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Vacuum decay

True Vacuum
False Vacuum

We are here
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Figure 2: Upper: RG evolution of � (left) and of �� (right) varying Mt, ↵3(MZ), Mh by
±3�. Lower: Same as above, with more “physical” normalisations. The Higgs quartic coupling
is compared with the top Yukawa and weak gauge coupling through the ratios sign(�)

p
4|�|/yt

and sign(�)
p

8|�|/g2, which correspond to the ratios of running masses mh/mt and mh/mW ,
respectively (left). The Higgs quartic �-function is shown in units of its top contribution, ��(top
contribution) = �3y4t /8⇡

2 (right). The grey shadings cover values of the RG scale above the
Planck mass MPl ⇡ 1.2⇥ 1019 GeV, and above the reduced Planck mass M̄Pl = MPl/

p
8⇡.
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Effective potential
ex.) Standard Model

D. Buttazzo, et.al., 
1307.3536/hep-ph

Tree level potential
ex.) Supersymmetry
ht̃Lt̃R

h˜̀L ˜̀R

Higgs mass, hgg, hγγ, …

muon g-2, hγγ, …

decay



Decay rate
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quantum / thermal fluctuation

ground state

V (�)

�

true

bubble expansion

quantum jump to the same energy state



Decay rate
Bubble nucleation rate

� = Ae�B

B = S(�B)

bounce action Pre-exponential factor

typical scale

�

�V (�)

r = 1
True Vacuum

False Vacuum

@2� = V 0(�)

“WKB” in QM dim. = 4

bounce  solution

O(4) symmetric classical solution

1/(time*volume)

A ⇠ µ4
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Toy model
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Decay rate

V = �t̄(Q)�+
m̄2(Q)

2
�2 � Ā(Q)
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�3 +

↵̄(Q)

8
�4

Scale dependent

OK, use the “typical” scale!



Renormalization scale

V (�)

�

�

�V (�)

mass@FV

mass@TV

height of barrier

VEV@TV
momentum of bounce

But, I don’t know what is the best scale.

OK, use the “typical” scale!

Does it change so much?



How large is the scale 
dependence?

�↵ =
9↵2

16⇡2
�A =

9↵A

16⇡2

�t =
3Am2

16⇡2

Q = m

�m2 =
3

16⇡2
(↵m2 + 3A2)

V = �t̄(Q)�+
m̄2(Q)

2
�2 � Ā(Q)

2
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↵̄(Q)

8
�4

m̄2(m) = m2, Ā(m) = m, t̄(m) = 0, ↵̄(m) = ↵

Beta functions

Renormalization conditions
@



How large is the scale 
dependence?

↵ = 0.6
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Preliminary

can be much larger in a realistic model (top loop)

CosmoTransitions
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●

0 1 2 3 4 5

375

380

385

390

395

400

405

Q/m

B

kB
m�,FV

exp(30)=10^13



Calculation of 
the 1-loop factor



Pre-exponential factor

� = Ae�B

A =
B2

4⇡2

✓
det0 S00|

Bounce

detS00|
False

◆�1/2

�B �B

�B �B

�B
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cf.) RGE is related to

� � �

� �
�

divergent part

Expectation
cancellation of 

the scale dependence 
@1-loop

fluctuations around the bounce



After a complicated 
calculation…



Result
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“ODE technique”
� = Ae�B

Theorem

DetL1

DetL0
=

y1(1)

y0(1)

Lj = � d

2

dx

2
+Rj(x) I = [0, 1]

The ratio of the determinant of differential operators,

on

is given by the ratio of the solutions of differential equations

Ljyj(x) = 0
yj(0) = 0, y0j(0) = 1

(Dirichlet BC)

w/ Diriclet BC

(J. H. van Vleck, ’28; R. H. Cameron and W. T. Martin, ’45; …)

lnA�2 = ln
det

⇥
�@2 +m2

0 + �W
⇤

det [�@2 +m2
0]

function of the bounce solution

f(0) = 0, f(1) = 0



Proof

1

uj,k(x)

1

�
Lj � k

2
�
uj,k(x) = 0

uj,k(0) = 0, u0
j,k(0) = 1

is not an eigenvalue ofk2 Lj

is an eigenvalue of Ljk02

uj,k0(x)

x = 0

x = 0

Differential eq.

uj,k(1) 6= 0

uj,k0(1) = 0

by K. Kirsten and A. J. McKane, ‘03

does not satisfy the boundary conditions

satisfies the boundary conditions



Proof
Im(k)

Re(k)X X X X X
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Has a pole when w/ residue
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Proof
Im(k)

Re(k)X X X X X
�

0
X X X X X
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1
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Proof
Im(k)

Re(k)X X X X X0
X X X X X
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Z 1
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Proof
⇣L1(s)� ⇣L0(s) =

sin(⇡s)

⇡

Z 1

0
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u1,k(1)

u0,k(1)

= k�2s
1 � p�2s
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2 + · · ·

k2i
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2
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L1
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:
:

Ljuj,0(x) = 0
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All that we need to solve
DetL1
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=

u1,0(1)

u0,0(1)



Renormalization
� = Ae�B

lnA�2 = ln
det

⇥
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0 + �W
⇤
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0]

function of the bounce solution

divergent convergent

�WX �W X �WX
�WX

�WX �WX

Analytical calculation (MS-bar) ODE technique

= Tr
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�1�W � 1

2
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δW expansion



Analytical calculation 
(MS-bar)

= � m2
0

16⇡2
g�W (0)


1
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0
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�
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How can we match the 
analytical and the ODE results?

�`(x) = �(r)Y`,m,m0(✓)

lnA�2 = ln
det

⇥
�@2 +m2

0 + �W
⇤

det [�@2 +m2
0]

=
1X

`=0

(`+ 1)2 lim
r!1

ln
�`

�(0)
`

diverge after summing over ℓ

[�@

2 +m

2
0 + �W ]�`(x) = 0

[�@

2 +m

2
0]�

(2)
` (x) = ��W�

(1)
` (x)

[�@

2 +m

2
0]�

(1)
` (x) = ��W�

(0)
` (x)

[�@

2 +m

2
0]�

(0)
` (x) = 0

�` = �(0)
` + �(1)

` + �(2)
` + · · ·

…

δW expansion of the ODE results



How can we match the 
analytical and the ODE results?

=
1X

`=0

(`+ 1)2 lim
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2
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+
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� 1
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δW expansion
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2
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Finite numerical result
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Example
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Results
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Comments

We correctly subtracted the zero modes 
corresponding to the translational invariance.

Fermion determinant becomes more complicated 
because of the mixing between different ℓ states.

The bounce is calculated with CosmoTransitions,  
which can deal with multiple fields.

(C. L. Wainwright)



SM + stau system



Light stau

m⌧̃ > 103.5GeV

Stau can be light
(LEP)

hγγ coupling, co-annihilation with bino, …

tan� = hH0
ui/hH0

di

But, the potential may become unstable towards the stau direction

Stable Meta-stable / Unstable No EW vac.

V = T⌧ (H
† ˜̀

L⌧̃
⇤
R + h.c.) +m2

˜̀
L
|˜̀L|2 +m2

⌧̃R |⌧̃R|
2 + · · ·

T⌧ = y⌧ (A⌧ � µ tan�)

|T⌧ |



Spectrum

173 GeV

125 GeV

O(100 GeV) ~ O(1 TeV)

O(10 TeV)
other superparticles  
heavier Higgs bosons

top
Higgs boson

Effective theory

For simplicity,
we assume only the staus are light

w/o gauge interactions

staus 
tau-sneutrino



Effective theory

Boundary conditions

with I = 1, 2, 3. Because we discuss the renormalization-scale uncertainty at the one-loop
level, it is sufficient to consider the leading-logarithmic dependence on the renormalization
scale of the parameters which determine the bounce. Hence, we neglect higher loop effects
on the vacuum decay rate. In particular, the RG running of yt is neglected because the top
quark does not compose B, and thus, the RG running is two-loop effects.

In the effective Lagrangian, the parameters associated with the SM are determined by
the electroweak-scale observables. At the top-quark mass scale, we set them as

yt =
Mt

v
, (4.9)

m2
H(Mt) = −

1

2
M2

h , (4.10)

λH(Mh) =
M2

h

2v2
, (4.11)

where Mt and Mh are the top-quark and Higgs masses, respectively. Numerically, we use
v ≃ 174GeV, Mt = 173.5GeV, and Mh = 125GeV [30]. With the boundary condition,
Eq. (4.11), λH(MSUSY) may be different from the MSSM prediction at the tree level. We
assume that such a deviation is explained by the threshold correction of the scalar-top loops
[31].

The quartic scalar coupling constants, λ(I) and κ(I), are described by the gauge and tau
Yukawa coupling constants at the SUSY scale. At the tree level, they are given by

λ(1)(MSUSY) = (g2 + g′2) cos 2β, (4.12)

λ(2)(MSUSY) = 4y2τ − 2g2 cos 2β, (4.13)

λ(3)(MSUSY) = 4y2τ − 2g′2 cos 2β, (4.14)

κ(1)(MSUSY) =
1

2
(g2 + g′2), (4.15)

κ(2)(MSUSY) = −κ(3)(MSUSY) = 2g′2, (4.16)

where g and g′ are the gauge coupling constants of the SU(2)L and U(1)Y gauge symmetries,
respectively, and tanβ is a ratio of the Higgs vacuum expectation values at the EWSB
vacuum, tan β = ⟨Hu⟩/⟨Hd⟩. In addition, yτ is the Yukawa coupling constant of τ lepton,
and is given by yτ = Mτ/v (with Mτ being the mass of τ). The SUSY scale, MSUSY, is
assumed to be 10TeV, and tan β = 20, for our numerical study.

The stau parameters, mℓ̃L
, mτ̃R and Tτ , have not been determined experimentally. As

one can expect from the Lagrangian Eq. (4.1), CCB vacua show up when the tri-linear scalar
coupling Tτ becomes large. As a sample point at which the EWSB vacuum becomes a false
vacuum, we choose the following parameters,

mτ̃ ≡ mℓ̃L
= mτ̃R = 250GeV, (4.17)

Tτ = 300GeV. (4.18)
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EW scale stau mass SUSY scale (10TeV)

and the scalar taus (staus) is large. Such a setup is attractive because, if we assume the
universality of the slepton masses, SUSY contributions to the muon g − 2 can be large
[26, 27, 28]. Then, a CCB vacuum may show up in the parameter regions where the muon
g − 2 anomaly is solved [29]. We study the decay rate of the EWSB vacuum in such a case.

For simplicity, we consider the case where masses of all the superparticles and heavy
Higgs bosons except for sleptons are much larger than the electroweak scale. We call the
mass scale of heavy superparticles as the SUSY scale MSUSY. Then, an effective theory
is defined between the electroweak scale and the SUSY scale. The effective Lagrangian is
described as

Leff = Lkin − yt(HqLt
c
R + h.c.)−m2

H |H|2 −
1

4
λH |H|4

−m2
ℓ̃L
|ℓ̃L|2 −m2

τ̃R |τ̃R|
2 − Tτ (H

†ℓ̃Lτ̃
∗
R + h.c.)−

1

4
κ(1)|ℓ̃L|4 −

1

4
κ(2)|τ̃R|4

−
1

4
λ(1)|H|2|ℓ̃L|2 −

1

4
λ(2)|H†ℓ̃L|2 −

1

4
λ(3)|H|2|τ̃R|2 −

1

4
κ(3)|ℓ̃L|2|τ̃R|2, (4.1)

where H is the SM-like Higgs doublet, qL and tcR are the third-generation quark doublet
and right-handed anti-top, respectively, ℓ̃L is the third-generation slepton doublet, and τ̃R
is the right-handed stau. We denote the kinetic terms as Lkin. Terms containing the first-
and second-generation sleptons are omitted for simplicity because they are irrelevant for the
following discussion.

The scalar potential is significantly affected by the large top-quark Yukawa coupling
constant yt and the tri-linear coupling constant of the stau Tτ . Because the renormalization-
scale dependence of B comes from that of the scalar potential, we concentrate on the RG
evolutions of the couplings associated with the bounce fields. The relevant RGEs are given
by

dm2
H

d lnQ
=

3y2t
8π2

m2
H +

1

8π2
T 2
τ , (4.2)

dm2
ℓ̃L

d lnQ
=

1

8π2
T 2
τ , (4.3)

dm2
τ̃R

d lnQ
=

1

4π2
T 2
τ , (4.4)

dλH
d lnQ

=
3y2t
4π2

λH −
3

8π2
y4t , (4.5)

dTτ
d lnQ

=
3y2t
16π2

Tτ , (4.6)

dλ(I)

d lnQ
=

3y2t
8π2

λ(I), (4.7)

dκ(I)

d lnQ
= 0, (4.8)
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tan� = 20



Result

Classical

1-loop
only w/ top loop

only w/ scalar loops

mt

2
2m⌧̃



Summary
• The bubble nucleation rate has often been estimated 
without calculating the pre-exponential factor. 

• This estimate involves uncertainty in the renormalization 
scale, which, we showed, results in O(10%) uncertainty in 
the exponent of the bubble nucleation rate. 

• To reduce the uncertainty, we explicitly calculated the pre-
exponential factor and showed that it is greatly reduced. 

• Scalars and fermions have already been implemented, but 
the gauge bosons are now ongoing.


