A Systematic Study on Matrix Models

for Chern-Simons-matter Theories

Takao Suyama (IEU)

Ref: Nucl.Phys.B874 (2013) 528.



Introduction

Chern-Simons-matter theories (CSM) have been studied for
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e boundary conditions for N =4 SYM,, [Gaiotto, Witten]
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e M-theory on AdS, x M. [ABJM]
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e boundary conditions for N =4 SYM,, [Gaiotto,Witten]
e worldvolume theory on M2-branes, [BLG][ABJM]
e M-theory on AdS, x M. [ABIJM]

The question we would like to discuss today is

What is the possible set of exponents
of planar N =3 CSMs?

Here the exponent v is defined as

v = lim log {10g|(W>|}/log A.
A—00

This exponent has a geometric meaning in the context of
AdS/CFT correspondence.
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E.g.1) ABJM theory

This is N =6 CS theory with gauge group U(N), x U(N)_y,
believed to be dual to Type IIA on AdS, x CP’ with flux.

In AdS/CFT in general, there is a relation

(W[C]) ~ e heal® oy = (.

Area(X) < R* (R is the radius of AdS,) and R* c A (A — oo) is one
of the proposals in [ABJM]|. Therefore one should obtain

1

YABIM = 5

for AdS/CFT correspondence to hold.
For ABJM, this was confirmed by showing

(WIC]) ~ eV (A= )

where A\ = N/k is the ’t Hooft coupling. [Marino,Putrov]

Note: The coefficient in the exponent also matches.
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E.g.2) Gaiotto-Tomasiello theory [Gaiotto,Tomasiello]

This is an N = 3 CSM with gauge group U(N);, x U(N);,, dual
to massive Type IIA.
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E.g.2) Gaiotto-Tomasiello theory [Gaiotto,Tomasiello]

This is an N = 3 CSM with gauge group U(N);, x U(N);,, dual
to massive Type IIA.

1

It was found that [TS]
1
V3 [ 6r? 3 1
ol ~ 5 () or = 3
This is consistent with massive IIA result since [AJTZ]
R ~ NG
E.g.3) Pure CS theory [Witten]

For this case, the exact expression for (W) is simply

~ 1sin(rN/E) sin 7w\
W) = N sin(w/k) T

This implies v,y = 0.

Note: A gravity dual was discussed in [Maldacena,Nastase].
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So far, we have found that

DO | —
| —

v =0,

are possible values of the exponent.

Questions:

e Do they exhaust all possible values?

e If not, what are the other possibilities?
e Do they have geometric interpritations?

® Which CSMs correspond to which values?

In the following, we will show that
e Most of N =3 CSMs have ~ = 0.

e 1 a necessary condition for v # 0.
= A hint for the principle underlying AdS/CFT??
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How to analyze?
1. Localization [KWY]

The path-integral may be reduced to ordinary integral in SUSY
QFT. = One may compute exactly quantities, e.g.

® free energy = N 3 behavior [DMP]
e Wilson loop. For ABJM theory,

. G QUZ'—UJ' . QTNLi—ﬂj
W) =z / AR T i il s )
szCOShQUZz—UJ NG
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How to analyze?

1. Localization [KWY]

The path-integral may be reduced to ordinary integral in SUSY
QFT. = One may compute exactly quantities, e.g.

® free energy = N 3 behavior [DMP]
e Wilson loop. For ABJM theory,
sinh2 Y ginh? YW

l ~ i 1 ,
(W) = ZldeudNﬂeﬁZi(“%“%)Hq . 2 -NZe“Z.

9 ui—ﬂj
sz cosh” =5~ -

2. Matrix model

The above integral can be calculated in the planar limit.
< Saddle-point approximation.

All information is encoded in p(z), p(z). For example,

(W) = /daz p(x)e”.
p(x), p(x) are then encoded in analytic functions v(z), v(z).
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N = 3 planar CSM

We focus on this family of CSMs since
e N =3SUSY = Localization formula is simple.

e 1’t Hooft limit =  Matrix model techenique is available.
Def. N =3 planar CSM is a theory specified by

e gauge group: |][, U(V,)s, for simplicity,

e matter reps.: R =®,;R;, where R; = {, adj, sym, asym, bf, ff.



N = 3 planar CSM

We focus on this family of CSMs since
e N =3SUSY = Localization formula is simple.

e 1’t Hooft limit =  Matrix model techenique is available.

Def. N =3 planar CSM is a theory specified by
e gauge group: |][, U(V,)s, for simplicity,
e matter reps.: R =®,;R;, where R; = {, adj, sym, asym, bf, ff.

For each theory, we obtain S° partition function

g
Z = /HdN“ua exp [ ZSt“ree[u] — Z Solu] — ZSZ[u] :
a=1 a a 1
The saddle-point equations are

ko |, uj —uj 05,
o tia = Zcoth 5 / —; Sur

JaFla




Gaussian matrix model

A simple toy model:

o) = 5 (e C\{u)).

In the ’t Hooft limit, v(z
a, bl.
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iIs assumed to have a branch cut on
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Gaussian matrix model

A simple toy model:

k 1
%Ui - ZUZ‘—UJ'.

J7i
Define resolvent

v(z) = %Z 1 , (e C\{z}).

N
1 < —”LLJ'

J

In the ’t Hooft limit, v(z) is assumed to have a branch cut on
la,b]. In terms of v(z),

W_lAu = o(u+i0) +v(u —i0), (u € [a,b)

with the boundary condition zv(z) — 1.



Gaussian matrix model

A simple toy model:

k 1
%U@' - ZUZ‘—UJ'.

J7i
Define resolvent

o) = 5 (z€C\{z})

Z—’LLJ'

J=1

In the ’t Hooft limit, v(z) is assumed to have a branch cut on
la,b]. In terms of v(z),

1
—u = v(u+10) +v(u —0), (u € |a,b])
T
with the boundary condition zv(z) — 1. The solution is
1
v(z) = — [z— \/(z—a)(z—b)} , —a=b=V4r\.
2T\

The distribution of u; is described by

plu) = lImv(u—i()) _ ! Vb2 —u?.

T 2T\




Saddle-point eqs. for CSM

We focus on a CSM with n® funds. and n® bi-funds. Then

a a€alYa — 1 a a(, — a
2k 1og(€ayq) + v P— = v (y7) + vy, ) — E n bUb(ZJa);
adga b

where v, € [pa, ], €. = £1, K* = k" /k, v* = n®/k.



Saddle-point eqs. for CSM

We focus on a CSM with n® funds. and n® bi-funds. Then

a aeflya_l ab b
2k"log(€,y,) + —
loslean) + VT = ) )~

where v, € P4, qa], €. = £1, K* = k%/k, v* = n®/k. Assuming
vi(z) = rz) + 0(2),
the 2nd term in LHS can be eliminated if

—1
pae” = Z(Zéab — n®)rb(2).

€2+ 1 ;

J a solution if C% = 2§ — n® is non-degenerate.
Note: v%(z) have poles at z = +1. The residues contain informa-

tion of °.



Similarly, log-term can be eliminated, assuming

since

@) = [ dguniag)

> 1 1
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Similarly, log-term can be eliminated, assuming

) = [ " de (2,6,

> 1 1

= For non-degenerate cases, the task is to solve

since

W (yh) + Zn“b "(ya) = 0.
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Similarly, log-term can be eliminated, assuming

@) = [ dguniag)

> 1 1

= For non-degenerate cases, the task is to solve
W () + Zn“b "(ya) = 0.

Note: ¢-dependence enters through the conditions of poles at
2z = *%E£.

Note2: All CSMs with known gravity duals are degenerate.

since

10



Monodromy

The homogeneous eqs. can be written as

W(;y;) — w(ya_)Mav w(z) ‘= <w1(z)>°" ’wng<z))’

where
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The homogeneous eqs. can be written as

W(;y;) — w(ya_)Mav w(z) ‘= <w1(z)>°" ’wng<z))’

where
M, = [¥], M? = 1I.

These eqs. define monodromies of w(z) at z = p,, q.:

wWpe +€) = wlp, +ee™\M,, w(qga—¢) = w(q, —ee ™) M,.
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Monodromy

The homogeneous eqs. can be written as

w(ly;) — w(ya_)Mav w(z) ‘= <w1<z)>°" ’wng<z))’

where
M, = [¥], M? = 1I.

These eqs. define monodromies of w(z) at z = p,, q.:

Wpe +€) = wp, + €™ \M,, wlg,—¢€) = w(q, — ee”*™)M,.
Monodromies on P! must be consistent, i.e.

M, Mpy_1---M; = 1.

In our case, this is trivially satisfied.
= Find a vector w(z) with the prescribed monodromies.

cf) The hypergeometric fun. : 2-vector with 3 singularities.
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Riemann-Hilbert problem

Known result [Plemelj]
RH has a solution if one of ), is diagonalizable.

This means d a Fuchsian system

dy o A,
% B ZZ—ZZ:U

1

s.t. vector-valued y(z) has prescribed monodromy.
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Riemann-Hilbert problem

Known result [Plemelj]

RH has a solution if one of ), is diagonalizable.

This means d a Fuchsian system

dy A;
% B ZZ—ZZy

1

s.t. vector-valued y(z) has prescribed monodromy.

In our case, any V), is diagonalizable. = Jy;, -+, yp,.
Define Y'(z) from a matrix (yi,--- ,y,,). This satisfies

Y(Z) — Y(Z)Ma (Z Npa7Qa>

Y (z) is holomorphic and non-degenerate on C\{p,,q,}, and

Y(2) ~ 2V(2) (2— o)

under a certain continuity assumption.
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Planar resolvents

w(z,&) is given as

w(z,§) = 1(2,§Y(2),

where 7(x,£) is a row vector of rational functions s.t.
® w(z, &) is finite at infinity,

® w(z,¢) has poles with appropriate residues at z = +£.
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Planar resolvents

w(z,&) is given as

w(z,§) = 1(2,§Y(2),

where 7(x,£) is a row vector of rational functions s.t.
® w(z,¢) is finite at infinity,
® w(z,¢) has poles with appropriate residues at z = +£.

Let p+ be vectors of redisues at z = +££. Then

1
z2 =4

s(218) = | gp Y (O YO YO

z+¢&

Finally, the resolvent vector is given as

v(z) = ri(2) +/OOO dé {rg(z,ﬁ) +w(z,§)}.

This contains all information of the matrix model.

Note: Explicit form of Y(z) is known for n, < 2.
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Exponent of non-degenerate theories

The vector of 't Hooft couplings is given as

= —o(0) = —n(0) - / " [raf0,€) + (0, )]

This is a function of coordinates of branch points.
t may diverge when
1. a set of branch points approach the origin, or

2. branch points approach a special configuration.

(Integrand diverges in the limit.)
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Exponent of non-degenerate theories

The vector of 't Hooft couplings is given as

= —o(0) = —n(0) - / " [raf0,€) + (0, )]

This is a function of coordinates of branch points.
t may diverge when
1. a set of branch points approach the origin, or

2. branch points approach a special configuration.

(Integrand diverges in the limit.)

Case 1: t diverges to a real value, while physical CSM
corresponds to imaginary values. (¢t = 2mi\) = Irrelevant.

Case 2: Lengths of branch cuts are finite in the limit.

= (W) <7C, v = 0.

cf. Isomonodromic deformations of Fuchsian system [Schlesinger]
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Degenerate theory: an example

Gaiotto-Tomasiello theory (n, =2, 2 bi-funds) was solved. [TS]
The resolvent is

+(1 ¢ 2).

o2 — s /b1 dxlog(el>=/my) /(2 — a1)(z — b1)(z — ag)(z — by)
o 2T Z—X VI —a)(z —b)(z — ag)(z — by)]
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Degenerate theory: an example

Gaiotto-Tomasiello theory (n, =2, 2 bi-funds) was solved. [TS]
The resolvent is

b1 rloo(et2=t1)/k1 4 Z—a1){Z —01)(Z2 —a9){z2 — 02
v<z):,ﬁ/dlg( ) V(2 —a1)(z = bi)(z — as)(z — by)

1 2).
2 2 \/|(~”C—a1>(l’—bl)(5€—az)(l’—b2)\+( <2

When 't Hooft couplings are large, it behaves as

K1+ R
L2034+ 0%, —logay,—logas ~ a.
37’

ty ~

/3

This implies & ~ ¢;/°. Since (W) ~ ¢*, one obtains

fy:

1
5

Note: When k1 + k3 =0 (ABJM), then ¢; = O(a?) and v = 1.
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Degenerate theory: an example

Gaiotto-Tomasiello theory (n, =2, 2 bi-funds) was solved. [TS]
The resolvent is

+(1 ¢ 2).

o() = K /b1 dalog(el2—t)/x1y) V(z—ay)(z —b1)(z — ag)(z — by)
= K1
w 2T 2=r /|(x—a)(z —bi)(z — az)(z — by)
When 't Hooft couplings are large, it behaves as

K1+ R
L2034+ 0%, —logay,—logas ~ a.
37’

ty ~

/3

This implies & ~ ¢;/°. Since (W) ~ ¢*, one obtains

fy:

1
5

Note: When k1 + k3 =0 (ABJM), then ¢; = O(a?) and v = 1.

11

, 5, 3 are all possible exponents.

Conjecture: v =0
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Summary

e The exponents of N =3 planar CSMs are investigated.
e Most of such theories has v = 0.
o7 #0 = detC% = 0.

e CSM with generic matter contents can be reduced to CSM
with bi-funds.

Open issues

e Analysis of degenerate theories

(a limit of non-degenerate theories)

e Meaning of det C% = ()
= The condition for the presence of AdS, dual

e Implications to interacting Fermi gas

® ctc.
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