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Domain wall fermions Nishimura, PLB406(1997)215;
Neuberger, PRD57(1998)5417.

myx,yx,y

kink mass
5th dimension

localized fermion
zero mode

massless gluino!

my

y

R no need for a fine tuning!

R The other chirality appears on the opposite wall for
 finite Ls.

R two extra parameters: mLs

Ls

m

L R
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Overlap fermions Maru-Nishimura, IJMPA13(1998)2841;
Neuberger, PRD57(1998)5417.

Ginsparg-Wilson relation

chiral symmetry

DDaDD
lattice spacing



   aD






massless gluino

SUSY will appear
in the continuum
limit!



15Nicolai mapNicolai map



15Nicolai mapNicolai map

fermion determinantfermion determinant



15Nicolai mapNicolai map

Nicolai, PLB89 (1980) 341; NPB176 (1980) 419Nicolai, PLB89 (1980) 341; NPB176 (1980) 419

Nicolai map

with the properties:

Nicolai map

with the properties:

fermion determinantfermion determinant



15Nicolai mapNicolai map
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Nicolai map

with the properties:
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with the properties:

Gaussian integral!Gaussian integral!
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Start with the Gaussian
integral on lattice!

Sakai-Sakamoto, NPB229 (1983) 173Sakai-Sakamoto, NPB229 (1983) 173
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19Hamiltonian formulationHamiltonian formulation
Sakai-Sakamoto, NPB229(1983)173;
Elitzur-Schwimmer, NPB226(1983)109.

Time is continuous.

This guarantees the pairing between bosonic and
fermionic states.

An exact SUSY can be realized in the time-direction.
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Some of SUSY are broken 
by orbifolding.

UkNd SYM in 3+1 dim. (continuous)

Uk SYM in d-dim. (lattice)

UkNd extended SYM matrix model in 0+0 dim.
dimensional reduction: ∂

ZNd-orbifolding   kNd

k

Cohen-Kaplan-Katz-Unsal, JHEP12(2003)031.



21Perfect actionPerfect action
So-Ukita, PLB457(1999)314;
Bietenholz, MPLA14(1999)51.

 eSLn∫dennn
Scn

R block-spin transformation

n      ∫dx fn(x)(x)

n     ∫dx fn(x)(x)

R perfect action

R action invariance

Sc((x)(x)) Sc((x)) SL(nn) SL(n)

Success only for the free Wess-Zumino model!

continuum 
action



22Ichimatsu latticeIchimatsu lattice

R lattice action

R fermionic invariance

Slat    Ichimatsu




It is unclear that in the continuum 
limit the lattice model reduces to a 
continuum SUSY model!

n

n

n
n

n

n
^

^ ^ ^

^

Un: link variablesn
real Staggered fermions

Itoh-Kato-Sawanaka-So-Ukita, NP(Suppl)106(2002)947.



23Non-commutative approachNon-commutative approach
D'Adda-Kanamori-Kawamoto-Nagata, NPB707(2005)100.

R difference operator

R shift operator

R new "difference" operator

      fngn     fngnfn   gn

T

T fnfnT

^

^

satisfies the Leibniz rule!

lattice models with full SUSY!

Dirac-Kähler fermions
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We find a solution satisfying the Leibniz rule.We find a solution satisfying the Leibniz rule.

Dabm;n dab mn,ab mn,ab
Cabcl,m;nln,b nm,a ab,c

Dabm;n dab mn,ab mn,ab
Cabcl,m;nln,b nm,a ab,c

translationally invariant
local (= holomorphic)
non-trivial connection between lattice sites and 
flavor indices fi need for infinite flavors!
local in the space direction but "non-local" in 
the flavor direction!

★

★

★

★

characteristic features
translationally invariant
local (= holomorphic)
non-trivial connection between lattice sites and 
flavor indices fi need for infinite flavors!
local in the space direction but "non-local" in 
the flavor direction!

★

★

★

★

characteristic features

M. Kato, M.S. & H.So, JHEP 05(2008)057M. Kato, M.S. & H.So, JHEP 05(2008)057
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  i) translation invariance
 ii) locality
iii) Leibniz rule

There is no difference operator      satisfying 
the following three properties:

No-Go Theorem M.Kato, M.S. & H.So, JHEP 05(2008)057
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R extension of difference operator

R extension of field product

To prove the theorem, we generalize the difference 
operator and the field product as follows:
To prove the theorem, we generalize the difference 
operator and the field product as follows:

R extension of difference operator

R extension of field product
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To prove the theorem, we generalize the difference 
operator and the field product as follows:
To prove the theorem, we generalize the difference 
operator and the field product as follows:
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QQ

forward difference operator

normal product

R extension of difference operator

R extension of field product

forward difference operator

normal product

R extension of difference operator

R extension of field product

Is it possible to construct a difference 
operator      satisfying
Is it possible to construct a difference 
operator      satisfying
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coefficients of Laurent series

R translation invariance

R locality (exponential damping)

holomorphic representation

coefficients of Laurent series
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locality holomorphy on 
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translation invariance

in holomorphic rep.
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non-holomorphic
and non-local

By virtue of the identity theo-
rem on holomorphic functions, 
the domain can be extended to 
the whole domain      without

By virtue of the identity theo-
rem on holomorphic functions, 
the domain can be extended to 
the whole domain      without

There is no difference operator which satisfies
the Leibniz rule!!          No-Go Theorem!
There is no difference operator which satisfies
the Leibniz rule!!          No-Go Theorem!

non-holomorphic
and non-local
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In order to escape from the No-Go theorem, 
we may abandon one of the three requirements.

i) translation inv. no translation inv.

ii) locality non-local difference operator
or non-local interaction

iii) Leibniz rule Modify the Leibniz rule!

Sysytematic analysis is difficult!

The continuum limit is highly non-trivial!

In order to escape from the No-Go theorem, 
we may abandon one of the three requirements.

i) translation inv. no translation inv.

ii) locality non-local difference operator
or non-local interaction

iii) Leibniz rule Modify the Leibniz rule!
We will take this approach!We will take this approach!

Sysytematic analysis is difficult!

The continuum limit is highly non-trivial!
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Cyclic Leibniz rule
Nilpotent SUSY algebraNilpotent SUSY algebra

Cyclic Leibniz rule++
Avoid the problem of “translations”
on lattice.
Avoid the problem of “translations”
on lattice.

A modified version of 
the Leibniz rule
A modified version of 
the Leibniz rule
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Lattice action

difference operator:
field product:

inner product:

Lattice action

difference operator:
field product:

inner product:
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N=2 Nilpotent SUSYs:

 
We call this Cyclic Leibniz rule.

N=2 Nilpotent SUSYs:
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vs.

No-Go theorem

on lattice in continuum

!

We have found that the Cyclic Leibniz Rule guarantees 
the N=2 nilpotent SUSYs.
We have found that the Cyclic Leibniz Rule guarantees 
the N=2 nilpotent SUSYs.

vs.

Cyclic Leibniz Rule (CLR)

Leibniz Rule (LR)

Cyclic Leibniz Rule (CLR)

Leibniz Rule (LR)

No-Go theorem

The cyclic Leibniz rule ensures a lattice analog 
of vanishing surface terms!
The cyclic Leibniz rule ensures a lattice analog 
of vanishing surface terms!

on lattice in continuum

!

CLRCLR
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M.Kato, M.S. & H.So, JHEP 05(2013)089
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M.Kato, M.S., H.So, in preparation

 general Lattice action in superspace general Lattice action in superspace

and                                            has to obey CLR.and                                            has to obey CLR.

is SUSY-invariant if and only ifis SUSY-invariant if and only if

M.Kato, M.S., H.So, in preparation
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The type II terms are cohomologically non-trivial  with CLR!The type II terms are cohomologically non-trivial  with CLR!
M.Kato, M.S., H.So in preparation
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 A striking feature of our lattice SUSY model is that the non-
renormalization theorem holds for a finite lattice spacing.

 Our results suggest that the cyclic Leibniz rule grasps im-
portant properties of SUSY.

 We have proved the No-Go theorem that the Leibniz rule 
cannot be realized on lattice under reasonable assumptions.

 We proposed a lattice SUSY model equipped with the cyclic 
Leibniz rule as a modified Leibniz rule.

 A striking feature of our lattice SUSY model is that the non-
renormalization theorem holds for a finite lattice spacing.

 Our results suggest that the cyclic Leibniz rule grasps im-
portant properties of SUSY.

SummarySummary
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 Extension to higher dimensions

 inclusion of gauge fields

 Nilpotent SUSYs with CLR      full SUSYs

We have to extend our analysis to higher dimensions. 
Especially, we need to find solutions to CLR in more 
than one dimensions.
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