Quark Confinement via Magnetic Color-Flavor Locking

Ryuichiro Kitano (KEK, Sokendai)

collaboration with N.Yokoi, M. Nakamura, Y. Nakai

Seminar@Osaka U., December 3, 2013

My dream a new type of unification

quark confinement in QCD chiral symmetry breaking

unify as a Higgs mechanism in the magnetic picture

electroweak symmetry breaking

unify as a higher dimensional QCD (Higgs mechanism as UV QCD dynamics)

quark confinement

In QCD, quarks are confined.

Lattice QCD

$$V(R) = -rac{A}{R} + \sigma R.$$

 $A\sim 0.25-0.5, \quad \sqrt{\sigma}\sim 430~{\rm MeV}.$

Why?

There is a pretty simple picture.

Confinement is dual to Higgs mechanism, and in the dual picture, the quarks are magnetic monopoles.

[Mandelstam '75, 't Hooft '75]

Why?

There is a pretty simple picture.

Confinement is dual to Higgs mechanism, and in the dual picture, the quarks are magnetic monopoles.

[Mandelstam '75, 't Hooft '75]

Why?

There is a pretty simple picture. Confinement is dual to Higgs mechanism, and in the dual picture, the quarks are magnetic monopoles. [Mandelstam '75, 't Hooft '75]

Linear potential

chiral symmetry breaking

$m_{\pi^{\pm}} = 139.57 \text{ MeV}$ $\ll 1 \text{ GeV}$

This can be beautifully understood by

$$\langle \bar{q}q \rangle \neq 0$$

spontaneously broken chiral symmetry

Hidden Local Symmetry

[Bando, Kugo, Uehara, Yamawaki, Yanagida '85]

Two-parameter model for π - ρ - γ system.

hypothesis

 $SU(2)_{L+R}$ in HLS as the magnetic gauge group

Higgs mechanism for the ρ meson

confinement by the dual Meissner effect chiral symmetry breaking by the color-flavor locking

a unified picture [RK '11][RK, Nakamura, Yokoi '12][RK, Yokoi '13]

Of course,

It is difficult to derive a magnetic theory from QCD.

Our goal today

We demonstrate it in SUSY QCD.

 Λ_{QCD}

N=2 SUSY gauge theory

$$\left(A^a_\mu, \; \lambda^a
ight)$$
 SU(2) gauge field gaugino (adjoint fermion)

$$(\phi^a, \ \psi^a)$$

adjoint scalar adjoint fermion

Classically, at a generic point

$$\phi^3
eq 0$$
: SU(2) \rightarrow U(1)

Seiberg and Witten have found a consistent solution.

- * $SU(2) \rightarrow U(1)$ happens everywhere.
- * The U(I) gauge coupling at low energy is given by $u = \text{Tr}\phi^2/\Lambda^2$
 - $rac{4\pi i}{g^2}+rac{ heta}{2\pi}=rac{da_D}{da} \qquad a(u)=rac{\sqrt{2}}{\pi}\int_{-1}^1 dx\sqrt{rac{u-x}{1-x^2}} \ a_D(u)=rac{\sqrt{2}}{\pi}\int_{1}^u dx\sqrt{rac{u-x}{1-x^2}}$
- * monopole/dyon masses are m: electric charge $M = \sqrt{2} |na + ma_D|$ m: magnetic charge $m = \pm 1$

$$a(u) = \frac{\sqrt{2}}{\pi} \int_{-1}^{1} dx \sqrt{\frac{u-x}{1-x^2}} \qquad a_D(u) = \frac{\sqrt{2}}{\pi} \int_{1}^{u} dx \sqrt{\frac{u-x}{1-x^2}}$$

$$M = \sqrt{2} |na + ma_D| \qquad (m = \pm 1)$$

massless monopole/dyon at $u = \pm 1$

deformation to N=1 \longrightarrow monopole condensation (mass term for ϕ^a)

$$\rightarrow$$
 confinement!

The solutions can be written as

 $a(u) = \frac{1}{\sqrt{2}\pi} \int_{\alpha} \frac{x^2}{y} dx \qquad a_D(u) = \frac{1}{\sqrt{2}\pi} \int_{\beta} \frac{x^2}{y} dx$

$$y^2 = (x^2 - u)^2 - 4$$

(equation for torus) Seiberg-Witten curve

massless monopole

→ vanishing cycle

Type IIA string theory

describes SU(2) gauge theory

M theory

describes SU(2) gauge theory

The configuration is $t^2 - (v^2 - u)t + 1 = 0$ $t = e^{-x^6 + ix^{10}}$

 \longrightarrow $y^2 = (x^2 - u)^2 - 4$ ($y = 2t - (v^2 - u), x = v$) Shape of the M5 brane = Seiberg-Witten curve !!!

D-brane construction

Following Witten, one can construct 4D SQCD by branes and solve it by lifting it to M-theory.

construction of SU(Nc) Nf flavor theory

[Witten '97]

D-brane construction

Following Witten, one can construct 4D SQCD by branes and solve it by lifting it to M-theory.

We introduce a parameter μ as a deformation. This parameter is going to control the mass of ρ .

SW curve

For Nc=3, Nf=2 (μ =0, m=0), we get

$$\Lambda_{2}^{3}t^{3} - \left(v - \phi_{1}'\right)\left(v - \phi_{2}'\right)\left(v - \phi_{3}'\right)t^{2} + \left(v - \hat{\phi}_{1}\right)\left(v - \hat{\phi}_{2}\right)\left(v - \hat{\phi}_{3}\right)t + \Lambda_{1}v^{2} = 0,$$

$$\hat{\phi}_1 + \hat{\phi}_2 + \hat{\phi}_3 = -\Lambda_1, \quad \phi'_1 + \phi'_2 + \phi'_3 = 0.$$

[Giveon, Pelc '97][Erlich, Naqvi, Randall '98]

from this, one can identify the vacua which remain after turning on μ and m:

$$\rho = \frac{\Lambda_1^2}{2} + c_1 \Lambda'^2, \quad \sigma = c_2 \Lambda'^3, \quad \rho' = c_1 \Lambda'^2 \quad \sigma' = -\Lambda_2^3 + c_2 \Lambda'^3,$$

$$\rho = \frac{1}{2}(\hat{\phi}_1^2 + \hat{\phi}_2^2 + \hat{\phi}_3^2), \quad \rho' = \frac{1}{2}(\phi_1'^2 + \phi_2'^2 + \phi_3'^2), \qquad \qquad \Lambda'^4 = \Lambda_1 \Lambda_2^3.$$

$$(c_1, c_2) = (c_1, c_2) = (c_1, c_2) = (c_1, c_2), \quad (c_1, c_2) = (c_1, c_2) = (c_1, c_2), \quad (c_1, c_2), \quad (c_1, c_2) = (c_1, c_2), \quad (c_1, c_2) = (c_1, c_2), \quad (c_1, c_2) = (c_1, c_2), \quad (c_1, c_2), \quad (c_1, c_2) = (c_1, c_2), \quad (c_2, c_3), \quad (c_1, c_2), \quad (c_1, c_2), \quad (c_2, c_3), \quad (c_1, c_2), \quad (c_1, c_2), \quad (c_2, c_3), \quad (c_2, c_3), \quad (c_1, c_2), \quad (c_2, c_3), \quad (c_3, c_3), \quad (c_1, c_2), \quad (c_2, c_3), \quad (c_1, c_2), \quad (c_2, c_3), \quad (c_2, c_3), \quad (c_3, c_3), \quad (c_3, c_3), \quad (c_1, c_2), \quad (c_2, c_3), \quad (c_1, c_2), \quad (c_2, c_3), \quad (c_2, c_3), \quad (c_3, c_3), \quad (c_3, c_3), \quad (c_1, c_2), \quad (c_2, c_3), \quad (c_3, c_3), \quad (c_1, c_2), \quad (c$$

[Carlino, Konishi, Murayama '00]

effective theory below Λ_1

[Argyres, Plesser, Seiberg '96]

SU(3)₂ factor gets strong at a scale

$$\Lambda' = (\Lambda_1 \Lambda_2^3)^{1/4}$$

 $\Lambda' \gg \Lambda_2 \qquad \rho = \frac{\Lambda_1^2}{2} + c_1 \Lambda'^2, \quad \sigma = c_2 \Lambda'^3, \quad \rho' = c_1 \Lambda'^2 \quad \sigma' = -\Lambda_2^3 + c_2 \Lambda'^3,$

$$\longrightarrow \rho' = c_1 \Lambda'^2, \quad \sigma' \simeq c_2 \Lambda'^3$$

Point at which massless monopoles appear.

[Carlino, Konishi, Murayama '00]

	$SU(2)_1$	$U(1)_{1'}$	$U(1)_2$	$U(1)_{2^{\prime}}$	$SU(2)_f$	$U(1)_B$	$U(1)_{B'}$
\overline{q}	2	1/2	0	0	2	0	-1
e	1	-1	0	0	1	0	-1
e_1	1	0	1	0	1	0	0
e_2	1	0	0	1	1	0	0

effective theory below Λ'

turn on m (N=2 to N=1)

 $W \ni \frac{m}{2} \operatorname{Tr} \Phi_1^2.$

[Argyres, Plesser, Seiberg '96]

 $W \ni e\Phi_{D1}\bar{e} - e_1\Phi_{D2}\bar{e}_1 - e_2\Phi_{D2'}\bar{e}_2 + m\Lambda_1 x_1\Phi_{D1} + m\Lambda' x_2\Phi_{D2} + m\Lambda' x_{2'}\Phi_{D2'},$

	$SU(2)_1$	$U(1)_{1'}$	$U(1)_{2}$	$U(1)_{2'}$	$SU(2)_f$	$U(1)_B$	$U(1)_{B'}$
\overline{q}	2	1/2	0	0	2	0	-1
e	1	-1	0	0	1	0	-1
e_1	1	0	1	0	1	0	0
e_2	1	0	0	1	1	0	0

condensations of e, e₁, e₂

<e> would not cause confinement since U(I)^{B'} is not dynamical

magnetic —		$SU(2)_1$	$U(1)_X$	$SU(2)_f$	$U(1)_B$
gauge group	q	2	3/2	2	0

effective theory below $(m\Lambda')^{1/2}$

turn on µ

$$W
i - \frac{3}{2} \operatorname{Tr}(q \Phi_X \bar{q}) + \mu^2 \Phi_X, \longrightarrow q = \bar{q} = \frac{\mu}{\sqrt{3}} \cdot \mathbf{1},$$

 $SU(2)_{I} \times SU(2)_{f} \longrightarrow SU(2)_{I+f}$

color-flavor locking

magnetic gauge boson \longrightarrow vector meson (ρ)

This is what we wanted.

We have seen that

Quiver deformation provides us with an understanding of HLS as the magnetic gauge theory.

N=0?

[RK '11]

Seiberg duality + soft SUSY breaking terms

	$SU(N_c)$	$SU(N_f)_L$	$SU(N_f)_R$	$U(1)_B$	$SU(N_c)_V$	$U(1)_{B'}$	$U(1)_R$
Q	N_c	N_f	1	1	1	0	$(N_f - N_c)/N_f$
\overline{Q}	$\overline{N_c}$	1	$\overline{N_f}$	$^{-1}$	1	0	$(N_f - N_c)/N_f$
Q'	N_c	1	1	0	$\overline{N_c}$	1	1
\overline{Q}'	$\overline{N_c}$	1	1	0	N_c	-1	1

Table 1: Quantum numbers in the electric picture.

magnetic $SU(N_f)_L \quad SU(N_f)_R \quad U(1)_B \quad SU(N_c)_V$ $SU(N_f)$ $U(1)_{B'}$ $U(1)_R$ N_f $\overline{N_f}$ N_c/N_f 0 N_c/N_f 1 1 \boldsymbol{q} $\overline{N_f}$ N_f $-N_c/N_f$ N_c/N_f 1 0 1 \overline{q} $\overline{N_f}$ 1 N_f 1 0 0 $2(N_f - N_c)/N_f$ 1 N_f 1 1 N_c $-1 + N_c/N_f$ 0 Tachyonic $\overline{N_f}$ N_c \overline{q}' 1 $1 - N_c / N_f$ -11 0 Y1 + Adj.1 1 1 0 0 $\mathbf{2}$ $\overline{N_c}$ N_f Z1 $(2N_f - N_c)/N_f$ 1 1 -1 \overline{Z} N_c $(2N_f - N_c)/N_f$ N_{f} 1 1 1 -1One can also see HLS.

electric

[RK, Nakamura, Yokoi '12]

QCD may not be so far

We have calculated the monopole-antimonopole potential by using hadron data.

A = 0.25 $\sqrt{\sigma} = 400 \text{ MeV}$ consistent with lattice QC

Application to EWSB??

 $W = \sqrt{2}g \left(q_1 \bar{Q} \bar{q}_2 + t_1^c Q \bar{t}_2^c + b_1^c Q \bar{b}_2^c + \bar{Q} \Phi Q - v^2 \text{Tr} \Phi + v_q \bar{q}_2 q_2 + v_t \bar{t}_2^c t_2^c + v_b \bar{b}_2^c b_2^c \right).$

For $\Lambda \ll 4\pi v$,

$SU(3)_1 \times SU(3)_2 \longrightarrow SU(3)_{1+2}$

We get MSSM without Higgs as low energy theory. not interesting.

Below, we study the case with

 $\Lambda \gg 4\pi v$, (strongly coupled region)

→ magnetic description gets better.

Seiberg duality

SU(3)₁ factor gets strong → weakly coupled magnetic picture (CFT)

Higgs appeared.

					i nggs appeared.					
	$SU(3)_1$	$SU(3)_2$	$U(1)_B$	$SU(2)_L \times U(1)_Y$			1			l
Q	3	3	1	10			$SU(2)_1$	$SU(3)_2$	$U(1)_B$	$SU(2)_L \times U(1)_Y$
$ar{Q}$	3	3	-1	10		f	2	1	3/2	2_0
Φ	1	1 + 8	0	10		$ar{f}_u$	$\overline{2}$	1	-3/2	$1_{1/2}$
q_1	3	1	1	$2_{1/6}$		$ar{f}_d$	$\overline{2}$	1	-3/2	$1_{-1/2}$
t_1^c	3	1	-1	$1_{-2/3}$		H_u	1	1	0	$2_{1/2}$
b_1^c	$\overline{3}$	1	-1	$1_{1/3}$	\longrightarrow	H_d	1	1	0	$2^{1/2}$ $2^{-1/2}$
q_2	1	3	0	$2_{1/6}$		11a f'				
t_2^c	1	$\overline{3}$	0	$1_{-2/3}$		J	2	3	3/2	$1_{1/6}$
b_2^c	1	3	0	1 _{1/3}		$ar{f}'$	$\overline{2}$	3	-3/2	$1_{-1/6}$
\bar{q}_2	1	3	0	$\bar{2}_{-1/6}$		q	1	3	0	$2_{1/6}$
$ar{t}^c_2$	1	3	0	12/3		t^c	1	$\overline{3}$	0	$1_{-2/3}$
\bar{b}_2^c	1	3	0	$1_{-1/3}$		b^c	1	$\overline{3}$	0	$1_{1/3}$
							-	_		-

below the dynamical scale Λ .

below A'

$$W = \lambda_d \bar{f}_u H_d f + \lambda_u \bar{f}_d H_u f - \frac{\lambda_q \lambda_t}{\Lambda'} f \bar{f}_u t^c q - \frac{\lambda_q \lambda_b}{\Lambda'} f \bar{f}_d b^c q.$$

$SU(2)_1$ factor confines

MSSM like model

$$W = \frac{\lambda_u \Lambda'}{4\pi} H_u H'_d + \frac{\lambda_d \Lambda'}{4\pi} H_d H'_u - \frac{\lambda_q \lambda_t}{4\pi} H'_u t^c q - \frac{\lambda_q \lambda_b}{4\pi} H'_d b^c q.$$

$$K \ni \frac{\Lambda'^{\dagger}}{\Lambda'} H'_u H'_d + \text{h.c.} \qquad \mu\text{-like terms}$$

obtained from kinetic terms for S and S.

We consider SUSY breaking by turning on $\Lambda'(1 + m_{\rm SUSY}\theta^2)$ with $m_{\rm SUSY} \sim \Lambda' \sim 1 \text{ TeV}$

$$V \ni \frac{m_{\text{SUSY}}^2}{(4\pi)^2} (|\lambda_u H_u|^2 + |\lambda_d H_d|^2) + \frac{1}{(4\pi)^2} (|\lambda_u H_u|^4 + |\lambda_d H_d|^4).$$

new quartic!!

 $V \ni m_{\text{SUSY}}^2(|H'_u|^2 + |H'_d|^2) + \cdots$

$$V \ni m_{\rm SUSY} \left(\frac{\lambda_u \Lambda'}{4\pi} H_u H'_d + \frac{\lambda_d \Lambda'}{4\pi} H_d H'_u + \text{h.c.} \right),$$

$$W \ni \frac{\Lambda'}{4\pi} (\lambda_u H_u H_d' + \lambda_d H_d H_u') + m_{\rm SUSY} H_u' H_d'.$$

 $V \ni m_{SUSY}^2 H'_u H'_d + h.c.$ H' are heavy

Summary

- We studied a strongly coupled regime of a quiver theory. We see that the quark confinement can be understood as the magnetic color-flavor locking.
- We studied a similar model for EWSB. The Higgs fields emerge as the magnetic degrees of freedom. By adding SUSY breaking terms, EWSB can occur while I25GeV Higgs boson is naturally explained.