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A theorem for SUSY breaking

Supersymmetry cannot be broken at
any finite order of perturbation theory
unless it is broken at "tree" level.

O'Raifeataigh mechanism
~[ Fayet-llliopoulous U(1) D term

SUSY breaking via extra dimensions
M.S., M.Tachibana & K. Takenaga, Phys. Lett. B458 (1999) 231

This theorem may imply that non-perturbative
analysis is important for SUSY breaking!
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Lattice Theory

IS undoubtedly one of powerful tools to reveal
non-perturbative dynamics of field theories!

However, for more than

30 years

no one has succeeded to construct satisfactory
lattice supersymmetric models!
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Ol explain what is an obstacle to realize super-
symmetry on lattice.

» No-Go Theorem

O/l propose a new idea to construct lattice super-
symmetric models.

» Cyclic Leibniz Rule
» Non-renormalization Theorem
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We want to find lattice SUSY transf. 0g, 0g/ such that
B lattice SUSY transf. |attice action

0QS |0 X F| = dqrS|o;x; ]| = 0
with the SUSY algebra l—“translation” on lattice
10, 9g’ } = 0P
One might replace ¢ p by a difference operator V' on lattice.
Since 0q, 07, 0 p satisfy the Leibniz rule

0(AB) = (0A)B + A(oB)
then, we need to find V' which satisfies the Leibniz rule:
V(AB) = (VA)B + A(V B) | Leibnizrule
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An obstacle to realize SUSY on lattice 8¢

However, simple difference operators do not satisty

the Leibniz rule on lattice. For example,
I—forvvard difference operator A, 1 4n An_+1

V(+)(AB)n = A, 1Bn,11 — A, By, n-1 n et
= (Apt1 — Ap)Bpi1 + An(Bry1 — Bp)
= (VDA B i1 + An(VDB),
£ (VA B, + A, (V)B),

> L

Indeed, all’known (local) difference operators do not
satisfy the Leibniz rule!
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Is it possible to construct a difference operator. V
satisfying the Leibniz rule on lattice?

The answer: is negative!

No-Go Theorem M.Kato, M.S. & H.So, JHEP 05(2008)057

There is no difference operator V satisfying
the following three properties:

) translation invariance
i) locality
iiN) Leibnizrule V(AB) = (VA)B + A(VB)

This prevents us from the realization of SUSY algebra on lattice!
['will prove this theorem later.
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Fine tuning

Give up manifest SUSY on lattice!

I

Fine tuning is necessary to restore it
In the continuum limit.

In general, there exist various relevant
|l SUSY breaking terms.

It turns out to be hard to control it!

il

Exact SUSY on lattice is necessary!
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There is an exception:  curci-veneziano, NPB292(1987)555.

» N=1 SYM/(gluon+an adjoint Majorana fermion)

£ =-1F8,F% + Xy, DA + S F, Fow

L gluon L gluino

» The relevant SUSY breaking term is only the
gluino mass m) ! (The gauge invariance guarantees
the massless gluons.)

chiral symmetry

— SUSY
A= |,
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Fine tuning 134

. . Nishimura, PLB406(1997)215;
Domain wall fermions nNeuberger. PRD57(1(998)g417.

kink mass m(y) R
S5th dimension !
| = | X
+ m@y) Y ,p)P(x,y)
my
localized fermion—
zero mode //y
Y
masslessigluino! ) Ls ’

» no heed for a fine tuning!
»two extra parameters: m, Ls

» The other chirality appears on the opposite wall for
finite Ls.
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o Maru-Nishimura, IJMPA13(1998)2841;
Overlap fermions | Neuberger, PRD37(1998)5417.

Ginsparg-Wilson relation

)/SD =+ D)/S — aD)/SD

L Llatz‘ice spacing

chiral symmetry —— > massless gluino

oY =7y ¢
{ lg ZS 4 SUSY will appear
oY =yrys in the continuum

Vs = vs(1-2aD) limit!
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ZSUSY=/d¢d¢] — [[dz{L(P)+ M ()}

fermion determinant

= / [do) detM(qb)e fiek 2

Nicolal, PLLB89 (1980) 341; NPB176 (1980) 419
Nicolai map

£ =&(9)
with the properties:

det Zf det M () = 1

L(p) = §£2 + total derivatives

At / [de] e~ dr2€"  «—— Gaussian integral!
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lattice __
ZSUSY -

Nicolai map

with the properties:

<
det (zsqgm -detM (¢) = 1
L(¢) = 36n

= / [dén] e 2n 260 <— Start with the Gaussian
integral on lattice!
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lattice __
ZSUSY _

— / [ddy, ]| det M) e 2=n£(@)

Nicolai map

with the properties:

det {;27:’ -detM (¢) = 1

L(¢) = 52

= / [dén] e 2n 260 <— Start with the Gaussian
integral on lattice!
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Zéa[gtsl;e — /[d¢nd¢n] e Zn{£(¢)+¢M(.¢)¢}
Sakai-Sakamoto, NPB229 (1983) 173

— (1] devni(g) == 2@

Nicolai map

with the properties:

<
det %qgm -detM (¢) = 1
L(¢) = 36

= / [dén] e 2n 260 <— Start with the Gaussian
integral on lattice!
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Nilpotent SUSY

Most of the recent works have been based on
nilpotent SUSYs to avoid the problem of the
Leibniz rule!
Extended SUSY: {Q;, Q; } = 0;; P (2,7 = 1,2)
Q=Q1+iQ; — ©9O?*=0 (nilpotent SUSY)
— S =0X (Q-exact form)
— 9SS =0 (Q-SUSY invariant)
@uestion

Are nilpotent SUSYs enough to restore
the full SUSYs in the continuum limit?

Our results suggest that the answer is negative!
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Nilpotent SUSY

N=2 extended SUSY algebra in 2-dim.
(Qais Opj) = 6iuv0)apP”  §5=12

l Qui= (1K + YKy + V3K ) ai

=0 > Q-exact SUSY
_ S=K(ﬁ12x0)
K.Kul =P
{ ’ ﬂ} H o WithK2=0

K2 = K\ = —
K= KK} = K kv =0, Kk does not induce
KK} = —€uylP” any translations!
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N=2 extended SUSY algebra in 2-dim.
(Qais Opj) = 6iuv0)apP”  §5=12

l Qui= (1K + YKy + V3K ) ai

=0 > Q-exact SUSY
S = K( /dzx 0)

with k2= ()

{KaKﬂ} = Py,
K2={K,K} = {Ku,kv} =0,
K, Ku} = _EuvPv l

Q-exact SUSY on lattice



Hamiltonian formulation 19

Sakai-Sakamoto, NPB229(1983)173;
Elitzur-Schwimmer, NPB226(1983)109.

Time is continuous.

|

An exact SUSY can be realized in the time-direction.

|

This guarantees the pairing between bosonic and
fermionic states.



Deconstruction SUSY 206

Cohen-Kaplan-Katz-Unsal, JHEP12(2003)031.
U(kN4) SYM in 3+1 dim. (continuous)

l dimensional reduction: ou=0

U(kN9) extended SYM matrix model in 0+0 dim.

A

(ZN)4-orbifolding

kN4

Y
U(k) SYM in d-dim. (lattice) '

Some of SUSY are broken
by orbifolding.

o
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Perfect action (21¢

So-Ukita, PLB457(1999)314;
Bietenholz, MPLA14(1999)51.

» block-spin transformation

b, = j dx fn(x)P(x) continuum
. action
» perfect action r

€510 = [ [dd] @ Fulo—®l’~Sc(@)
» action invariance
Sc(@@)+5P) = Sc(Px) —> SL(pu+p,) = SL(pn)
S = [ dx f(x) 5D(x)

Success only for the free Wess-Zumino model!



Ichimatsu lattice 221

Itoh-Kato-Sawanaka-So-Ukita, NP(Suppl)106(2002)947.
> lattice action

Slat = X

Ichimatsu

n+i>( n+Q+9

(&S T

‘ S

PR it

real Staggered fermions Up(n): link variables

» fermionic invariance

continuum SUSY model/

Se = i 1 It is unclear that in the continuum
{ — limit the lattice model reduces to a
0—<= @—(—



Non-commutative approach

D'Adda-Kanamori-Kawamoto-Nagata, NPB707(2005)100.

» difference operator
V. (f(m)gn)) = (Vi )f(n)) g(n) + f(n—p) (V;7'g(n))
» shift operator
Tuf(n) = f(n—f) Ty
» new "difference" operator
Vi) = Tuv) — satisfies the Leibniz rule!
l + Dirac-Kahler fermions

lattice models with full SUSY!



Infinite flavors 24

M. Kato, M.S. & H.So, JHEP 05(2008)057
We find a solution satisfying the Leibniz rule.

D"b(m;n) = d(a—b) (6m=n,a—b — Om—n,—(ab))
Cabc(l,m;n) = 5l—n,b (Sn—m,a 6a+b,c

characteristic features

* translationally invariant
* local (= holomorphic)

 hon-trivial connection between lattice sites and
flavor indices fi need for infinite flavors!

* local in the space direction but "non-local” in
the flavor direction!
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No-Go theorem

No-Go Theorem M.Kato, M.S. & H.So, JHEP.05(2008)057

There is no difference operator V satisfying
the following three properties:

) translation invariance
i) locality
iiN) Leibnizrule V(AB) = (VA)B + A(VB)
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» extension of field product
lm
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A proof of No-Go theorem 27

To prove the theorem, we generalize the difference
operator and the field product as follows:

» extension of difference operator
(VA — (VAL =Y VamAm,

forward difference operator
(VIPA), =4, — A, & VD 4§, ., —

» extension of field product

lm

5n,m

normal product
Aan = Muim = 5n,l5n,m
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Is it possible to construct a difference
operator Vv satisfying

V(Ax* B) = (VA)* B+ A (VB)
» extension of difference operator
(VA — (VAL =Y VamAm,

forward difference operator
(V(—HA)n = An—|—1 — A, < V'ijr_rz, = 5n—|—1,m — 5n,m

» extension of field product
lm

normal product
Aan = Mupim = 5n,l5n,m
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» translation invariance
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Mim = M(n — I, n — m)

» locality (exponential damping)

Vi(m) el (a2 > 0)
M(l, m) Malmi=oor —8ll—~|m

|m|—>oo\

(B, > 0)
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» translation invariance
Viam = V(n —m)
Mim = M(n — I, n — m)

» locality (exponential damping)
V(m) 222 o—alml (4 > 0)
M(lm) 2= el (5,5 > 0)

—>| holomorphic representation (z,w € C)
V(m) — Vi(z)= ) V(m)z™
M(l,m) — M(z,w) =Y M(l,m) z'w™

coefficients of lLaurent series
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A proof of No-Go theorem

An important observation is that

locality

|m|—>oo> e_alml

V(m)
M(l,m) mzee —plt—vm|

—

holomorphy on A
V(z) = >, V(m) 2™ (z,w € A)
M(z, w) = ; M(l,m) zlw™

Annulus domain

A={z|l—e<|z|<1+¢€}
Im 2z

A

an .
Rl

1 — ¢
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|— translation invariance
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A proof of No-Go theorem

Leibniz rule
V(A * B) = (VA) * B+ A x (V.B)

= Z {Vanmkl — Mnmlvmk — Mnkmvml} =)

|— translation invariance
= 5 {V(n—m)M(m— k,m —1)— M(n —m,n —1)V(m — k)

m

—M(n—k,n—m)V(m—l)} =0

n—kzn—l X

£ {V(n — m)(wz)? " M(m — k,m — Dw™ Fzm

klm
— Mi(n — m,n — Dw?® T2z 'Vi(m — E)w™ "

—Mi(n — kyn — m)w? 522" V(m — l)zm_l} =0
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Leibniz rule
V(A * B) = (VA) * B+ A x (V.B)

= Z {Vanmkl — Mnmlvmk — Mnkmvml} =)

|— translation invariance
= 5 {V(n —m)M(m — k,m — 1) — M(n —m,n — 1)V (m — k)

m

—M(n—k,n—m)V(m—l)} =0

n—kzn—l X

w — = : :
‘ Kkl / V(wz) / M(w, z) in holomorphic rep.
—

{V(n — m)(wz)n—m M(m — k,m — l)wm_kzm_l

kElm

—M(n — m,n — l)wn_mz"’_l V(im — k)wm_"’

—M(n — k,n — m)w™ 2"V (m — l)zm_l} =0
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Leibniz rule
V(A * B) = (VA) « B+ A * (V.B)
— M(w, z) (V(wz) — V(w) — V(2)) =0

— V(wz) — V(w) —V(z) =0 on A with M(w,z) # 0
— V(wz) —V(w)—V(z)=0 onA ﬂ

= By virtue of the identity theo-
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A proof of No-Go theorem 32

Leibniz rule
V(A * B) = (VA) « B+ A * (V.B)
— M(w, z) (V(wz) — V(w) — V(2)) =0

— V(wz) — V(w) —V(z) =0 on A with M(w,z) # 0

— V(wz) —V(w)—V(z)=0 onA ﬂ
= By virtue of the identity theo-
— V(2) =p|logz| on A rem on holomorphic functions,

o . the domain can be extended to
— non-holomorphic the whole domain .4 without
and non-local

= B=0 M(w, z) # 0

— V(z) =0

— There Is NO difference operator which satisfies
the Leibniz rule!!! = No-Go Theorem!
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How to escape from No-Go theorem 33¢

In order to escape from the No-Go theorem,
we may abandon one of the three requirements.

) translation inv.

i) locality

1) Leibniz rule

——> no translation inv.
Sysytematic analysis is difficult!

—— non-local difference operator
or non-local interaction

The continuum limit is highly. non-trivial!

—— Modify the Leibniz rule!
We will take this approach!



Our approach to construct lattice SUSY model &

Nilpotent SUSY algebra
(0g)° = (9q/)" = {0q;9q/} =0

Avoid the problem of “translations” A modified version of
on lattice. the Leibniz rule

== Cyclic Leibniz rule



Plan of my talk

1l @Obstacle to realize: SUSY onlattice

2. Attempts te)construct lattice SUSY/models
3t No-Go theorem

4. Complex SUSY QM on lattice

o NonFrenormalization theorem onjlattice

6. @-exact formiand cohomoloegy.

7~ Summany



Complex SUSY quantum mechanics on lattice 36

Lattice action

S=(Vo_, Vo) — (F_, Fy) —i(x—, VX+) + U(VX—) x+)
—m (Fy, ¢1) + my (X4, X+)
—m_(F_,¢p_) —m_(x—, x-)
— AL (Fy, o % 1) + 2A 1 (X5 X4 * O4)
—A_(F_,p— % p_) — 2A_(X—, X— * ¢—)

difference operator: (Vé)n = Y. Vinm ®m
field product: (¢ * 1), = > Mpim ®1%m
Ilm
inner. product: (¢, ¥) =) onv,



N=2 nilpotent SUSYs

N=2 Nilpotent SUSYs: (§.)% = (6_)* = {6+,6_} =0

04 Pp = Xt O_X+ = LV
04 x4 = Fi o FL = —iVixy
04 X— = —tV - O = —Xx—
oLF_ = —tVix_ 0_x— = F_

others = 0 others = 0
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N=2 Nilpotent SUSYs: (§.)% =

04 Pp = X+
04 x4 = Fiy
01 X— = —tV_
o+ = —1Vix—
others = 0

0+S =0

O_x4 = iV
0_F.y = —tVx.
O_p_ — —X_
0_x— = F_
others = 0

(6-)% = {64,6-} =0
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N=2 Nilpotent SUSYs: (6.)% = (6_)* = {64,6_} =0

04 Pp = X+ O_X+ = LV Oy

04 x4 = Fiy 0_FL = —iVixy

04 x— = —iVo_ 0 = —X—

0rLF_ = —tVix_ 0_x— = F_

others = 0 others = 0
0+S =0

U

(VX+.,0+ *d+) + (Vo+ , 04+ * x+) + (Vo+ , X+ *P+) =0



N=2 nilpotent SUSYs

N=2 Nilpotent SUSYs: (§.)% = (6_)* = {6.,6_} =0

04 Pp = X+ O_X+ = LV Oy

04 x4 = Fiy 0_FL = —iVixy

04 x— = —iVo_ 0 = —X—

0rLF_ = —tVix_ 0_x— = F_

others = 0 others = 0
0+S =0

{
(VxX+,0+ *d+) + (Vo+, 04+ *x+) + (Vod+, X+ *P+) =0
We call this Cyclic Leibniz rule.
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We have found that the Cyclic Leibniz Rule guarantees
the N=2 nilpotent SUSYSs.

Cyclic Leibniz Rule (CLLR)
(VA, BxC)+ (VB,C* A)+ (VC, Ax*B) =0

3. Leibniz Rule (LR)



Cyclic Leibniz rule 38

We have found that the Cyclic Leibniz Rule guarantees
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Cyclic Leibniz rule 38

We have found that the Cyclic Leibniz Rule guarantees
the N=2 nilpotent SUSY3s.

Cyclic Leibniz Rule (CLLR)
(VA, BxC)+ (VB,C* A)+ (VC, Ax*B) =0

3. Leibniz Rule (LR)
(VA, BxC) + (A, VB xC) + (A, B*VC)}TQO

No-Go theorem

'

° The cyclic Leibniz rule ensures a lattice analog
of vanishing surface terms!

(Vo ¢ d) =0 ~— [dx 9, (¢p(x))” =0

on lattice LCLR in continuum
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The important fact is that the cyclic Leibniz rule can
be realized on lattice, though the Leibniz rule cannot !
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An example of CLR 39

The important fact is that the cyclic Leibniz rule can
be realized on lattice, though the Leibniz rule cannot !

An explicit example of the Cyclic Leibniz Rule::

(V¢)n = %(qbn—l—l — ¢n—1)

|atti '
(P *)n = %(2¢n+1¢n—|—1 + 20, 1UVn—-1 2 'Cflilfiacmg
_I_ ¢n+1¢n—1 _I_ ¢n—1¢n_|_1)
M.Kato, M.S. & H.So, JHEP 05(2013)089

which satisty i) translation: invariance,, ii)locality:and
1)) Cyclic Leibniz Rule.
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An example of CLR &

The important fact is that the cyclic Leibniz rule can
be realized on lattice, though the Leibniz rule cannot !

An explicit example of the Cyclic Leibniz Rule::

(V¢)n = %(qbn—l—l — ¢n—1)

|atti '
(P *)n = %(2¢n—|—1¢n—|—1 + 20, —-1Un—-1 2 'C‘;‘lilfiac'ng
_l_ qb'n"‘].,(:b’l’l,—l _|_ ¢n—1¢n+1)
M.Kato, M.S. & H.So, JHEP 05(2013)089

which satisty i) translation invariance, ii)locality and
i) Cyclic Leibniz Rule.

'

The field product (¢ * ¥)n should be non-trivial!
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Advantages of our lattice model with CLR are given by,

CLR no CLR
nilpotent SUSYs 04 , O— 0= 04 4 0_
Nicolai maps 2 1
“surface” terms (Vao, o+ ) =0| (Vo, o * ) #0
non—retﬂce)gr%amzatlon O X
cohomology non-trivial trivial




Advantages of CLR

Advantages of our lattice model with CLR are given by,

CLR
non-renormalization O
theorem
cohomology non-trivial




Plan of my talk

1l @Obstacle to realize: SUSY onlattice

2. Attempts te)construct lattice SUSY/models
3t No-Gortheorem

4, Complex:SUSY @V on lattice

9. Non-renormalization theorem on lattice

6. @-exact formiand cohomoloegy.

7~ Summany
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@ .

One of the striking features of SUSY theories is
the non-renormalization theorem.

d4d N=1 Wess-Zumino model in continuum

chiral superfield | l—superpotentia/
S — /d4az{ /d29d2§ &1(9)(0) - /d20 Wi(D) - c.c.}
- D term F term
(kinetic terms) (potential terms)

Non-renormalization Theorem

There is no quantum correction to the F-terms
In any order of perturbation theory.

Grisaru, Seigel, Rocek, NPB1569(1979) 429
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- D term F term
(kinetic terms) (potential terms)
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ization theorem. chiral superfield r anti-chiral superfield

tree l_ coupling constant

superpotential

/dze Wtree(q) >\) + /dze Wtree((I)Ta )‘*)
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Essence of non-renormalization theorem (43¢

S = /d433{ /d29d2§ &1(9)®(0) - /d29 Wi(®) - c.c.}

- D term F term
(kinetic terms) (potential terms)

Holomorphy plays an important role in the non-renormal-

ization theorem. chiral superfield anti-chiral superfield
lree : I—coup//ng constant r

superpotential
/dze Wtree((I) >\) _l_ /d29 Wtree((I)Ta )‘*)

effective. gquantum corrections
superpotential ——

/d29 Wi (@, A; &, AT) - /d2éWeff(@T,A*; $, )\)
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Essence of non-renormalization theorem (43¢

S = /d433{ /d29d2§ &1(9)d(0) - /d29 W(®) +c.c.}

- D term F term
(kinetic terms) (potential terms)

Holomorphy plays an important role in the non-renormal-

ization theorem. chiral superfield anti-chiral superfield
lree I—coup/ing constant r

superpotential |
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Essence of non-renormalization theorem (43¢

S = /d433{ /d29d2§ &1(9)®(0) - /d29 Wi(®) - c.c.}

- D term F term
(kinetic terms) (potential terms)

Holomorphy plays an important role in the non-renormal-

ization theorem. chiral superfield anti-chiral superfield
lree I—coup/ing constant r

superpotential |
/dze Wtree((:[)a >\) _l_ /d2é V_Vtree((I)Ta )‘*)
g

effective uantum corrections

superpotential —
/d29 W (@, A; &b, ) 4 /d2é W (@1, A% < )
nolemorphy U anti-holemorphy.

INo quantum correction!!’  Wett = Wiree
N.Seiberg, Phys. Lett. B318 (1993) 469
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Essence of non-renormalization theorem (43¢

S = /d433{ /d29d2§ &1(9)d(0) - /d29 Wi(®) - c.c.}

- D term F term
(kinetic terms) (potential terms)

Holomorphy plays an important role in the non-renormal-

ization theorem. chiral superfield r anti-chiral superfield

tree T coupling constant

superpotential

/dze Wtree((I) >\) + /d29 Wtree((I)Ta )‘*)

anti-chiral superfield
chiral supertield

/d29Weff(<I> A b, )+/d29Weﬂ~(<I>’f A% )
holemorphy. U anti-holomorphy.

INo quantum correction!!”  Wett = Wiree
N.Seiberg, Phys. Lett. B318 (1993) 469
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The holomorphy requires that the F term W(®) depends
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D®(x,0) = (gé ieauc‘)”)cI)(m,H) — 0 In continuum
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Difficulty in defining chiral superfield on lattice€®

The holomorphy requires that the F term W(®) depends
only on the chiral superfield ®(x,d), which is defined by

D®(z,0) = (gé ieaua,,,)@(:c, 0) = 0 in continuum
2
D& (8),, = ( gg ieauvu)@(e)n =0 on lattice

However, the above definition of the chiral supertieldis
IlI-defined because any products of chiral superfields
are not chiral/due to the breakdown of LR on lattice!

D(I)1 — D(I)z =0 — D((I)l(I)z) # 0

the breakdown of:the
lL.eibniz rule on lattice
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Superfield formulation in our lattice model @

diLattice superfields

Wy (04,0 ) = x+ + 01+ Fy + 0-iVp1 + 010-iV x+
DL (01) = o1 + 0L x+
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diLattice superfields

Wy (04,0-) = x+ + 0+ Fy + 0-iVp+ + 010-iV x+
DL (01) = o+ + 0L x+

disupersymmetry transformations

a
041:0(0) = @0(0) for any superfield O(0)
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Superfield formulation in our lattice model &

diLattice superfields

Wy (04,0-) = x+ + 0+ Fy + 0-iVp+ + 010-iV x+
DL (01) = o+ + 0L x+

dsupersymmetry transformations
04:0(0) = %0(9) for any superfield O(6)
dilLattice action in superspace. S = Siyper + Stypeln
Stypel = /d9+d9— (P_,¥y)

StypeII == /d9_|_d9_ {9_ (m_|_(\Il_|_, (I)_|_) —|— >\_|_(\IJ_|_, (I)_|_ x (I)_|_))
— O (m— (T, &) + A (U_,&_ D)) }
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Superfield formulation in our lattice model &

diLattice superfields

Wy (04,0-) = x+ + 0+ Fy + 0-iVp+ + 010-iV x+
DL (01) = o+ + 0L x+

dsupersymmetry transformations

0)
041:0(0) = @0(9) for any superfield O(0)

dilLattice action in superspace S = Siyper + Stypelr
StypeI — /d9_|_d9_ (\Il_, \Il_|_)

StypeII == /d9_|_d9_ {9_ (m_|_(\Il_|_, (I)_|_) —|— >\_|_(\IJ_|_, (I)_|_ x (I)_|_))
— O (m— (T, &) + A (U_,&_ D)) }

\ 7

SUSYinva;/'E;vnt with CLR




g

Superfield formulation in our lattice model €

Odigeneral Lattice action insuperspace S = Siyper + Stypell

Stypel = /d9+d9— KWy, oW, @)

Siymert = /d0+d9_ (0o W (W @) — 0, W (T, @) |



Superfield formulation in our lattice model

m .

dgeneral Lattice action in superspace S = Siyper + Stypel

Stypel = /d9+d9— K(\Il_|_, R [ D_)

Stypell = /d9+d9— {9—W+(‘I’+a ®y) — 0L W_(¥_, ‘I’—)}

'

® Stiype1r is SUSY-invariant if and only if W, (¥, ,®.)
depends only on ¥, ®, and is written into the form

n—1

Wi (Ty, @y) =S AP (T, B By koo xDy)

and (¥,.,®, x®, x...x P, ) hasto obey CLR.
M.Kato, M.S., H.So, in preparation
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Non-renormalization theorem on lattice 47¢

/d@.l_dH_ O W-T-ree(\Il-l-v (I)-H UL )‘-I-)
Wit = my (U, 1) + A (W, @+ By )
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Non-renormalization theorem on lattice 47¢

/d9+d9— O_W. (T, sy, Ay )
| Wit = my (U, 1) + A4 (T, @y = By )

guantum corrections

/d9+d9— O_WE (Y, @y sm, AW, d_cm_,A_)



Non-renormalization theorem on lattice

@ .

/d9+d9— O_W. (T, sy, Ay )
Wit = my (U, 1) + A4 (T, @y = By )

quantum corrections

/d9_|_d9_ H_Wiﬂ(q’+, (I)_|_; m, )\_|_; :I‘_, ‘IO_; T A_, ‘\_J)

SUSY—invarFefnce with CLLR
forbids these!




Non-renormalization theorem on lattice

@ .

/49+d9— O_W. (T, sy, Ay )
Wit = my (U, 1) + A4 (T, @y = By )

quantum corrections

/d9_|_d9_ H_Wiﬂ(q’+, (I)_|_; m, >\_|_; l:‘_, JORE 7R ‘\_J)

s SUSY—invarEnce with CLR
‘ forbids these!

To prove it, we extend m+, AL to superfields!
m4 — mi(0) = m4 + 0L
At = A+(6) = Ax + 640
This extension preserves SUSY-invariace!
N.Seiberg, Phys. Lett. B318 (1998) 469




Non-renormalization theorem on lattice

@ .

/d9+d9— O_W. (T, sy, Ay )

~ )

/d9_|_d9_ H_Wiﬂ(q’+, (I)_|_; m, >\_|_; lI‘_, JORE 7R ‘\_J)

N
A\

/d9+d9— O W (W, Dusmig, AL

”

Wit = my (U, 1) + A4 (T, @y = By )

quantum corrections

. SUSY—invarEnce with CLR
‘ forbids these!

To prove it, we extend m4., A1 to superfields!
m4 — mi(0) = m4 + 0L
At — Ax(6) = A+ + 6412

This extension preserves SUSY-invariace!

N:Seiberg, Phys. Lett. B318(1993) 469

The holomorphic property is realized in our: lattice model!!
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Non-renormalization theorem on lattice 488

To restrict the form of Wi (v, @ ;m., AL), We use the
“conserved” charges:

Uy | Dy |mae | Az | 02 | dfs | Sigpernr | 2504
Ne [|+1] 0 | 0 | 0|41 -1 0 0
U ([ £1 [ £1 | 72 [ F3 | 0 0] 0] 0
ULg |[ 0 [£1]| 0 | 1| £1| 71 0 0

/d9+d9— O- W (W, Primy, L)
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Non-renormalization theorem on lattice 488

To restrict the form of Wi (v, @ ;m., A1), We use the
“conserved” charges:

Uy | Dy [me | Az | 0z | dfs | Sigpenr | 2504
Ne [|+1] 0 | 0 | 0 |+1| -1 0 0
U ([ £1 [ £1 | 72 [ F3 | O 0 0 0
ULg [ 0 [£1]| 0 | 1| +1| 71 0 0

/d9+d‘9— O-WEH (T, Drsmy, L)
(m4)”

— / d6.,.do_ 0-
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Non-renormalization theorem on lattice 488

To restrict the form of Wi (v, @ ;m., A1), We use the
“conserved” charges:

Uy | Dy [mae | Az | 0z | dfs | Sigpenr | 2504
Ne [|+1] 0 | 0 | 0 |+1| -1 0 0
U ([ £1 [ £1 | 72 [ F3 | O 0 0 0
ULg [ 0 [£1]| 0 | 1| +1| 71 0 0

/d0_|_d9_ 0_W eﬂ(‘Il_l_ D rm, Ay)
-+ ? ’ ? . .
Zero charge combination

ﬁ g

(\IJ-I—a f(—q>+) )

(m4.)?
AL

— / d6.,.do_ 0-
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Non-renormalization theorem on lattice 488

To restrict the form of Wi (v, @ ;m., A1), We use the
“conserved” charges:

Uy | Dy [me | Az | 0z | dfs | Sigpenr | 2504
Ne [|+1] 0 | 0 | 0 |+1| -1 0 0
U ([ £1 [ £1 | 72 [ F3 | O 0 0 0
ULg [ 0 [£1]| 0 | 1| +1| 71 0 0

/d0_|_d9_ 0_W eﬂ(‘Il_l_ D rm, Ay)
-+ ? ’ ? . .
Zero charge combination

/ g

(\IJ—I—a f(_‘I’4—) )

H f(z) =) anz"

(A
— /d0_|_d9_ 0_ Zan (m+)n—2 (‘I/+,iI)_|_ * (I)_|_ Sk o oo 3k (I)_t)

(m4.)?
At

= / d6.,.do_ 6_
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Non-renormalization theorem on lattice 498

Wi~ (A 0 (@) = T (A1 @)l Ty



Non-renormalization theorem on lattice

g

@ .

W~ (A)" 0 (D) = T (AL D)7 Dy

n—1

b, D B,
o ‘ ®
T PN
| —




Non-renormalization theorem on lattice

g

@ .

Wi~ (A" 0 (2)" = T (AL @) Ty

®, || B P,
o |l |,
LR YRIPW A T
| —




Non-renormalization theorem on lattice

g

@ .

Wt~ (A" (24)"

&

R

Wy

= W (AL @)™ Dy

\
S
T+ T+
SIEW W
n—1

Dy

These diagrams should be excluded from W
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Plan of my talk

1l @Obstacle to realize: SUSY onlattice

2. Attempts te)construct lattice SUSY/models
3t No-Go theorem

4, Complex:SUSY @V on lattice

o NonFrenormalization theorem onjlattice

6. @-exact form and cohomology
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The type Il terms are cohomologically non-trivial with CLR!



Summary &

diWe have proved the No-Go theorem that the Leibniz rule
cannot be realized/on lattice under reasonable assumptions.

d We proposed a lattice SUSY model equipped with the cyclic
Leibniz rule as a modified Leibniz rule.

d/A striking  feature of our lattice SUSY modeliis that the non-
renormalization theorem holds for: a finite lattice spacing.

O Our results suggest that the cyclic Leibniz rule grasps im-
portant properties of. SUSY.



Remaining tasks

i Extension to higher dimensions

We have to extend our analysis to higher aimensions.
Especially, we need to find'solutions to) CLR in more
than one dimensions.

diinclusion ofigauge fields

l)
O Nilpotent SUSYs with CILLR <= full SUSYs

Are nilpotent SUSYs extended by CLLR enough to
guarantee full SUSYs ?
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