmatrix} y_1^\nu e & y_1^\nu \mu & y_1^\nu \tau \ y_2^\nu e & y_2^\nu \mu & y_2^\nu \tau \ y_3^\nu e & y_3^\nu \mu & y_3^\nu \tau \end{pmatrix}$</td>
</tr>
<tr>
<td></td>
<td>constrained</td>
<td>unconstrained</td>
</tr>
<tr>
<td>M_R</td>
<td>$\propto \begin{pmatrix} a f_1^2 & 0 & 0 \ 0 & 0 & b f_2 f_3 \ 0 & b f_2 f_3 & 0 \end{pmatrix}$</td>
<td>$\propto \begin{pmatrix} M_{R,1} & 0 & 0 \ 0 & M_{R,2} & 0 \ 0 & 0 & M_{R,3} \end{pmatrix}$</td>
</tr>
<tr>
<td></td>
<td>constrained</td>
<td>unconstrained</td>
</tr>
<tr>
<td>M_ν</td>
<td>$\propto \begin{pmatrix} r^2 x & ry & ry \ ry & x & y \ ry & y & x \end{pmatrix}$</td>
<td>$\propto \begin{pmatrix} A & B & C \ B & D & E \ C & E & F \end{pmatrix}$</td>
</tr>
<tr>
<td></td>
<td>parameters reduced</td>
<td>parameters unreduced</td>
</tr>
</tbody>
</table>
3. A_4 flavor models in split seesaw mechanism

- Ma model can be embedded into *split seesaw mechanism* but cannot satisfy cosmological bounds on the *keV sterile neutrino DM scenario.*
3. A_4 flavor models in split seesaw mechanism

- Ma model can be embedded into split seesaw mechanism but cannot satisfy cosmological bounds on the keV sterile neutrino DM scenario.

- This is because we used

$$\theta^2(<10^{-8}) = \sum_{\alpha} |(M_D)_{1\alpha}|^2/M_{R,1}^2 \approx m_\nu/M_{R,1} \sim 10^{-6}.$$

This equality means the keV sterile neutrino contributes to the active neutrino mass through the seesaw mechanism.
3. A_4 flavor models in split seesaw mechanism

- Ma model can be embedded into **split seesaw mechanism** but cannot satisfy cosmological bounds on the keV sterile neutrino DM scenario.

- This is because we used

\[
\theta^2(< 10^{-8}) = \sum_\alpha |(M_D)_{1\alpha}|^2/M_{R,1}^2 \approx m_\nu/M_{R,1} \sim 10^{-6}.
\]

This equality means the keV sterile neutrino *contributes* to the active neutrino mass through *the seesaw mechanism*.

- We had to use this relation in Ma model because the Yukawa structure was *constrained by* (A_4) flavor symmetry.
3. A_4 flavor models in split seesaw mechanism

- Ma model can be embedded into split seesaw mechanism but cannot satisfy cosmological bounds on the keV sterile neutrino DM scenario.

- This is because we used

\[\theta^2(<10^{-8}) = \sum_{\alpha} |(M_D)_{1\alpha}|^2/M_{R,1}^2 \sim m_\nu/M_{R,1} \sim 10^{-6}. \]

This equality means the keV sterile neutrino contributes to the active neutrino mass through the seesaw mechanism.

- We had to use this relation in Ma model because the Yukawa structure was constrained by (A_4) flavor symmetry.

- Flavor models tend to suffer from such kind of problem.

<table>
<thead>
<tr>
<th>Flavor symmetry</th>
<th>PMNS</th>
<th>Split seesaw</th>
<th>keV ν_s</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bigcirc</td>
<td>\bigtriangleup</td>
<td>\bigtriangleup</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. A_4 flavor models in split seesaw mechanism

• How can we avoid the problem in the context of flavor symmetry, split seesaw mechanism, and keV ν_s scenario?
3. A_4 flavor models in split seesaw mechanism

- How can we avoid the problem in the context of flavor symmetry, split seesaw mechanism, and keV ν_s scenario?
 - extension of the basic Ma model (but so complicated ...)
 - adding other scalar fields

<table>
<thead>
<tr>
<th>Field</th>
<th>ΔL</th>
<th>$\varphi_{\nu, s}$</th>
<th>$\tilde{\varphi}_{\nu, t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_4</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- type II seesaw contribution to neutrino mass

$$S_\nu = S_I + S_{II}$$

type II contribution can realize the two neutrino mass squared differences while satisfying the cosmological bounds on the sterile neutrino coupling and respecting with A_4 symmetry.

- Leptogenesis can be realized in type I+II scenario.
4. Summary (motivation)

♠ There are unsolved problems in the context of SM:
 ● Property of neutrino (tiny masses and PMNS structure)
 ● Candidate for DM
 ● Origin of BAU
4. Summary (motivation)

♠ There are unsolved problems in the context of SM:
 • Property of neutrino (tiny masses and PMNS structure)
 • Candidate for DM
 • Origin of BAU

 In this work

♠ Considered A_4 flavor models in split seesaw mechanism.
4. Summary (motivation)

♠ There are unsolved problems in the context of SM:
 • Property of neutrino (tiny masses and PMNS structure)
 • Candidate for DM
 • Origin of BAU

In this work

♠ Considered A_4 flavor models in split seesaw mechanism.
 • Split seesaw mechanism can realize a splitting mass spectrum of right-handed neutrinos without a large hierarchy among model parameters.
4. Summary (motivation)

♦ There are unsolved problems in the context of SM:
 ● Property of neutrino (tiny masses and PMNS structure)
 ● Candidate for DM
 ● Origin of BAU

In this work

♦ Considered A_4 flavor models in split seesaw mechanism.
 ● Split seesaw mechanism can realize a splitting mass spectrum of right-handed neutrinos without a large hierarchy among model parameters.
 ● A mass spectrum can give a candidate for DM (keV sterile neutrino) and the origin of BAU via leptogenesis while conserving the canonical type I seesaw formula.
4. Summary (motivation)

♠ There are unsolved problems in the context of SM:
 • Property of neutrino (tiny masses and PMNS structure)
 • Candidate for DM
 • Origin of BAU

In this work

♠ Considered A_4 flavor models in split seesaw mechanism.
 • Split seesaw mechanism can realize a splitting mass spectrum of right-handed neutrinos without a large hierarchy among model parameters.
 • A mass spectrum can give a candidate for DM (keV sterile neutrino) and the origin of BAU via leptogenesis while conserving the canonical type I seesaw formula.
 • A_4 has 3 singlets and one 3 representations, and is the smallest non-Aberian discrete group having 3 representation.
4. Summary (motivation)

♠ There are unsolved problems in the context of SM:
 • Property of neutrino (tiny masses and PMNS structure)
 • Candidate for DM
 • Origin of BAU

In this work

♠ Considered A_4 flavor models in split seesaw mechanism.
 • Split seesaw mechanism can realize a splitting mass spectrum of right-handed neutrinos without a large hierarchy among model parameters.
 • A mass spectrum can give a candidate for DM (keV sterile neutrino) and the origin of BAU via leptogenesis while conserving the canonical type I seesaw formula.
 • A_4 has 3 singlets and one 3 representations, and is the smallest non-Aberian discrete group having 3 representation.
 • An introduction of A_4 as a flavor symmetry might be well motivated for the 3 generations of the SM fermions.
4. Summary (results)

♠ A_4 flavor models with 3 right-handed neutrinos being A_4 triplet suffer from a *degeneracy problem* for the bulk mass term, which disturbs the split mechanism for right-handed neutrino mass spectrum.
4. Summary (results)

♠ A_4 flavor models with 3 right-handed neutrinos being A_4 triplet suffer from a *degeneracy problem* for the bulk mass term, which disturbs the split mechanism for right-handed neutrino mass spectrum.

♠ A basic Ma model, which assigns the right-handed neutrinos to A_4 singlets, cannot satisfy the cosmological bounds on the keV sterile neutrino DM scenario because the structure of neutrino mass matrix is restricted by the symmetry, that is, the keV sterile neutrino contributes to the active neutrino mass.
4. Summary (results)

♠ A_4 flavor models with 3 right-handed neutrinos being A_4 triplet suffer from a *degeneracy problem* for the bulk mass term, which disturbs the split mechanism for right-handed neutrino mass spectrum.

♠ A basic Ma model, which assigns the right-handed neutrinos to A_4 singlets, cannot satisfy the cosmological bounds on the keV sterile neutrino DM scenario because the structure of neutrino mass matrix is restricted by the symmetry, that is, the keV sterile neutrino contributes to the active neutrino mass.

♠ Flavor models tend to suffer from such kind of problem.

<table>
<thead>
<tr>
<th>Flavor symmetry</th>
<th>PMNS</th>
<th>Split seesaw</th>
<th>keV ν_s</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>\vartriangle</td>
<td></td>
<td>\vartriangle</td>
<td>\vartriangle</td>
<td></td>
</tr>
</tbody>
</table>
4. Summary (results)

♠ A_4 flavor models with 3 right-handed neutrinos being A_4 triplet suffer from a \textit{degeneracy problem} for the bulk mass term, which disturbs the split mechanism for right-handed neutrino mass spectrum.

♠ A basic Ma model, which assigns the right-handed neutrinos to A_4 singlets, cannot satisfy the cosmological bounds on the keV sterile neutrino DM scenario because the structure of neutrino mass matrix is restricted by the symmetry, that is, the keV sterile neutrino contributes to the active neutrino mass.

♠ Flavor models tend to suffer from such kind of problem.

<table>
<thead>
<tr>
<th></th>
<th>PMNS</th>
<th>Split seesaw</th>
<th>keV ν_s</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavor symmetry</td>
<td>\bigcirc</td>
<td>\triangle</td>
<td>\triangle</td>
<td></td>
</tr>
</tbody>
</table>

♠ We can make the model realistic in the context of split seesaw mechanism with A_4 flavor symmetry by extending the scalar sector of the model (but so complicated \ldots).