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Introduction

• We will be interested in a quantity called entanglement
entropy.

• Consider a Hilbert space divided into two parts.
H = HA ×HB . If ρ is any density matrix on H, then let

ρA = trB ρ

This is the reduced density matrix on subsystem A.

• The entanglement entropy is defined as:

SA = −trρA log ρA

• If ρA = diag
(
λ

(1)
A , λ

(2)
A , · · · , λ(N)

A

)
then:

SA = −
N∑
i=1

(
λ

(i)
A log λ

(i)
A

)
so λ = 0, 1 do not contribute – as desired.



• Entanglement entropy can be hard to compute, partly because
of the log in the definition.

• A related measure called the Rényi entropy is defined as:

S
(n)
A =

1

1− n
log tr (ρA)n

where n is an integer ≥ 2. This is easier to compute by taking
n copies of the theory (“replica trick”) that works for free
fields.

• If we can analytically continue to arbitrary real values of n
then we can obtain the entanglement entropy from this:

SA = lim
n→1

S
(n)
A



• The Rényi entropy can be computed by expressing the trace
as:

tr (ρA)n =
Zn

(Z1)n

• Here, Z1 is the ordinary partition function of the theory and
Zn, called the “replica partition function”, is obtained via a
“replica trick” as we will shortly discuss.

• We will study entanglement in conformal field theory (CFT) in
two dimensions.

• We work at finite temperature and finite size. Then the two
dimensions form a (Euclidean) torus: one axis is the size of
the system L and the other is the inverse temperature β.
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Basic results on entanglement and CFT

• We will consider real-space entanglement in a CFT of central
charge c. Partition the 1d space into an interval of length `
and the rest, called respectively A and B.

• If the total space is infinite and we work at zero temperature,
it is a now-celebrated result that:

SA =
c

3
log

`

a
+ c ′

where c is the central charge, a is a UV cutoff and c ′ is a
non-universal constant. Thus in this case, the entropy only
depends on the central charge.



• At finite temperature T = (β)−1 the original density matrix is
thermal (rather than a pure state) and the entanglement
entropy changes to:

SA =
c

3
log

(
β

πa
sinh

π`

β

)
+ c ′

• At zero temperature but in a finite spatial region of size L,

SA =
c

3
log

(
L

πa
sin

π`

L

)
+ c ′

• Notice that the above formulae are interchanged under the
modular transformation β ↔ L, `→ i`.

• Calculations are much more difficult when there are several
entangling intervals. The case of finite space and finite
temperature is difficult even for a single interval. Here, the
answer is expressed in terms of Jacobi θ-functions.



• Now we consider free fermion CFT.

• Boundary conditions on a torus of sides L, β:

ψ(z + L) = ±ψ(z)

ψ(z + iβ) = ±ψ(z)

• With these boundary conditions, denote the path integral by
Z±±(L, β) and the Hamiltonian by H±(L). Then:

Z−− = tre−βH− Z+− = tre−βH+

Z−+ = tr(−1)F e−βH− Z++ = tr(−1)F e−βH+

• Let τ = i βL . Then only Z++ is invariant under modular
transformations:

τ → τ + 1, τ → −1

τ

while the other three are permuted. However, Z++ is not a
physical thermal ensemble (periodic in time). Also it vanishes.



• As shown long ago by Seiberg and Witten, the combination:

Z (L, β) = 1
2 (Z−− + Z−+ + Z+− + Z++)

= tr

(
1 + (−1)F

2

)
e−βH− + tr

(
1 + (−1)F

2

)
e−βH+

is modular-invariant. It is a physical thermal ensemble, being
a sum over the projected spectra of two Hamiltonians H+,H−.

• For a Dirac fermion (c = 1), by direct computation we find:

Z−− =

∣∣∣∣θ3(0|τ)

η(τ)

∣∣∣∣2 Z+− =

∣∣∣∣θ2(0|τ)

η(τ)

∣∣∣∣2
Z−+ =

∣∣∣∣θ4(0|τ)

η(τ)

∣∣∣∣2 Z++ =

∣∣∣∣θ1(0|τ)

η(τ)

∣∣∣∣2 = 0

• The modular-invariant partition function of the free Dirac
fermion is therefore:

ZDirac =
1

2

∑
ν=2,3,4

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣2



• Next consider a free boson φ(z , z̄) that takes a compact set of
values:

φ(z , z̄) ∼ φ(z , z̄) + 2πR

This also has c = 1.

• Its partition function is easily computed:

Zboson(R) =
∑

e,m∈ZZ

q( e
R

+mR
2 )

2

q̄( e
R
−mR

2 )
2

where q = e iπτ .

• The statement of Bose-Fermi duality at c = 1 is then:

ZDirac = Zboson(R = 1)

Notice that this holds only with the spin-structure-summed
partition function on the LHS.



• With multiple fermions one can have multiple theories
depending on whether the spin structures are mutually
correlated or not.

• For example with 2 Dirac fermions having uncorrelated spin
structures, the partition function is:

Zu
Two Dirac =

1

2

∑
ν=2,3,4

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣2
2

• However if the spin structures of the two fermions are
correlated then the partition function is:

Zc
Two Dirac =

1

2

∑
ν=2,3,4

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣4
• The two theories have very different spectra and correlation

functions. In particular the latter theory is not the direct sum
of two CFT’s.
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Replica partition function

• The Rényi entropy can be
expressed in terms of a quantity
called the “replica partition
function”:

tr(ρA)n =
Zn

(Z1)n

where Z1 is the ordinary partition
function.

• To compute Zn one extends the
original torus to an n-fold cover
joined at branch cuts along spatial
intervals from 0 to `.



• The quantity (ρA)n is created by gluing the copies together.

• Let ψ̃k be the field on the kth replica. An operator called the
twist field sends each field to the next replica:

σk : ψ̃k → ψ̃k+1

• By a suitable diagonalisation of the problem, one reduces the
problem to a set of fields ψk on a single copy of the space.
The twist field acts on each one by a phase:

σk : ψk → ωkψk

where ω = e2πi/n and k = −n−1
2 ,−n−1

2 + 1, · · · , n−1
2 .



• This is achieved if the OPE of the twist field and the
fundamental fermion is of the form:

σk(z , z̄)ψ(w) ∼ (z − w)
k
n (1)

• The conformal dimensions ∆k of the twist fields can be shown
to satisfy: ∑

k

∆k =
c

24

(
n − 1

n

)

• One can then show that:

tr ρnA =

n−1
2∏

k=− n−1
2

〈σk(`, `)σ−k(0, 0)〉



• It is convenient to use the un-normalised correlators to define
the “replica partition function”:

Zn =

n−1
2∏

k=− n−1
2

Z1〈σk(`, `)σ−k(0, 0)〉 =

n−1
2∏

k=− n−1
2

〈〈σk(`, `)σ−k(0, 0)〉〉

where Z1 is the ordinary partition function. Then:

tr ρnA =
Zn

Zn
1

from which the Rényi entropies are easily obtained.

• Notice that Zn=1 = 〈〈1〉〉 = Z1 so our notation is consistent.



Outline

1 Introduction

2 Basic results on entanglement and CFT

3 Replica partition function

4 Free fermion and spin structures

5 Thermal entropy relation

6 Free boson CFT

7 Multiple fermions and lattice bosons

8 Conclusions



Free fermion and spin structures

• Consider a Dirac fermion with a single entangling interval of
length `.

• This theory has c = 1. Denote the complex Dirac fermion as
D(z).

• The first calculation of a finite-size, finite-temperature replica
partition function was performed by [Azeyanagi, Nishioka,

Takayanagi]. They identified the twist field by bosonisation.

• At R = 1 the physical vertex operators are:

Oe,m = e i(e+m
2 )φ(z)e i(e−

m
2 )φ̄(z̄)

with (∆e,m, ∆̄e,m) =
(

1
2

(
e + m

2

)2
, 1

2

(
e − m

2

)2
)

.

• The fermion D(z) ∼ e iφ(z).



• The fermionic twist field is identified as:

σk = O0, 2k
n
, k = −n−1

2 , · · · n−1
2

• These operators have (∆, ∆̄) = ( k2

2n2 ,
k2

2n2 ). They are nonlocal
operators with the OPE:

O0, 2k
n

(z , z̄)D(w) ∼ (z − w)
k
n

as desired.

• A standard computation now gives:

〈〈O0, 2k
n

(z , z̄)O0,− 2k
n

(0)〉〉 =

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
2k2

n2

× 1

2

∑4
ν=1 |θν( k`

nL |τ)|2

|η(τ)|2



• [Azeyanagi et al] restricted to a specific spin structure, to get:

〈〈O0, 2k
n

(z , z̄)O0,− 2k
n

(0)〉〉 =

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
2k2

n2

×
|θ3( k`

nL |τ)|2

|η(τ)|2

(recall that θ3 corresponds to (−−) boundary conditions).

• Taking the product over replicas they got:

Zn(L, β; `) =

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
1
6

(n− 1
n

) n−1
2∏

k=− n−1
2

|θ3( k`
nL |τ)|2

|η(τ)|2

• To get trρnA, this has to be divided by:

(Z1)n =

∣∣∣∣θ3(0|τ)

η(τ)

∣∣∣∣2n
• The result satisfies some important consistency conditions (as

we will see), but is clearly not modular invariant.



• In the [Ryu-Takayanagi] proposal, entanglement entropy is dual
to the length of a minimal line coming in from the boundary
of a 3d bulk spacetime whose boundary is the CFT torus.

L-l

l

• After a modular transformation, the CFT entanglement
changes (because the spin structure changes). However, in
general the bulk spacetime also changes. So perhaps this is a
consistent picture.



• On the other hand, studies of the Euclidean AdS3/CFT2

correspondence ([Dijkgraaf-Maldacena-Moore-Verlinde],
[Manschot-Moore]) indicate the relation:

ZCFT(τ) =
∑

(
a b
c d

)
∈SL(2,Z)

Zgrav

(
aτ + b

cτ + d

)

where on the LHS we have the modular-invariant partition
function of the CFT. Due to the sum, the RHS is also
modular-invariant.

• In the same spirit we may expect replica partition functions to
be modular invariant.

• Also, only modular-invariant entanglement can satisfy the
Bose-Fermi correspondence as stressed by [Headrick,

Lawrence,Roberts].



• With this motivation, we return to the spin-structure summed
expression:

〈〈O0, 2k
n

(z , z̄)O0,− 2k
n

(0)〉〉 =

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
2k2

n2

× 1

2

∑4
ν=1 |θν( k`

nL |τ)|2

|η(τ)|2

• Now we must decide how to take the product over replicas.

• One way would be to just take the product of the above result
over all k.

• Thus, the spin structures are summed over before we carry
out replication, leading to the “uncorrelated replica partition
function”:

Zu
n (L, β; `) =

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
1
6

(n− 1
n

) n−1
2∏

k=− n−1
2

1

2

∑4
ν=1 |θν( k`

nL |τ)|2

|η(τ)|2



• There is another way to take the product, which is to take the
product over replicas before summing over spin structures.

• This leads to the “correlated replica partition function”:

Zc
n (L, β; `) =

1

2

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
1
6

(n− 1
n

) 4∑
ν=1

n−1
2∏

k=− n−1
2

|θν( k`
nL |τ)|2

|η(τ)|2

• Notice that the two types of replica partition functions
coincide at n = 1:

Zu
1 = Zc

1 = Z1 =
1

2

∑4
ν=1 |θν(0|τ)|2

|η(τ)|2

which is the ordinary modular-invariant partition function.



• We also observe that as `→ 0 the two types of partition
function are quite different:

Zu
n (L, β; `→ 0) ∼

(
`

L

)− 1
6 (n− 1

n )
(

1

2

∑4
ν=1 |θν(0|τ)|2

|η(τ)|2

)n

Zc
n (L, β; `→ 0) ∼

(
`

L

)− 1
6 (n− 1

n ) 1

2

∑4
ν=1 |θν(0|τ)|2n

|η(τ)|2n

• The second factors in the two cases are the ordinary partition
functions of n Dirac fermions with, respectively, uncorrelated
and correlated spin structures.



• Corresponding to two possible replica partitions, we can define
two possible Rényi entropies:

Su
n =

1

1− n
log

Zu
n

(Z1)n

Sc
n =

1

1− n
log

Zc
n

(Z1)n

• The denominators are the same because, as we pointed out
earlier, the two types of partition functions coincide at n = 1.

• Before deciding which one is right, let us check the modular
transformation properties of the two quantities Zu

n and Zc
n .



• The modular transformation τ → τ + 1 permutes θ3 ↔ θ4 and
θ1 ↔ θ2. It also induces phases, but there are modulus signs
everywhere. Thus both expressions are invariant under it.

• The other transformation τ → − 1
τ acts as β ↔ L and `→ i`

(we have used the identification τ = iτ2 = i βL and z = `
L).

• For this we use:

θαβ

(
z

τ

∣∣∣− 1

τ

)
= (−i)αβ(−iτ)

1
2 e

iπz2

τ θβα(z , τ)

• Applying this to Zu
n or Zc

n , one finds that they pick up the
same multiplicative factor:

Zu,c
n (β, L; i`) =

(
β

L

) 1
6 (n− 1

n )
Zu,c
n (L, β; `)



• We see that even after summing over spin structures, the
replica partitions acquire a multiplicative pre-factor under
modular transformations.

• This factor vanishes at n = 1, so Z1 is indeed modular
invariant as it must be.

• We propose that for every CFT of central charge c , the
following result holds:

Zn(β, L; i`) =

(
β

L

) c
6 (n− 1

n )
Zn(L, β; `)

and will verify this in all known cases.

• As a result the Rényi and entanglement entropies shift by an
additive term. Notice that the term is independent of the
entangling interval `.



• We can make the replica partition functions invariant by
multiplying them by a factor:

Z̃n =

(
β

L

) c
12 (n− 1

n )
Zn

• Our conjecture implies that the above quantity is modular
invariant for every CFT.

• Returning now to the Dirac fermion, we have two possible
modular-invariant Rényi entropies:

S̃u,c
n =

1

1− n
log

Z̃u,c
n

(Z1)n

The corresponding entanglement entropies obtained by taking
n→ 1 will also be modular invariant.
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Thermal entropy relation
• To decide which replica partition function is correct, we use

the thermal entropy relation [Azeyanagi, Nishioka, Takayanagi].

L-l

l

• This arises because, with a black hole in the bulk, the minimal
surfaces with boundary ` and L− ` are not the same.

• As `→ 0 the difference is the surface wrapping the black hole,
which gives the thermal entropy of the CFT state. Hence:

lim
`→0

(
SA(L− `)− SA(`)

)
= Sthermal(β)



• Indeed, within CFT it has been argued [Cardy, Herzog],
[Chen,Wu] that one must have:

lim
`→0

Zn(L, β; `) =

(
`

L

)− c
6 (n− 1

n )
(Z1(L, β))n

lim
`→0

Zn(L, β; L− `) =

(
`

L

)− c
6 (n− 1

n )
Z1(L, nβ)

• The intuition for this is that the replicas are connected
through the branch cut of the entangling interval.

• For a small interval the replicas are effectively decoupled, so
one finds n independent copies of the ordinary partition
function. On the other hand for a large entangling interval one
always goes from one replica to the next so the replicas are
effectively “joined” into a single torus of n times the height.

• However the above are not just intuitive statements, but have
been justified by formal manipulations in CFT.



• The above statements, if true, immediately imply the thermal
entropy relation:

lim
`→0

(
SA(L− `)− SA(`)

)
= lim

`→0
lim
n→1

1

1− n
log

Zn(L, β; L− `)
Zn(L, β; `)

= lim
n→1

1

1− n
log

Z1(L, nβ)

(Z1(L, β))n

= logZ1

(
β

L

)
− β

L

Z ′1(βL )

Z1(βL )

= Zthermal

• An extra assumption is that the limits `→ 0 and n→ 1 can
be commuted.

• We will subject our two candidate replica partition functions
to these conditions and find a surprising result.



• First consider the limit `→ 0. We have already seen that in
this limit:

Zu
n (L, β; `) ∼

(
`

L

)− 1
6 (n− 1

n )
(

1

2

∑4
ν=1 |θν(0|τ)|2

|η(τ)|2

)n

Zc
n (L, β; `) ∼

(
`

L

)− 1
6 (n− 1

n ) 1

2

∑4
ν=1 |θν(0|τ)|2n

|η(τ)|2n

• As n→ 1 the first factor becomes 1. The second factor
becomes (Z1)n only for Zu

n and not for Zc
n .

• Recall that the former (“uncorrelated”) replica partition
function involved summing over spin structures before taking
the product over replicas.



• Now we consider these quantities as functions of L− ` in the
limit `→ 0. This time we find:

Zu
n (L, β; L− `) ∼

(
`

L

)− 1
6 (n− 1

n )
n−1

2∏
k=− n−1

2

1

2

∑4
ν=1 |θν(kn |τ)|2

|η(τ)|2

Zc
n (L, β; L− `) ∼

(
`

L

)− 1
6 (n− 1

n ) 1

2

4∑
ν=1

n−1
2∏

k=− n−1
2

|θν(kn |τ)|2

|η(τ)|2

• Focusing on the second factor, there is a beautiful θ-identity
that allows us to evaluate the correlated case:

n−1
2∏

k=− n−1
2

∣∣∣θν(k
n
− z
∣∣∣τ)∣∣∣ =

 ∞∏
p=1

∣∣∣∣(1− q2p)n

1− q2pn

∣∣∣∣
 ∣∣θν(nz |nτ)

∣∣



• It follows easily that:

Zc
n (`→ L) =

1

2

(
`

L

)− 1
6 (n− 1

n ) 4∑
ν=1

|θν(0|nτ)|2

|η(nτ)|2

=

(
`

L

)− 1
6 (n− 1

n )
Z1(L, nβ)

• This time it is the “correlated” replica partition function,
where the sum over spin structures is taken after the product
over replicas, that satisfies the desired relation.

• It is easy to check that, due to cross terms, the uncorrelated
one does not satisfy any similar relation.

• To summarise: as `→ 0 the sum over spin structures must be
performed before the product over replicas. As `→ L it must
be performed after the product over replicas.

• For intermediate values of ` it is not (yet) clear what is the
prescription.



Outline

1 Introduction

2 Basic results on entanglement and CFT

3 Replica partition function

4 Free fermion and spin structures

5 Thermal entropy relation

6 Free boson CFT

7 Multiple fermions and lattice bosons

8 Conclusions



Free boson CFT

• For the free boson replica partition function, one considers a
complex boson (c = 2) and twist fields Tk satisfying:

Tk(z , z̄)φ(w) ∼ (z − w)
k
n

and one has:

Zn =
n−1∏
k=0

〈〈Tk(z , z̄)T−k(0, 0)〉〉

At the end one can take a square root to get the c = 1 theory.

• This is more difficult than the fermion case. There, the twist
field for fermions was explicit in the bosonic representation.
Here it is implicit.

• This problem was studied by [Datta,David] and [Chen, Wu] using
techniques developed many years ago for orbifold
compactifications.



• There have been contradictory results in the literature, but
the most convincing one is of the form:

Zn(R) = Z
(1)
n Z

(2)
n Z

(3)
n (R)Z

(3)
n

(
2

R

)
where:

Z (1) =
1

|η(τ)|2n
n−1∏
k=0

1

|W 1
1 (k, n; `L |τ)|

Z (2) =

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
1
6 (n− 1

n )

Z (3)(R) =
∑

mj∈ZZ

exp

(
− πR2

2n

n−1∑
k=0

∣∣∣∣W 2
2 (k , n)

W 1
1 (k , n)

∣∣∣∣×
n−1∑
j ,j ′=0

[
cos 2π(j − j ′)

k

n

]
mjmj ′

)



• Here W 1
1 (k , n; `L |τ) and W 2

2 (k , n; `L |τ) are integrals of the cut
differentials over the different periods of the torus:

W 1
1 =

∫ 1

0
dz θ1(z |τ)−(1− k

n )θ1

(
z − `

L |τ
)− k

n θ1

(
z − k`

nL |τ
)

W 2
2 =

∫ τ̄

0
dz̄ θ̄1(z̄ |τ)−

k
n θ̄1

(
z̄ − `

L |τ
)−(1− k

n )
θ̄1

(
z̄ −

(
1− k

n

)
`
L |τ
)

• We would now like to investigate the modular transformation
of this expression. To this end, we note the following results:

η
(
− 1

τ

)
= (−iτ)

1
2 η(τ)

W 1
1

(
k, n; i`

β | −
1
τ

)
=

1

τ
e−

iπ`2

L2τ
k
n (1− k

n )W 2
2 (k , n; `L |τ)

θ′1
(
0| − 1

τ

)
θ1

(
z
τ | −

1
τ

) = iτe−
iπz2

τ
θ′1(0|τ)

θ1(z |τ)



• Next, performing a multi-variable Poisson resummation
following [Chen,Wu], we find that:

Z (3)
(
R;

z

τ

∣∣∣− 1

τ

)
=

2
n
2

Rn

(
n−1∏
k=0

∣∣∣∣W 2
2 (k , n)

W 1
1 (k , n)

∣∣∣∣
1
2

)
Z (3)

( 2

R
; z
∣∣∣τ)

Z (3)
( 2

R
;
z

τ

∣∣∣− 1

τ

)
=

Rn

2
n
2

(
n−1∏
k=0

∣∣∣∣W 2
2 (k , n)

W 1
1 (k , n)

∣∣∣∣
1
2

)
Z (3)

(
R; z

∣∣∣τ)
• Thus the product transforms as:

Z (3)(R)Z (3)

(
2

R

)
→

(
n−1∏
k=0

∣∣∣∣W 2
2 (k, n)

W 1
1 (k, n)

∣∣∣∣
)
Z (3)(R)Z (3)

(
2

R

)
• Putting everything together, we find that:

Zn

(
R;

z

τ

∣∣∣− 1

τ

)
= |τ |

1
6 (n− 1

n )Zn(R; z |τ)

Thus, it will become modular invariant precisely upon
multiplying by the factor given in our proposal.



• Ideally one would like to compare the above with the free
fermion result at c = 1 to verify Bose-Fermi duality.

• However the above result is extremely implicit and hard to
compute. And on the fermion side, we don’t know the replica
partition function at intermediate values of `.

• However, as `→ 0 and `→ L the above expression has been
evaluated by [Chen, Wu] and found to agree with the
predictions (Z1(τ))n and Z1(nτ) respectively.

• Since at R = 1, the function Z1 is equal to the free Dirac
fermion partition function, this means our results and theirs
are in full agreement in the regions where they can be
compared.
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Multiple fermions and lattice bosons

• The theory of d free Dirac fermions with correlated spin
structures is dual to a specific compactification of d free
bosons on a target-space torus:

T c = Rd/Γd

where Γd is the root lattice of Spin(2d).

• This can be achieved by starting with a rectangular torus and
choosing a suitable constant metric and B-field.

• In this case the d different bosons are not orthogonal to each
other, while the fermions have correlated spin structures, so
on both sides of the Bose-Fermi duality we are dealing with
CFT’s that are not direct sums of simpler ones.



• In the free boson theory, let ΛR be the root lattice and ΛW be
the dual weight lattice.

• Then the vertex operators are:

Ow i ,w̄ i = e iw
iφi e i w̄

i φ̄i

where w i , w̄ i ∈ ΛW and w i − w̄ i ∈ ΛR .

• Elements of the weight lattice can be parametrised as:

w i =
1√
2
g ijvj , w̄ i =

1√
2
g ij v̄j

where vi , v̄i are integers and g ij is the inverse of gij which is
the half the Cartan matrix of Spin(2d).

• We have 1√
2

(vi − v̄i ) =
√

2ni where ni are integers.



• To reconstruct the fermion operators, we must look for pairs
of points of unit length in the weight lattice that differ by an
element of the root lattice.

• If ~αi are the d simple roots of Spin(2d) and ~λi are the
fundamental weights then one finds:

Dp(z) ∼ e iw
(p) iφi (z)

where w (p)i =
√

2(~λi )p.

• We can now look for the twist field, which induces a
monodromy:

σk : Dp(z)→ e
2πik
n Dp(z)

corresponding to a shift:

w (p)iφi (z)→ w (p)iφi (z) +
2πk

n



• This will be induced by a shift φi → φi + 2πζ
(k)
i where ζ

(k)
i is

a constant vector satisfying:

w (p)iζ
(k)
i =

k

n

for all p.

• As the last weight of Spin(2d) is λ(d) = ( 1
2 ,

1
2 , · · · ,

1
2 ), the

shift is given by:

ζ
(k)
i =

√
2k

n
(0, 0, · · · , 0, 1)

Thus the twist field only acts on the last scalar φd .

• It takes the form:

σk = Oζ(k) i ,−ζ(k) i = e iζ
(k) iφi (z)e−iζ

(k) i φ̄i (z̄)

and has the desired conformal dimension∑
k ∆k = d

24

(
n − 1

n

)
.



• Now we can calculate the two-point function of each σk and
thereby the replica partition function.

• Recall that the ordinary partition function for these theories is:

Z1 =
1

|η(τ)|2d
∑

w,w̄∈ΛW
w−w̄∈ΛR

qw
2
q̄ w̄2

=
1

2

1

|η(τ)|2d
∑

ν=2,3,4

|θν(0|τ)|2d

• The un-normalised two-point function of twist fields is:

〈〈σk(z , z̄)σ−k(0)〉〉 =

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
2dk2

n2
1

|η(τ)|2d
×∑

w,w̄∈ΛW
w−w̄∈ΛR

qw
2
q̄ w̄2

e2πi `
L
gij (w

i+w̄ i )ζ(k)j



• Now we have:

gij(w
i + w̄ i )ζ(k)j =

k

n

d∑
p=1

(np + mp), w , w̄ ∈ ΛR ∪ ΛV

=
k

n

d∑
p=1

(np + mp − 1), w , w̄ ∈ ΛS ∪ ΛC

• It follows that:

〈〈σk(z , z̄)σ−k(0)〉〉 =
1

2

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
2dk2

n2 ∑4
ν=1 |θ( k`

nL |τ)|2d

|η(τ)|2d

• Taking the product over k after/before the sum over spin
structures gives us the uncorrelated/correlated Zn.

• As before, we choose the former as `→ 0 and the latter as
`→ L, and the thermal entropy relation follows.

• The replica partition function can be rendered modular
invariant after multiplying with our proposed prefactor.
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• We have shown that modular-invariant Rényi and
entanglement entropies do exist for free fermions.

• There were two surprises:

• We could only find the answer in the limiting regions `→ 0
and `→ L. In the first case the spin structures are uncorrelated
across replicas and in the second they are correlated.

• Modular invariance is achieved only upto an overall
`-independent factor which can be removed by a suitable
modification of Zn.

• We verified that answers in the literature for compact boson
CFT are also modular-invariant in the same way. However
here there is a (very implicit) form at all `.

• We extended the free-fermion computation to multiple
correlated fermions, dual to free bosons on a Spin(2d) lattice
and it agrees with everything above.



• For the future, many directions are suggested:

• Can one write the replica partition function for fermions at
intermediate values of ` as a linear combination of
correlated/uncorrelated quantities?

• Can this computation be extended to other CFT’s?

• For free bosons, there is a result but it is very implicit. Can its
form be simplified?

• What is the bulk analogue of these results in AdS/CFT? Is
there a “Farey tail” extension of the [Ryu-Takayanagi] proposal?



Thank you!


	Introduction
	Basic results on entanglement and CFT
	Replica partition function
	Free fermion and spin structures
	Thermal entropy relation
	Free boson CFT
	Multiple fermions and lattice bosons
	Conclusions

