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1. Introduction	



Role of  3d CFTs in real 
physics 

Why are conformal field theories (CFTs) so important? 

＝＞ In the IR limit RG flows, we expect every QFT to 
approach its scale invariant (≅ conformally invariant) fixed 
point (FP). 

＝＞ Finite temperature continuous phase transitions of  
3+1 dim system（e.g. in early universe, condensed matter 
systems) are expected to be described by 𝑑=3 CFTs.  

＝＞ “Whether an IR-stable CFT with desired global 
symmetry exists or not” is crucial. If  not, the transition 
has to be of  first order. 

How can we actually know  
the (non)existence of  CFTs? 

 



Known theoretical 
techniques	

�  Perturbative expansions 
＝＞ Only asymptotic and need resummation. 
However, the procedure relies on artisans 
technique!  

�  Functional renormalization group  
＝＞ must involve uncontrollable truncation. 

�  Lattice Monte-Carlo methods 
＝＞ Becomes heavy in  taking the long-wavelength 
limit (i.e., large # of  sites) to judge scaling 
behavior, especially when the interaction is 
complicated. 

Often these give conflicting conclusions 



Huge controversies over 
𝑂(𝑛)×𝑂(𝑚)  LGW models	

�  Three dimensional  𝑂(𝑛)×𝑂(𝑚)-symmetric Landau-
Ginzburg-Wilson models have rich physical 
realizations. The most famous ones are certain 
frustrated magnets.  

�  𝑈(1)↓𝐴   - restored 2-flavor QCD chiral phase 
transitions are also included (when 𝑛=4，𝑚=2) in 
this family. 

�  “What kinds of  FPs are present for what values of  
𝑛, 𝑚” has been controversial over decades! 
Depending on the methods we employ we obtain 
different answer. 



Conformal bootstrap 
program 

(Ferrara, Gatto, Grillo, `73),  (Polyakov, `74) 

�  An attempt to extract non-trivial information for 
CFTs (in arbitrary dimensions) solely from its basic 
requirements.  

�  Especially for 4-pt function ⟨𝜙𝜙𝜙𝜙⟩, the crossing 
relation 
 
 

                                        ＝ 

 
 

are required along with conformal invariance & 
unitarity. 



Hidden power of  the 
program	

Remarkably,  some  non-‐trivial  higher  dim  
CFTs  have  been  “solved”  by  the  program!

�  The  𝑑=3 Ising model and its Wilson-Fisher family (El-
Showk, et. al.  `12, `13, and `14). They reported the 
critical exponents 
 
  𝜈=0.62999(5),    𝜂=0.03631(3),    𝑐=0.94653(1). 

�  𝑑=3  𝑂(𝑁) vector models at criticality (Kos, Poland, 
Simmons-Duffin, `13)  

�  And more… (including SUSY extentions, 𝑑=5  𝑂(𝑁) 
models) 



Aim of  this talk	

� Discuss what the conformal 
bootstrap can tell you about the 
(non)existence of  the 𝑂(𝑛)×𝑂(𝑚) LGW 
model fixed points. 



Outline	
1.  Introduction 

2.  Some aspects of  𝑂(𝑛)×𝑂(𝑚) symmetric Landau-
Ginzburg-Wilson models 

3.  Bootstrap appetizer 

4.   𝑂(𝑛)×𝑂(3) : Less controversial regime 

5.   𝑂(𝑛)×𝑂(2) : Controversial regime & discussions 



2. Some Aspects of  
𝑂(𝑛)×𝑂(𝑚)-symmetric 

Landau-Ginzburg-Wilson 
models 

	



Lagrangian description	
�  Consider a Lagrangian formed from scalar field, 

 
 
 
 
 
Here the indices run over  𝑖,𝑗=1,  ...,𝑛,  𝑎,𝑏=1,…,𝑚, i.e., 
𝜙 transforms as a bifundamental of  𝑂(𝑛)×𝑂(𝑚). 

�  The term proportional to 𝑢 is actually 𝑂(𝑛𝑚)  - 
invariant. When 𝑣  ≠0,   𝑂(𝑛  𝑚)→𝑂(𝑛)×𝑂(𝑚) explicitly. 



Realization I: 
Frustrated spin systems	

�  Imagine  𝑛–component anti-ferromagnetic spin 
systems on triangular lattice. When  𝑛=2, two 
ground states are possible: 
 
 
 

�  The effective field theory at criticality is described 
by 𝑂(𝑛)×𝑂(2) LGW model (Kawamura `85). 

�  For most important cases of  𝑂(3)×𝑂(2), the 
transition order has been controversial over 
decades both in lattice-MC and experiments. RG 
situations are even worse...	



Realization II: 𝑈(1)↓𝐴 -
restored 

Chiral Phase Transition	
�  In 2-flavor QCD chiral phase transition, the relevant 

DOF comprises of  mesons, the dynamics of  which 
at criticality  is described by some 𝑑=3    𝑆𝑈(2)↓𝐿 × 
𝑆𝑈(2)↓𝑅 ≅𝑂(4)-symmetric LGW model (Pisarski-
Wilczek `84). 

�  In finite temperature anomalous 𝑈(1)↓𝐴  tends to be 
restored and symmetry might enhance into �
                      𝑆𝑈(2)↓𝐿 × 𝑆𝑈(2)↓𝑅 × 𝑈(1)↓𝐴 ≅𝑂(4)×𝑂(2).. 

�  Above 𝑇↓𝑐 , the exact restoration of  𝑈(1)↓𝐴  for 
effective LGW theory is pointed out! (Aoki-Fukaya-
Taniguchi `12)	



Scaling behaviors 
vs 𝑈(1)↓𝐴   restoration	

�  In (Pisarski - Wilczek `84), they concluded that IR-
stable FPs are absent in 𝑂(4)×𝑂(2) LGW model 
based on 1-loop computation. The conclusion had 
remained unchanged up to 3-loop order. 

�  => If  𝑈(1)↓𝐴   is restored, the chiral transition 
should be first order without fine tuning! 

�  Most lattice QCD results support 2nd order 
transition… 



5-loop RG and criticism	
�  (Pellissetto et. al.) claims resummed 5-loop series reveals 

stable FPs both for  𝑂(3)×𝑂(2) and 𝑂(4)×𝑂(2), but the results 
are criticized in several contexts :  

1.  In FRG no such FPs are found. (However recently in 
1410.0985, 𝑂(4)×𝑂(2) FPs might be found by going to 
higher order truncation, but with the different critical 
exponents.) 

2.  The parameter in the resummation must be chosen by 
artisans. 

3.  Zeroes of  𝛽 function must be derived without expanding in 𝜀. 
In other words, there’s no such theories in the neighborhood 
of  𝑑=4 and they arise only near 𝑑=3. 

4.  Even higher loop series might modify the conclusions. As an 
example, in the Heisenberg model, the known fixed point 
disappears at 3-loop and resurrects at 4-loop order. 



To get out of  the “swamp”…	
� Non-perturbative evidence from controllable 

computation is desired. 

�  This is what we give using the conformal 
bootstrap method. 



3. Bootstrap Appetizer	



Conformal four-point 
function 

�  Consider (identical) scalar 4pt function in general, 
radially quantized Euclidean CFT. It can be computed if  
one knows the OPE 𝜙×𝜙. This is known as “conformal 
block decomposition.” 

�  For example in the configuration |𝑥↓1 |>|𝑥↓2 |>|𝑥↓3 |>|
𝑥↓4 |, its conformal block decomposition takes the form 
0𝜙( 𝑥↓1 )𝜙( 𝑥↓2 )𝜙( 𝑥↓3 )𝜙( 𝑥↓4 ) 0 �
                                            =∑𝑂∈𝜙×𝜙↑▒  𝜆↓𝜙𝜙𝑂↑2  𝑔↓Δ↓𝑂 , 𝑙↓𝑂  (𝑧, 𝑧 )/
𝑥↓12↑2𝛿 𝑥↓34↑2𝛿   

�  𝜆 is the OPE coefficients,      𝛿 the operator dimension of  𝜙 
and 𝑔↓∆,𝑙 (𝑧, 𝑧 ) is the conformal block function. 



The bootstrap equation	
�  In another configuration like |𝑥↓3 |>|𝑥↓2 |>|𝑥↓1 |>|𝑥↓4 |, 

you have another decomposition of  the same correlator. 
       0𝜙( 𝑥↓3 )𝜙( 𝑥↓2 )𝜙( 𝑥↓1 )𝜙( 𝑥↓4 ) 0 �
                                                                                        =∑𝑂∈𝜙×𝜙↑▒  𝜆↓𝜙𝜙𝑂↑2  𝑔↓Δ↓𝑂 , 𝑙↓𝑂  
(1−𝑧,1−𝑧 )/𝑥↓23↑2𝛿 𝑥↓14↑2𝛿    

�  Requirement for the analyticity of  the correlator 
leads to the bootstrap equation which holds for 
every CFT. 
 
        0=∑𝑂∈𝜙×𝜙↑▒  𝜆↓𝜙𝜙𝑂↑2    {𝑔↓Δ↓𝑂 , 𝑙↓𝑂  (𝑧, 𝑧 )/𝑥↓12↑2𝛿 
𝑥↓34↑2𝛿  − 𝑔↓Δ↓𝑂 , 𝑙↓𝑂  (1−𝑧,1−𝑧 )/𝑥↓13↑2𝛿 𝑥↓24↑2𝛿  }  

�  This equation alone (i.e., without any reference to 
specific Lagrangian) imposes nontrivial constraint 
on the spectrum! 



Numerical Results 
（Rattazzi, Rychkov, Tonni, Vichi, `08)	

�  By numerical methods the following curve ∆↓𝑐 (𝛿) 
can be drawn for general d=4 CFTs from the 
bootstrap equation. 
 
 
 
 
 
 
 

�  The precise meaning: There must ∃ a scalar 
operator with dimension below ∆↓𝑐 (𝛿) in 𝜙×𝜙 OPE.  
(Recall  𝛿=dim  𝜙.) 



Mystery of  kink : the 
 “solution” to the d > 2 

Ising	
�  For 𝑑<4, the behavior of  ∆↓𝑐 (𝛿) is singular! 

 
 
 
 
 
 
Conversely assume the 3d Ising model actually sits 
at the “kink”. Then you will obtain critical 
exponents and various OPE coefficients with 
tremendous precision. => “Solution”  

�  The fundamental reason for the phenomena is 
mysterious... 



Bootstrap with global 
symmetry: 𝑂(𝑁) as an 

example 	
�  Assume the presence of  global symmetry and let 
𝜙↓𝐼 (𝑥) transforms according to an irreducible 
representation 𝑅. 

�  In 𝜙↓𝐼 × 𝜙↓𝐽  OPE, additional structures appear 
depending on the irreducible components in 𝑅⊗𝑅. 

�  Important example: Let 𝜙↓𝑖  be an 𝑂(𝑁) 
fundamental. 𝜙↓𝑖 × 𝜙↓𝑗  OPE includes singlet（S), 
anti-symmetric tensor （A), symmetric-traceless 
tensor （T) representations. 

�  Now the Bootstrap eq. looks vectorial and encodes 
the informations about group structure.	



𝑑=3  𝑂(𝑁)   results 
(Kos, Poland, Simons-Duffin, `13)	

 
 
 
 
 
 
 
 

 

�  The precise meaning： ∃ a scalar operator in the 
S-rep in 𝜙↓𝑖 × 𝜙↓𝑗  OPE with dimension below 
∆↓𝑐,𝑆,𝑁 (𝛿).  



𝑑=3  𝑂(𝑁)   results 
for symmetric tensors	

 

 

 

 

 

Lesson:　We can separately write down the curve for 
each 
            global symmetry channel in the intermediate 
states. 



4.   𝑂(𝑛)×𝑂(3) : 
Less Controversial Regime	

Based on arXiv:1404.0489	



𝑂(𝑛)×𝑂(3) with 𝑛≫3 
 as a laboratory	

�  We chose to begin with well-established models, 
avoiding controversial (though physically 
important) cases. 

�  We start from  𝑂(𝑛)×𝑂(3) models with 𝑛≫3 as a 
laboratory: due to large 𝑛 solvability they are well-
known. 

�  In these cases there are two more FPs in addition 
to  Gaussian and  𝑂(3𝑛)-Heisenberg FPs. 

Can we observe (or “solve”) these 
additional FPs as we could for the 3d Ising 

model?? 



Huge bootstrap equation 
for 𝑂(𝑛)×𝑂(𝑚) …	

�  Assume the precence of  𝑂(𝑛)×𝑂(𝑚)- bifundamental 
scalar   𝜙↓𝑖𝑎 . OPE 𝜙↓𝑖𝑎 × 𝜙↓𝑗𝑏  contains 9 irreducible 
channels. According to 𝑂(𝑁) terminology, they are 
 
SS, ST, SA, TS, TT, … 
 

�  Now the vectorial bootstrap eq. is quite lengthy and 
the computational cost is ~100 times heavier then 
the Ising case! 



Bounds for SS spin 0 
operator in 𝑂(15)×𝑂(3) 

model 	
�  As the first sample we took 𝑂(15)×𝑂(3) model, 

where the presence of  non-Heisenberg FPs (called 
“chiral” and “anti-chiral”) is undoubtable. 

�  The bound for SS, spin 0 operator is shown by red 
dots: 
 
 
 
 
 
 
 

	



Symmetry enhancement	
�  Within the precision the bound is identical to that 

of  O(45). 

�  Such “symmetry enhancement” has been reported 
for the 4d SU(N)/SO(2N). Is it a general 
mathematical statement? 

�  large   𝑁 prediction for the additional FPs are well-
below the bounds. There are two aspects: 

1.  😊 The upper bounds are satisfied and consistent! 

2.  😢 We cannot observe any symptom of  these fixed 
points from this computation. Can’t we “solve” 
them??	



Salvation : Bounds for spin 
1 operator in TA sector	

�  Then we computed the dimension bounds for spin 
1 operator in TA representation. Note that such 
operator has dimension exactly 2 at 𝑂(𝑛𝑚) 
Heisenberg fixed points but not when 𝑂(𝑛𝑚) is 
broken to 𝑂(𝑛)×𝑂(𝑚).	



“Kink” in the bound	
�  When differentiated, it becomes apparent that the 

slope changes around 𝛿≅0.515. 
 



Spectral study	
�  (El-Showk, Paulos `12) has shown that once a CFT saturate 

this kind of  bounds, spectrum contained in 𝜙↓𝐼 × 𝜙↓𝐽  can be 
uniquely reproduced from the bootstrap output. 

�  Our result:       ( ∆↓𝜙 , Δ↑𝑆𝑆 )=(0.515,  1.16) 
 
Note: although this CFT saturate ∆↓𝑐,𝑇𝐴 (𝛿), it may not do so 
for the bound in the other sector like ∆↓𝑐,𝑆𝑆 (𝛿)! 

�  The  1/𝑛 – prediction for “anti-chiral” fixed point : 
( ∆↓𝜙 , Δ↑𝑆𝑆 )=(0.5148,  1.142) 
 

=>anti-chiral fixed point is observed! 



  𝑂(𝑛)×𝑂(3) family	
�  Varying 𝑛, the bounds ∆↓𝑐,𝑇𝐴 (𝛿) changes its form 

like 

	



Slope change 
disappearance	

�  Around 𝑛=6~7, the kink in ∆↓𝑐,𝑇𝐴 (𝛿) disappears. 
 
 
 
 
 
 
 
 
 
 

�  According to large 𝑛 analysis, such a fixed point 
disappears at 𝑛=7.3 . 



Summary for 𝑂(𝑛)×𝑂(3)	
�  We examined operator dimension bounds for 
𝑂(15)×𝑂(3) model in various global symmetry 
sector and found that the one in TA sector is 
saturated by the anti-chiral fixed point. => It is 
“solvable” as in the 𝑑=3 Ising! 

�  For smaller values of  𝑛, the kink present in spin 1 
TA sector bounds of  𝑂(𝑛)×𝑂(3) model disappears.  
＝＞Might be a reflection of  the conformal window. 

�  This is the first example where we can observe 
multiple interacting CFTs in single bootstrap eq. 

�  Conclusion: Everything is consistent with the 
bootstrap! 



5. 𝑂(𝑛)×𝑂(2) : 
Controversial Case 

& Discussions	
Based on: arXiv:1407.6195	



𝑂(3)×𝑂(2) : a signal of  
frustrated magnet 

transitions	
�  For 𝑂(3)×𝑂(2), the bound for ST sector look like: 

 



The spectra agree!	

 

�  The spectra read off  around the kink and the higher 
order 𝑀𝑆  results agree within systematic errors. 

� Most natural explanation: 
the fixed point actually exists! 

�  According to the perturbative analysis, this is IR-
stable. 



𝑂(4)×𝑂(2) : Signal of  the 
chiral phase transition CFT	

 

 



The spectral agreement	

�  Again they agree and we conjecture that the FP 
exists. 

�  IR stable according to the perturbative results. 



Summary & Discussions	
�  Despite various criticism, resumed perturbative RG 

seems to be robust from the comparison with the 
bootstrap. 

�  In particular certain frustrated Heisenberg models, 
i.e.,  𝑂(3)×𝑂(2) LGW model can transit 
continuously. 

�  Even when 𝑈(1)↓𝐴  is restored, 2-flavor QCD chiral 
phase transition could be of  second order!! We 
predicted the critical exponents most precisely. 



Theoretical backup needed?	
� Our working hypothesis “kink => CFT” 

has not been rigorously proven even 
for the simplest cases. At this stage 
our results are phenomenological. 

� The deeper understanding of  the 
bootstrap program will revolutionize 
modern physics. 



Thank you for your 
attention!!	
　In (near?) future…	


