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Introduction

We consider the instanton effect in the large N limit.
't Hooft limit: g2N = A: fixed, N - o

_8m? 812N
(instanton effect) = e 9° =e~ 2 -0

Another large N limit in which instanton effects survives
Very strongly couples large N limit
> g%:fixed, N> o0 (~2A1=0(N))

* We calculate instanton effects in large N limit of N' = 2 * theory.
 We consider the orbifold equivalence between N' = 2 * theory
and V' = 2 necklace quiver in the large N limit.



Large N limit

Large N expansion

FAN) = ) fuN2n
n=0

‘'t Hooft limit of large N gauge theories

't Hooft coupling A = g°N is fixed to be finite
Large N expansion is the genus expansion of the Feynman diagram

Planar diagram Genus 1

[




Very strongly coupled large N limit

[Azeyanagi-Fujita-Hanada ’13]
We consider another large N limit.

g>=0(N™% a = 1 is the 't Hooft limit

a < 1:very strongly coupled large N limit

 We can analyze in the very strongly coupled large N limit,
basically in the same way to the case of the 't Hooft limit.

* Large N limit and strong coupling limit are commute.

* Aslong as there are no phase transition, very strongly
coupled large N limit can be analyzed by using the
analytic continuation form the 't Hooft limit.



Example: AdS/CFT correspondence

A1
Gauge theory Supergravity (string theory)
Large N E> Small g = A/N (perturbative thoery)

A1 D V=
AdS

<1

The classical solution in the supergravity is obtained as
the leading term of large N and large A expansion.

The classical gravity description is valid when

l1KAKN
where A can be O(N) but satisfies g = A/N < 1.

[ A > N breaks genus expansion |:> S-dual )



Example: M-branes

M-branes has non-standard N-dependence in the large N limit
M2-branes: F ~ O(N3/?) M5-branes: F ~ O(N?3)

In the ABJM theory for M2-branes, the free energy is

F ~ N3/2\/k k: Chern-Simons level
In the lIA regime, k > 1 but N > k, in terms of the 't Hooft coupling
ol ke 22N
V2 k
M5-branes are expected to be described by D4-branes,
F ~ N3R{; For M5-branes
F ~ N4A For D4-branes

where A= NgS — NR11



Example: Hermitian matrix model

Partition function of the matrix model

/ = deI) e NtV (®) ®: N X N hermitian matrix

Large N limit of the matrix model is similar to the classical limit.
Diagonalizing the matrix @,
2
/ = jl_[dai H(ai — Cl]) e_NZiV(ai)
i i<j

In the large N limit, configuration of the eigenvalues a; are fixed
by the saddle point equation.

Solution is given in terms of the eigenvalue density p(a).



It is convenient to introduce the resolvent:
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The imaginary part of the resolvent is the eigenvalue density

> 80 - ai>> = p(x)

where the eigenvalue density is normalized as

jdap(a) =1

1 1
“ImR(x) = =
7Tm (x) m

In the large N limit, eigenvalues distributes continuously

R(x) =fda pla)

X —da




The Schwinger-Dyson equation in the large N limit (large N factorization)

R?(x) = V'(x)R(x) = fo(x)
The solution of the resolvent generally takes the following form:

1
RG) =5 (V') - feV & - )&~ b))

if the eigenvalues are distributed in a region (1-cut)a <x < b.

If the eigenvalues are distributed in two (or more) disconnected
regions (2-cut solution), the resolvent takes a different form.

The resolvent is given as an analytic function of coupling constants,
as long as it is in the same phase (i.e. 1-cut phase, 2-cut phase,...)

In the large N limit, we can take the analytically continuation of
the coupling constant, as long as there are no phase transition.




4D N = 2 * gauge theory

N = 2 theory which is ' = 4 SYM with mass deformation with m .

Partition function is calculated by using the localization.

N N
2 - 2 81?2
Z e = j d*Na ‘ ‘ (a; — aj) Z](VPzg?(ai,m) |Z§\1rr;sztz(ai,m)| exp (—?z a?)
{j=1 p

i=1
i<j
kN kN
(part) . (part) (part)
Z]\r=2* (ai»m) - Zyec (ai _ aj) Zmat (ai _ aj’m)
,j=1 i,j=1
i#j

283 (g, — a)) = H(i(a; — )

vec

Zr(r?;trt)(ai B aj,m) - lH (i(ai —a; + m)) H (i(ai —a; — m))]_l/z

co

2 n
H(z) = e-(1+1)7° ]_[ (1 - Z—2> e7:/n
n

n=1



O-instanton sector

The partition function takes similar form to diagonalized matrix model.

N N
812
s = [ [ | [ )" | 2820 m exp<—?2a5>
ij=1

i<j
a; are the “eigenvalues”
Z(ParY s 3 very complicated function

[> We consider the case of small mass m .

gy < 1 and A > 4m?m?

Then, we have .
mZ
Z](\?i‘;? (a;,m) = 1_[ (a; — a))
[,j=1

L#]j



Then, the partition function becomes

N , 3 2 N
2(1+m*) T
Zyr=2+ =Jdea n(ai _aj) €Xp __zzaiz
[,j=1 Ip 1

i<j
In the large N limit, the eigenvalues are distributed continuously.

In terms of the eigenvalue density p(a), the free energy F = —logZ is

_ j dx p(x) x2 —=(1+m )f dx dy p(x) p(y) log(x —y)
NZT 1), 2 —u

) i ) +u: the ends of the eigenvalue support
The saddle point equation is

p(a) 8m?
x—a A *

(1 +m2)jda

Eqg. for the Gaussian matrix model with coupling A(1 + m?) .



The eigenvalue distribution is that of the Gaussian matrix model.

B JA(1 +m?)
B 21T

2
- 2 42
p(x) p— Ji? —x u

The free energy for the 0-instanton sector is

1. A1Q+m?» 3
1612 4

F®Part) = _N2(1 + m?) (Elog — =

In this case, there are no phase transition as long as it satisfies
gy < land A > 4m*m? .

In this region, the free energy is given by analytic function and
we can take the analytic continuation to g*-fixed large N limit



1-instanton sector

Instanton partition function is given by the Nekrasov’s formula

kN kN

2 inst N 8m?
L=y = Jd""Na H(ai —a;) Z](\?ig?(ai,m) |Z](\1fr;521(ai m)| exp __ZZ a?
=1 9o =
i<j
Z5"5) (a;, ) = z e I nzé‘;ft) a; — a; Y, Y,) 2829 (a; — a;; Y, Y; 1)
Y={Y1,Ygn} ,j=1

z5e(ar - ap %) = | |[B(ai - s v, 9) 7| [[2- By - @ v0)]

SEY; tEYj
200 (e - ap ¥ Vi) = | |Blai - a3 % %,5) - m) | [(2- B(gy - s, %, 0) = 1)
SEY; tEYj

E(a; — a;; Y, Y]-,S) = _hyj(S) + (vyi(s) +1)+ i(aj —a;)



Z\(/ler;:St) (al —a;; Y, Y]) I_I[E(az a;; Y; 1_[[2 E(a] a;; Y, Y, t)]_l

SEY; tey;

In the Nekrasov’s formula, Young tableau is associated to each eigenvalue.

a; <:> Yl

The instanton number is the total number of boxes |Y| = };; |Y;],

In the case of 1-instanton, only 1 eigenvalue has non-trivial Young tableau
o, €mm) v, =0
Aji <:> Yiei = 0

First, we consider the behavior of the instanton partition function
in the large N limit: O(N?) or O(N) or O(1).



In Z(2sY product over i and j are taken

8r?|ly| N
74 (g, 1) = Z e 95 Hzggft) a; — a;; Y, Y) 2009 (a; — a3 Y, Y;; 1)
Y={Y1!"'1YN} i!j=

[uny

But in more detailed expression, we see that one of them
should be instanton (s labels boxes in the Young tableaux)

Zyee (@i — aj Y, ¥;) = H[E(ai — a;; Y, Y, s)]” 1_[[2 ~E(aj - a; Y, v, 0)]

SEY; tEYj \

Only for Y; # @ Only forY; # @
The instanton partition function has the form of

_8m?ly| N
. 5 _
ZJ(\lfrlsztl (aii ﬁi) — z e 9p 1_[ 1_[ Zl(/lnSt) (Cli, Cl]', Yir Y])

Y={Yy, YN} j=1 i€(inst)

and hence naively log Z(nst) = O(N)



Instantons in the large N limit

 Thelarge N limit is a kind of the classical limit.

* The solution is determined by O(N?) part in the Free energy.

* Instanton effects does not affect O(N?) terms

>

Perturbative part does not depends on which
eigenvalue is associated to the instanton.

Eigenvalue distribution is same to O-instanton sector.

Saddle point equation determines where is the
eigenvalue of the instanton.



In the large N limit, by using the eigenvalue distribution,
instanton effects in the free energy can be expressed as

- 8m? i
B = —|Y| - N Z f da p(a) log Zy"*" (b;, a, Y;, B)
9p b;E(inst)

where the eigenvalue density p(a) is given by that in the 0-inst. sector.

2 \/A(l + m?)
= — 2 _ 2 —
p(x) TU? Vi = x H 21

From the Nekrasov’s formula, Zl(,inSt) (b;,a,Y;, D) is

m? @2—i(b—a)—m)>{i(b —a)—m)
m? + 1 (2 —i(b — a))i(b —a)

Zl(/inSt) (bi' a, Yi' ®) —

in 1-instanton case



In the case of small mass 4m*m? « A,
(inst) _ 87'[2 87'[2 1
Ky (b)=—7F——|1-
9»  Ip J1— u?/b?

Here, b is the eigenvalue associated to the instanton.

Since the eigenvalue distribution is determined by
the perturbative part, b must satisfy —u < b < pu.

* In very strongly coupled large N limit, instanton effects

in free energy is of O(1)

 We cannot use the saddle point equation since the
effective potential is not of O(N)

 Even in the 't Hooft limit, the saddle point equation
does not determines the position of the eigenvalue,

since the real part of Fy(inSt) (b) is constant.



Since integrant is an oscillating function, there is suppression.

b —8”2+8”2<1— = ) 16m%u  (8n?
f db e gzzg 9129 \/1_H2/b2 — > & Kl (—2>
— Yp Ip

where K, (x) is the modified Bessel function of the second kind

Ki(x) ~e™ (x = )
812

Then, the instanton partition functionis  z{nst) _ e_g
In the very strongly coupled large N limit:
gp = 0(1) but gp K 1

Since the weight of the instanton is finite,
it has non-zero contribution even in the large N limit.



Orbifold equivalence

[Kachru-Silverstein '98]

Parent theory Z;. Orbiford Daughter theory
Ad N = 4 4d V= 2 [SU(N)]*
SU(kN) SYM quiver gauge theory

In the 't Hooft limit, the correlation functions of Z-invariant
operators in the parent theory coincide with their counterpart
in the daughter theory.

In the perturbative theory, the equivalence can be directly shown
by calculating the planar diagram. (Bershadsky-Johansen ‘98]



Orbifold equivalence

[Kachru-Silverstein '98]

Parent theory Z;. Orbiford Daughter theory
Ad N = 4 4d V= 2 [SU(N)]*
SU(kN) SYM quiver gauge theory

Correspondence of the free energy

F,(A,N) = kF4(A,N)

Free energy in Free energy in
parent theory daughter theory

The 't Hooft coupling is same in both theory. In other word,

Gauge coupling in 2 2 2 Gauge coupling
daughter theory da = Kdp~ in parent theory




Orbifold equivalence and AdS/CFT  (achru-siiverstein ‘o]

Parent theory Z;. Orbiford Daughter theory
- ad N = 4 Ad V' = 2 [SU(N)]*
SU(kN) SYM quiver gauge theory
AdS Supergravity Supergravity
on AdSsz X S° on AdS: X S°/Z,

In the gravity side, we consider the classical solution.

Orbifolding acts to the extra dimension S°, but locally same.

Anything expressed in terms of Z-invariant modes coincide with
their counter part in daughter theory.



Orbifold equivalence and AdS/CFT  (achru-siiverstein ‘o]

Parent theory Z;. Orbiford Daughter theory
- ad N = 4 Ad V' = 2 [SU(N)]*
SU(kN) SYM quiver gauge theory
AdS Supergravity Supergravity
on AdSsz X S° on AdS: X S°/Z,

Orbifold equivalence can be shown in the gravity side.
Analytic continuation to g*-fixed limit is straightforward.

The equivalence holds in very strongly coupled large N limit
in the gauge theory side.



Orbifold equivalence for N’ = 2 *

Parent theory Z;. Orbiford

Daughter theory
— k
N = 2% SU(kN) N =2 [SUWN)]
auge theor Necklace quiver
s ! gauge theory
k{E

® M k SU(N)

,': gauge fields
1 SU(kN) gauge field M 4

~~  Bifund. matters which
Adjoint matter, which

connects nearest
connects SU(kN) to itself neighbor SU(N)



Partition function of the necklace quiver

Partition function is calculated by using the localization.

k N 2 k N
_ (@ _ _@)? ), @art) |, (ins)|? 8 ()
Z[SU(N)]k—fHdNam) [ [ (e =a®) )220 |28 exp —?ZZ(‘% )
a Lj=1 4 g=1i=1
i<j
where (zpar)  z(part) 7 {nst) 7S 410 came to V' = 2 #)
k N
(part) (part) (a) (a) (part) (a) (a+1)
die = (LT - ) (T ] T (ot i)
a=11,j=1 a=11,j=
i#j
8m?
5 Ya |Yal
(inst) _ gz “¢
Zisuyk = ¢
yD,...y (k)
kK N
x n 1_[ der::so @ _ 0@, y@, Y(a)) Zr(ﬁgit)( @ _ a}(a+1>;yi<a>’yj(a+1>;m)

a=11i,j=1



Partition function of the necklace quiver

Partition function is calculated by using the localization.

k N k N
2 inst) |2 gm? 2
Zsooop = | | Jata (ﬂ (=) )Zﬁi?j o exp(‘g—zii(a?)) )
a .

{j=1
i<j

kN eigenvalues in V' = 2 * is separated into k set of N eigenvalues
which are associated to k vector multiplets of each SU(N)

N = 2 = theory a; i=1,,kN kN eigenvalues of SU(kN)

g Orbifold projection

[SU(N)]* quiver al@ *= 1111\{, Eigenvalues of k of SU(N)
(=1,



Orbifold equivalence at perturbative level

We know the equivalence of perturbaive theory in the 't Hooft limit.

How can we understand it in the localized partition function?

Perturbative parts in " = 2 * and [SU(N)]* quiver gauge theory

t t t
229 (a,m) = ﬂ 2% (a; - 0)) H 283 (a; - ajm)

l?/—' ]
(part) _ (part) (Ot) (Ot) (part) (OC) (04 +1)
(LT[0 )(nnzm )

a=11,j a=11,j
%]

N =2+ Interaction between eigenvalues in same SU(kN)

[SU(N)T¥ Vector multiplets:  Interaction in same SU(N)
quiver Bifund. matters: Interaction in different SU(N)



In the large N limit, eigenvalue distribution becomes continuous.

* The difference of SU(kN) and SU(N) gives factor k
 In [SU(N)]¥ quiver, there are k gauge group of SU(N)
* Relation between two free energies is F, = kF

Difference of SU(kN) and SU(N) is not problem

Interaction of the bifund matters between different SU(N)
possibly break the equivalence.

Democratic ansatz pD(x) = = p®(x)

* Interaction between different SU(N) and that in same SU(N)
gives same result.
e This is a solution of the saddle point equation

By using this ansatz, the saddle point equation becomes same to

that for the parent theory. Then, E,(4, N) = kFy(4,N)



Instanton part at classical level

Young tableaux are associated to each eigenvalue

N = 2 * theory Orbifold [SUN)]I* quiver
projection
aga) a=1,-,k

a; i=1,-,kN |l: i i =1 N
kN eigenvalues of SU(kN) Eigenvalues of k of SU(N)
Y(oc) a=1,-,k

Y; i=1,---,kN i=1-+ N

Young tableau associated to a; Young tableau associated to aga)

* Each eivenvalue in parent has its counterpart in daughter
* Each Young tableaux in parent has its counterpart in daughter

Total instanton number agrees z Y| = z |Y.(“)|
in parent and daughter . T



Classical free energy in the 1-instanton sector in parent theory
2

81
(inst) .
Fp.l _Ez Vil =

i

Classical free energy in the 1-instanton sector in daughter theory

82N
(gl?lso _ Z Y(“)I == Z |Yi(a)|
gd T

a,i

Here we do not sum up the instantons but only 1-instanton sector.

. . . _ (a)
Since the total instanton number is same z Y;| = z |Yi |

We obtain

(inst) (1nst)
Foa = kF,



Orbifold equivalence for Nekrasov’s formula

Nekrasov’s formula of instanton partition function for [SU(N)]* quiver

812

| 8 s Yl
(inst) . g2
Z syt = Z e 7

N
(inst) (o) (), (@) () (inst) (o) _(a+t1), (@) (atl), ~
X 1_[2 (a. —a; ;Y ,Yj )Z (a. a. ;Y ,Yj ,m)

vec i mat l ]

In the large N limit, the eigenvalue distribution becomes continuous

k
Fd(,i;St) = —N y y jda p @ (a) logZ‘(,ienCSt) (bi(a),a, Y;, (Z))

a=1 b;e(inst)

k
—N 7 7 Jda p@+D(q) logZ\(,ierf:St) (bi(a),a,Yi,(Z))

a=1 b;€(inst)

The eigenvalue distribution is determined by the perturbative part.



In the case of V' = 2 *, the instanton effects in the free energy is

Fyy®? = —kN z f da p(a) log ;™" (b;, a, Y;, 0)

b;e(inst)

In the case of [SU(N)] quiver,

Fyps? = —Ny 7 j da p@(a) log z{nsY (b(“) ,Yi,(b)

a=1 b;e(inst)
k

_N S: S: Jda p(@*+1)(g) longr‘l‘;Et) (b(a), a,Y;, @)

a=1 b;e(inst)

Only for a for which b(® can be the instanton

The difference is that interaction is that between different SU(N)
in the contribution from bifund. matter



Since the eigenvalue distribution is determined by perturbative part,
it is expected to satisfy

p(l)(x) e p(k)(x)

Then, interaction equals to that with same SU(N):

Fyps? = —Ny 7 j da p@ () log z4nsY (bi(“),a,Yi,(Z))

a=1 b;e(inst)
k

—N z z Jda p@(a)log A (bi(a), a,Y;, Q))

mat
a=1 b;e(inst)

As for the O-instanton sector, the free energy becomes same but
has an additional factor of k. Then,

F(inst) (inst)

s = kF



Conclusion

* We have calculated the instanton effects in the large N limit.

e By using the very strongly coupled large N limit (g2-fixed limit),
the instanton effect is finite.

* The orbifold equivalence is valid for instanton effects, too.
* Generalization to multi-instanton cases is straightforward.

Applications

e Application to M-theory
* In the M-theory, g; ~ R becomes finite. (not 't Hooft limit)
e 4d V' = 2 CFTs of M5-branes in the M-theory region.
* Taking the instanton effects into account
* And their relation to gravity dual

* Non-SUSY
* Orbifold projection which breaks SUSY.
e QCD. Instantons with radius of QCD scale.



