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GENERAL RELATIVITY

 Einstein equations describe gravitational physics

𝑅𝜇𝜈 = 0

ex) Precession of planets ex) Binary black hole mergers

 Equations have no scale : gravity from weak to strong region

Almost Newtonian (weak) Full GR effects (strong)

 Rich observable phenomena even in (4 dim) vacuum



DIMENSIONS

 Gravity with matters in other dimensions

- In low dimensions (two or three)

No (local) gravitons: Toy models for quantum gravity 

(c.f., CGHS model, Dilaton gravity, BTZ black holes)

- In higher or general dimensions

Cosmology (Braneworld model as extra dimension 

scenario, String cosmology)

Holography (Matter physics via gauge/gravity 

correspondence, String theory)

Just for fun (No-uniqueness of black holes, 

Black hole instabilities,…)



MOTIVATION

 Dimension D is a parameter of General Relativity

- Many problems can be formulated in general dimensions 

at the equation-level

- Understanding the parameter dependence is important 

(and just interesting)

No gravitational wave memory (supertranslation) in higher dimension (D>4) 

- Various dimension-dependent (parameter-dependent) 

phenomena in gravitational physics

Black hole problem can be formulated in D>3

No uniqueness of black holes in D>4

Rotating black holes are unstable in D>5

Schwarzschild BH has a supersymmetric structure only in D=4



DIFFICULTY

 Solve the Einstein equations in various situations

𝑅𝜇𝜈 = 0

- Nonlinear partial differential equation system

Very hard system in general, even numerically

- No original scales in a system

Gravitons interact at all scales (weak and 

strong field are always coupled) 

 Reduce these difficulties by some assumptions (also in numerics)

Additional symmetries, Hierarchies in scales of a system (gradient expansions or 

WKB method), Taking limits of parameters in a system (PN, perturbations,..), …

e.g., GWs by aLIGO
• QNMs contain information of horizon and infinity



PURPOSE

 Give a new method to solve the Einstein equations

 Taking the limit of infinite spacetime dimension

𝐷 → ∞

 This limit simplifies the equations in various ways 

- (Conformal) Symmetry enhancement at  𝐷 = ∞

- Natural scale hierarchy appears

Weak and strong gravity fields are decoupled (Effective 

theory description for black holes)

 We can solve the Einstein equations analytically as 

nonlinear PDE system in 1/D expansions

( Boundary of the 

parameter space)

- Dimensional-dependent phenomena can be seen in 

1/D-corrections
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 General properties of black holes at large D [ Emparan-Suzuki-Tanabe (2013) ]



LARGE D LIMIT

 Famous Large D limit in statistical mechanics

 (Dynamical) Mean-field theory

𝐻 = −𝐽෍𝑆𝑖𝑆𝑗 − 𝜆෍𝑆𝑖

→ 𝐻eff = −(𝜆 + 𝑚)෍𝑆𝑖

- This approximation becomes exact at 𝐷 = ∞

Interaction length scales as z → 𝑧/ 𝐷 in D+1 spacetime dimension

- Interactions from next sites are absorbed into 

background fields

- Dynamical mean field theory is a good approximation method for strongly 

correlated electron system in two (spatial) dimensions

ex) Ising model

𝑧/ 𝐷

𝑧

No interaction between spins at 𝑫 = ∞

[ Weiss (1907), Metzner and Vollhardt (1989), 

Georges, et.al. (1996)]



LARGE D LIMIT OF GR

 Our Large D limit in General Relativity

- Effective description of black holes (if exists)

Black hole is just a “hole” in flat spacetime

- Gravitational potential is suppressed exponentially 

Φ = −
𝑟0
𝑟

𝐷−3

→ 𝑂(𝑒−𝐷)

- Hagedorn like behavior in thermodynamic quantities

𝑆BH ∝ 𝑀BH
(𝐷−2)/(𝐷−3)

→ 𝑆BH∝ 𝑀BH

 Black hole merger does not need any entropy cost 

or energy loss by GWs (no interactions)

 Black holes do not interact each other separated by 

black hole size

(𝑆𝐵𝐻 , 𝑀𝐵𝐻) (𝑆𝐵𝐻 , 𝑀𝐵𝐻)

(2𝑆𝐵𝐻 , 2𝑀𝐵𝐻)

Almost same with mean field theory ? No gravitational interaction?

[ Emparan-Suzuki-Tanabe (2013) ]



BLACK HOLES

 D dim Schwarzschild black hole metric

𝑑𝑠2 = −𝑓 𝑟 𝑑𝑡2 + 𝑓 𝑟 −1𝑑𝑟2 + 𝑟2𝑑Ω𝑫−𝟐

𝑓 𝑟 = 1 −
𝑟0
𝑟

𝑫−𝟑

 Gravity by a black hole is localized in very near-horizon region 

𝑟 − 𝑟0 ≃ 𝑂(𝑟0/𝐷)
𝑂(𝑟0/𝐷)

- In this region, the potential  𝑟0/𝑟
𝐷−3 becomes 𝑂(1)

- Scale hierarchy appears naturally

𝑟0 ≫
𝑟0
𝐷

black hole size interaction scale



POTENTIALS

 Probe scalar field analysis

□Φ = 0

 Massless scalar field in Schwarzschild BH

Φ = 𝑟− 𝐷−2 2𝜙(𝑟)𝑒−𝑖𝜔𝑡Yℓ 𝑚

𝑑2

𝑑𝑟∗
2 + 𝜔2 − 𝑉 𝜙 𝑟 = 0

- To observe the black hole, scalar field needs very high energy  

𝜔𝑟0 = 𝑂(𝐷)

- Low energy scalar fields (𝜔𝑟0 = 𝑂(1)) cannot see the black hole

𝜔2

𝑑𝑠2 = −𝑓 𝑟 𝑑𝑡2 + 𝑓 𝑟 −1𝑑𝑟2 + 𝑟2𝑑Ω𝑫−𝟐

𝑑𝑟∗ = 𝑓 𝑟 −1𝑑𝑟



SCALAR FIELD 

PICTURE

 Black hole is just a hole for (low energy) scalar fields

- Black hole is stiff and not oscillated by (low energy) scalar fields

Similar with mean field theory (we can treat many-BH system for 

scalar field dynamics)

- For high energy scalar fields we have no effective description

Spacetime is very dynamical by scalar fields (e.g., gravitational collapse)

No interesting dynamics for black hole physics



ZERO MODE 

GRAVITONS

 Graviton dynamics (gravity) is nontrivial at large D

 Gravitational perturbations of 

Schwarzschild BH

𝑑2

𝑑𝑟∗
2
+ 𝜔2 − 𝑉𝑠,v,t 𝜙 𝑟 = 0

- Scalar and vector perturbations have nontrivial structure

*Tensor perturbation has same potential with scalar fields

- Low energy gravitons can probe this nontrivial structure

Such modes are confined by the potential barrier in very near-

horizon region

tensor type 

vector type 

scalar type 

𝑂(𝐷2)
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(NON)DECOUPLED 

MODES

 Decoupled modes: Quasi-bound state 

 Decoupled modes: 𝜔dec𝑟0 = 𝑂(1)

- Localized and confined modes

- Long-lived modes compared with black 

hole’s characteristic time

𝜔dec
−1 ≫ 𝜅−1 = 𝑂(𝑟0/𝐷)

- Decoupled from far zone dynamics

strong

(near zone)

weak

(far zone)

 Non-decoupled modes: 𝜔ndec𝑟0 = 𝑂(𝐷)

- Fast modes, coupled with far zone dynamics

Depending on surrounding matter and boundary 

conditions at infinity 

Depending only on near horizon geometry



TWO SECTORS

𝜔ndec = 𝑂(𝐷)

𝜔dec = 𝑂(1)

𝑂(𝑟0/𝐷)

 Black hole dynamics has two sectors at large D

 Perturbations excite two different modes

- Non-decoupled modes

• Fast oscillating modes, disperse into 

horizon and infinity instantly

• Universal mode for all non-extremal 

black holes (no interesting feature)

- Decoupled modes

• Long-lived slow modes in near-horizon region

• Capture horizon dynamics of black holes

• Non-universal, important modes for black 

hole physics

• Effective description would exist Potential barrier

[ Emparan-Tanabe (2013) ]



LINEAR ANALYSIS

 Decoupled modes describe various black hole physics

- Various instabilities of black holes are in decoupled sector

Instabilities of rotating black holes, black branes, black rings, 

charged black holes, and so on

- Very easy to obtain higher order corrections in the 1/D expansions

Only near horizon dynamics, almost stationary modes (zero modes)

e.g., Gregory-Laflamme modes

𝑛 = 𝐷 − 4
Unstable mode of black branes

Up to 𝑂(1/𝐷3) corrections are included

Ω𝑟0 = 𝑘 1 − 𝑘 + 𝑂(1/𝐷)

Good agreement with numerical results

[ Gregory-Laflamme (1993) ]

𝑒Ω𝑡



OTHER (LINEAR) 

RESULTS

 Reproduce various numerical results

• Instability of rotating BHs • QNMs of 4d Schwarzschild BH

numerical

Large D results

ℓ

Im[−𝜔𝑟0]

𝐽 = 2𝑘 + 1

 Also produce unknown results

Instability of charged (rotating) black holes, QNMs of charged (AdS) black 

brane,…

[ Suzuki-Tanabe (2015) ]

[ Emparan-Suzuki-Tanabe (2014) ]



SHORT SUMMARY

 Large D limit is useful to black hole physics

- There are localized low energy gravitons in near-horizon region

Decoupled modes: Almost stationary modes and decoupled dynamics 

from far zone dynamics

- Scale hierarchy naturally appears at large D

𝑟0 ≫ 𝑟0/𝐷

Decoupled Non-decoupled

Decoupled modes capture horizon dynamics of black holes such as 

deformations and instabilities of horizon

Easy to obtain higher order collections: good accuracies in not much 

higher dimensions

e.g., a few % errors even in 4 dim for QNMs of Schwarzschild BHs
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 Nonlinear dynamics of decoupled modes



QUESTIONS

 We focus on decoupled modes

- Can we construct a nonlinear model for decoupled modes ? 

Linear perturbations (linear analysis of decoupled modes) are well 

understood

Simpleness of calculation implies an existence of simple nonlinear theory ?

- What mechanism classifies decoupled and non-decoupled modes ?

gravitons = (decoupled gravitons) + (non-decoupled gravitons)

How many decoupled modes exist ?

e.g., Schwarzschild BHs has three decoupled modes (two in scalar type perturbation, and one in 

vector type perturbation)

Effective Lagrangian or equations for zero modes ?

How do we know that black holes have decoupled modes or not ?
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MEMBRANE 

PARADIGM

 Effective theory as membrane paradigm

- Black holes have slow and small deformations

𝜕𝑡 = 𝑂(1) 𝛿𝑟0 = 𝑂(1/𝐷)

- Deformations are confined in near-horizon region

𝜕𝑟Φ = 𝑂(𝐷)

- Deformed black holes are embedded dynamical objects 

in a flat spacetime (or fixed background geometry)

membrane paradigm for black holes

 Solving the Einstein equations, membrane paradigm is derived at large D  

[ Price-Thorne (1986) ]

Horizon is a physical object (viscous fluid)



EFFECTIVE THEORY OF 

DECOUPLED MODES

𝜔ndec = 𝑂(𝐷)

𝜔dec = 𝑂(1)

𝑂(𝑟0/𝐷)

 Integrating out (neglecting) of non-decoupled modes

 Dynamics = (non-decoupled) + (decoupled)

time scale : 𝑂(𝑟0/𝐷) time scale : 𝑂(𝑟0)

- Effective theory only for slow modes

- Black holes after drastic phenomena

[Emparan-Suzuki-Tanabe (2015), Minwalla et.al. (2015)]

non-decoupled decoupled



SETUP FOR EFT

 Solving the Einstein equations for decoupled modes

𝝏𝒓 = 𝑶(𝑫)

𝑆𝐷−3

- Equations are nonlinear ODEs w.r.t radial derivatives

- Physical quantities of BH such as Mass, (angular) momentum, 

charge, etc, are given by integration functions

- EoMs of membrane appear in the constraint equations



STATIONARY CASE

 Stationary black holes without external fields

- membrane becomes a soap bubble

𝐾 = 2𝛾𝜅

𝐾: mean curvature of the membrane

𝛾: redshift factor in the background 

𝜅: surface gravity of the membrane

- Black hole is just balanced only by its own surface tension (gravity)

External fields give polarizations and additional deformation to the membrane

• Schwarzschild, Myers-Perry BHs (rotating BHs), (non-uniform) black brane, 

black droplets/funnels, …

[ Emparan-Shiromizu-Suzuki-Tanabe-Tanaka (2015), 

Suzuki-Tanabe (2015) ]



DYNAMICAL CASE

 Time-dependent large D effective equations

- Black hole is a membrane with time dependent 

mass and momentum 𝑚(𝑡, 𝑥) 𝑝(𝑡, 𝑥)

- Solving the Einstein equations, we obtain

𝑑𝑠2 = − 1 −
𝒎(𝒕, 𝒙)

𝑅
𝑑𝑡2 + 2𝑑𝑡𝑑𝑟 −

𝒑(𝒕, 𝒙)

𝑅
𝑑𝑡𝑑𝑥 + ⋯

𝑅 = 𝑟/𝑟0
𝐷−3

Energy-momentum tensor of a membrane is read by the 

Brown-York method

𝑟 − 𝑟0 = 𝑂(𝑟0/𝐷)

- Constraint equations in the Einstein equations give nonlinear 

dynamical effective equations for 𝑚(𝑡, 𝑥) and 𝑝(𝑡, 𝑥)

EoMs of the membrane is derived from the Einstein equation

We can derive effective equations for general black holes



DYNAMICAL BLACK 

STRINGS

 Explicit example: Dynamical black string

- D dim static black string solution (exact solution)

𝑑𝑠2 = − 1 −
𝑚

𝑅
𝑑𝑡2 + 2𝑑𝑡𝑑𝑟 + 𝑑𝑍2 + 𝑟2𝑑Ω𝐷−3

- D dim dynamical black string solution at large D

𝑑𝑠2 = − 1 −
𝒎(𝒕, 𝒛)

𝑅
𝑑𝑡2 + 2𝑑𝑡𝑑𝑟 +

𝑑𝑧2

𝐷
−
𝒑(𝒕, 𝒛)

𝑅

𝑑𝑡𝑑𝑧

𝐷
+ 𝑟2𝑑Ω𝐷−3

𝑅 = 𝑟/𝑟0
𝐷−3

𝑍 = 𝑧/ 𝐷

mass: (𝐷 − 3)𝑚𝑟0
𝐷−3 tension: 𝑚𝑟0

𝐷−3

𝐷 factor appears from the sound velocity order

𝑣~ tension/mass 1/2~𝑂(1/ 𝐷)

[ Emparan-Suzuki-Tanabe (2015) ]



EFFECTIVE 

EQUATIONS

 Effective equations of dynamical black strings

𝑑𝑠2 = − 1 −
𝒎(𝒕, 𝒛)

𝑅
𝑑𝑡2 + 2𝑑𝑡𝑑𝑟 +

𝑑𝑧2

𝐷
−
𝒑(𝒕, 𝒛)

𝑅

𝑑𝑡𝑑𝑧

𝐷
+ 𝑟2𝑑Ω𝐷−3

𝜕𝑡𝑚− 𝜕𝑧
2𝑚 = −𝜕𝑧𝑝

𝜕𝑡𝑝 − 𝜕𝑧
2𝑝 = 𝜕𝑧𝑚− 𝜕𝑧

𝑝2

𝑚

- Nonlinear coupled diffusion equations 

Very easy to solve the equations numerically

- These equations can be rewritten in a hydrodynamic form

𝜕𝑡𝑚 + 𝜕𝑧 𝑚𝑣𝑧 = 0

𝜕𝑡 𝑚𝑣𝑧 + 𝜕𝑧𝜏𝑧𝑧 = 0

• Mass and momentum are conserved (feature of decoupled modes)

• Truncation is occurred naturally by the large D limit

𝑝 = 𝑚𝑣𝑧 − 𝜕𝑧𝑚



GREGORY-LAFLAMME

 Black strings are dynamically unstable

- Linear analysis

- What is the final state ?

Nontrivial static state ? Singularity ? 

𝛿ℎ𝜇𝜈 ∝ 𝑒Ω𝑡

 Very hard problem of GR

• Only one example 

1 month for one solution 

• How universal ?

Initial condition dependence

Dimension dependence

Effects of other matter such as 

gauge fields
[ Lehner-Pretorius (2010) ]

Evolution of 5D unstable black string

One of unresolved problem in GR



LARGE D RESULTS

 Large D effective theory gives simple analysis

𝜕𝑡𝑚− 𝜕𝑧
2𝑚 = −𝜕𝑧𝑝

𝜕𝑡𝑝 − 𝜕𝑧
2𝑝 = 𝜕𝑧𝑚− 𝜕𝑧

𝑝2

𝑚



LARGE D RESULTS

- Final state is non-uniform black string in large dimensions (as expected)

We can solve equations easily

- A few seconds for one calculation (systematic analysis is possible)

- Inclusion of higher order corrections in 1/D expansions gives 

dimensional dependence of results

Observation of critical dimensions, cusp in the phase diagram,…



NUBS

 Phase diagram of Non-uniform black strings (NUBS)

Higher dim (D>13) Lower dim (D<13)

cusp

Critical dimensions

(D~13)

- Dimensional dependence of finale state of GL instability

- Large D calculation can capture these phenomena

[ Emparan-Luna-Martinez-Suzuki-Tanabe (to be appeared) ]

[ Murata-Figueras (2012) ]



SHORT SUMMARY

 Large D method is very powerful

- For decoupled mode analysis (even in nonlinear region)

- Dynamical analysis is possible systematically

 What can we do ? (advertisement of our (future) work)

- Derivation of membrane paradigm from the Einstein equations

- Final state of instabilities of black holes

Rotating black holes, black rings, charged black holes

Also for final state of the superradiant instability

- (Dynamical) deformation of black objects

Wave collisions on planar AdS black brane (AdS version of GL analysis)

Polarized black holes/branes by external electric fields

Dynamics of braneworld black holes or black droplets/funnels

Construction of unknown black holes with new horizon topology
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SUMMARY

 Gravity always has a dimensionless parameter 

in its theory, spacetime dimension D 

- Large D limit can be always taken if we have gravity

Simplification of the theory on the boundary of the parameter space

- We could show its powerfulness in black hole physics

Black holes have a few low energy excitation (decoupled modes)

Effective theory of decoupled modes is the revival of the membrane paradigm

Nonlinear and dynamical analysis become possible systematically

- Gravity and black holes are now tools, and so does the large D limit

(Possible) Application to other fields (Holographic superconductor, Drude

model, Riemann problem, Cosmology,… ) 

Current procedure of the large D method is a bit technical, but very easy 

(if one can calculate Riemann tensors)



OUTLOOK

 Large D limit exists always if gravity exists

 Application to other gravitational physics

- Quantum gravity : Analogy with the large N limit of gauge theories

- Other classical gravitational phenomena: Cosmology, gravitational 

wave physics, gravitational collapse, many-body system of BHs,…

 Deeper understanding in black hole physics

- Simpleness of decoupled modes and (conformal) symmetry

- What can we do in non-decoupled sector ?

[ Tanabe (to be appeared) ]

[ Emparan-Grumiller-Tanabe (on going) ]

 More systematic and general

- Understanding the application range in black hole physics
[ Emparan-Izumi-Suzuki-Tanabe, Emparan-Suzuki-Tanabe (to be appeared) ]
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 Origin of decoupled modes

 Other examples



QUESTIONS

 We focus on decoupled modes

- Can we construct a nonlinear model for decoupled modes ? 

Linear perturbations (linear analysis of decoupled modes) are well 

understood

Simpleness of calculation implies an existence of simple nonlinear theory ?

- What mechanism classifies decoupled and non-decoupled modes ?

gravitons = (decoupled gravitons) + (non-decoupled gravitons)

How many decoupled modes exist ?

e.g., Schwarzschild BHs has three decoupled modes (two in scalar type perturbation, and one in 

vector type perturbation)

Effective Lagrangian or equations for zero modes ?
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QNMS

 Quasinormal modes are characterized by quantum 

numbers of perturbations

ex) QNMs of Schwarzschild black holes

Ψ = 𝜓 𝑟 𝑒−𝑖𝜔𝑡Yℓ𝑚

- Quantum numbers: ℓ,𝒎 and overtone number 𝒏

𝜔 = 𝜔(ℓ,𝑚, 𝑛)

Overtone number : number of nodes of radial function 𝜓(𝑟)

- Distribution of QNMs : Overtone number dependence of QNMs



SYMMETRY 

PROTECTION ?

 Distribution of QNMs of Schwarzschild black holes

4 dim Schwarzschild

𝜔 = 𝑂(𝐷)

𝜔 = 𝑂(1)

Large D Schwarzschild

𝜔𝑅𝑟0

−
𝜔
𝐼𝑟
0

- Distribution of non-decoupled modes become dispersing with O(D)

- A few decoupled modes keep their positions at O(1) in 𝐷 → ∞

Zero modes, Symmetry protection ? Decoupled modes = Nambu-Goldstone modes ?

[ Berti-Cardoso-Starinets (2009) ]



ORIGIN OF 

DECOUPLED MODES

 Expected picture

- Decoupled modes (zero modes) are Nambu-Goldstone modes

• Black holes have an enhanced symmetry at the large D limit

• The symmetry is spontaneously broken at finite D (by 1/D corrections)

• # decoupled modes = # generators of broken symmetry

ex) Schwarzschild BH has three broken generators

𝜔 = 𝑂(𝐷)

𝜔 = 𝑂(1)−
𝜔
𝐼𝑟
0

𝜔𝑅𝑟0

Non-decoupled modes

Dynamical gravitons even at the large D limit

Decoupled modes

Gauge modes (non-dynamical modes) at the 

large D limit



2D STRING

 2D string action appears at 𝑫 = ∞

- Dimensional reduction on a sphere

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 + 𝑟0

2𝑒−4Φ/(𝐷−2)𝑑Ω𝐷−2

- Einstein-Hilbert action becomes 2D string action

𝑆 =
1

16𝜋𝐺
∫ −𝑔𝑑𝐷𝑥 𝑅

=
Ω𝐷−2𝑟0

𝐷−2

16𝜋𝐺
∫ −𝑔𝑑2𝑥 𝑒−2Φ 𝑅 + 4 𝛻Φ 2 + 4𝜆2

𝜆 = 𝐷/𝑟0

• Action for 2D string BH describing the SL(2,R)/U(1) coset model

• This fact suggests the appearance of a conformal symmetry at 𝐷 = ∞ ?

• D dim spherical symmetric modes = 2D graviton +Dilaton

[ Soda (1992), Grumiller-Kummer-Vassilevich (2002), 

Emparan-Grumiller-Tanabe (2013) ]

[ Witten (1992) ]



LARGE D BH = 2D BH

 2D Witten black hole appears

 D dim Schwarzschild BH becomes the Witten BH

𝑑𝑠2 = −𝑓 𝑟 𝑑𝑡2 + 𝑓 𝑟 −1𝑑𝑟2 + 𝑟2𝑑Ω𝐷−2 𝑓 𝑟 = 1 −
𝑟0
𝑟

𝐷−3

- 2D Witten black hole (gauged WZW model : SL(2,R)/U(1) coset model)

𝑑𝑠2 =
1

𝐷2
− 1 −

1

𝑅
𝑑 Ƹ𝑡2 +

𝑑𝑅2

𝑅(𝑅 − 1)
+ 𝑟0

2𝑑Ω𝐷−2

=
𝟏

𝑫𝟐 −𝐭𝐚𝐧𝐡𝟐 𝝆𝒅ො𝒕𝟐 + 𝒅𝝆𝟐 + 𝒓𝟎
𝟐𝒅𝜴𝑫−𝟐

Ƹ𝑡 = 𝐷 𝑡

𝑅 = cosh2 𝜌

2D Witten black hole

• 2D part (t,r) becomes dominant in the metric 

[ Witten (1992) ]
* Strings can propagate on this geometry at the 1-loop level



GENERALITY

• General properties of black holes at the large D limit

[ Emparan-Grumiller-Tanabe (2013), Emparan-Suzuki-Tanabe (to be appeared) ]

 Black holes become Witten BH generically 

𝑑𝑠2 =
4𝑟0

2

𝐷2 1 − 𝑣2 −𝑑 Ƹ𝑡2 + 𝑑𝜌2 + 𝑑𝑦2 +
𝑑 Ƹ𝑡 − 𝑣𝑑𝑦 2

1 − 𝑣2 cosh2 𝜌
+⋯

- Rotating black holes also have 2D structure (boosted Witten BH)

- More generically, (non-extremal) black holes have 2D structure 

universally

The large D limit of Myers-Perry black holes:

Graviton on black holes = 2D graviton + dilatons

2D gravitons is not dynamical (zero modes)



CONFORMAL 

SYMMETRY

𝑑𝑠2 =
1

𝐷2 − tanh2 𝜌 𝑑 Ƹ𝑡2 + 𝑑𝜌2 + 𝑟0
2𝑑Ω𝐷−2

 2D geometry has conformal symmetry

=
1

𝐷2

𝑑𝑢𝑑𝑣

1 − 𝑢𝑣
+ 𝑟0

2𝑑Ω𝐷−2
𝑢 = 𝑒 መ𝑡 sinh 𝜌

𝑣 = −𝑒−መ𝑡 sinh 𝜌

- Conformal transformation exists in coordinate transformation

𝑢 → 𝑓(𝑢) 𝑣 → 𝑔(𝑣)

This is a reminiscent of SL(2,R)×SL(2,R) symmetry of gauged WZW model 

Gauged (Local) symmetry : Time translation Ƹ𝑡 → Ƹ𝑡 + 𝜖

𝑢 → 𝑢(1 + 𝜖) 𝑣 → 𝑣(1 − 𝜖)

- Associated Virasoro operators

𝐿𝑛 = 𝑢𝑛+1
𝜕

𝜕𝑢
ത𝐿𝑛 = 𝑣𝑛+1

𝜕

𝜕𝑣



ENHANCED CONFORMAL 

SYMMETRY

 Conformal structure is uplifted to the symmetry

𝑑𝑠2 =
1

𝐷2

𝑑𝑢𝑑𝑣

1 − 𝑢𝑣
+ 𝑟0

2𝑑Ω𝐷−2(𝑥
𝐴)

- Symmetry transformation on 2D black hole metric

𝑢 → 𝑢 + 𝜖𝑢𝑛+1 𝐿𝑛 = 𝑢𝑛+1
𝜕

𝜕𝑢

𝑢 → 𝑢 + 𝝐 𝒙𝑨 𝒖𝒏+𝟏 𝐿𝑛 = 𝑢𝑛+1
𝜕

𝜕𝑢

- This is still the (conformal) symmetry transformation of D dim 

black holes metric

• Deformations on 2D part does not affect 𝑆𝐷−2 part

• This is not a coordinate transformation in D dim spacetime

• 𝐿0 and 𝐿±1 reproduce the hidden conformal structure of D dim 

Schwarzschild black hole



INTERPRETATIONS

𝑑𝑠2 =
1

𝐷2

𝑑𝑢𝑑𝑣

1 − 𝑢𝑣
+ 𝑟0

2𝑑Ω𝐷−2(𝑥
𝐴)

 Each generators excite propagating gravitons in D dim 

black hole spacetime

𝑢 → 𝑢 + 𝝐 𝒙𝑨 𝒖𝒏+𝟏 𝐿𝑛 = 𝑢𝑛+1
𝜕

𝜕𝑢

𝑢

𝑣- “Ingoing gravitons” are generated by

𝐿𝑛

The energy of gravitons can be estimated by the Casimir 

operator of SL(2,R) 

𝐸𝑛~𝐷
2𝑛2

Zero modes exist, and they are not propagating (long lived bound state)

𝐿0 = 𝑢
𝜕

𝜕𝑢
ത𝐿0 = 𝑣

𝜕

𝜕𝑣

absorbed or dispersing



NG MODES

 The symmetry is broken by 1/D corrections

𝑑𝑠2 =
1

𝐷2

𝑑𝑢𝑑𝑣

1 − 𝑢𝑣
+ 𝑟0

2𝑑Ω𝐷−2(𝑥
𝐴)

𝑢 → 𝑢 + 𝝐 𝒙𝑨 𝒖𝒏+𝟏 𝐿𝑛 = 𝑢𝑛+1
𝜕

𝜕𝑢

- Not the coordinate transformation (difference appears in 

1/D corrections)

- Zero modes become Nambu-Goldstone modes of spontaneously 

broken conformal symmetry

𝐿0 = 𝑢
𝜕

𝜕𝑢
ത𝐿0 = 𝑣

𝜕

𝜕𝑣

- Comparing perturbation results, excited zero modes are 

identified with the decoupled modes [ Tanabe (to be appeared) ]

Excitations are scalar type perturbations (two decoupled modes in scalar type 

perturbations)



DECOUPLED MODES 

=NG MODES

 Decoupled modes = NG modes with zero energy 

- There are two SL(2,R) in black holes generically

• Existence of two decoupled modes in black holes

- Schwarzschild BH has three decoupled modes

• Two in scalar type perturbations : Broken SL(2,R)×SL(2,R)

• One in vector type perturbations : Broken U(1) ?

𝜔 = 𝑂(𝐷)

𝜔 = 𝑂(1)−
𝜔
𝐼𝑟
0

𝜔𝑅𝑟0

𝑑𝑠2 =
4𝑟0

2

𝐷2 1 − 𝑣2 −𝑑 Ƹ𝑡2 + 𝑑𝜌2 + 𝑑𝑦2 +
𝑑 Ƹ𝑡 − 𝑣𝑑𝑦 2

1 − 𝑣2 cosh2 𝜌
+⋯

Rotation is generated by the boost transformation

Ƹ𝑡 → Ƹ𝑡 cosh𝛼 − 𝑦 sinh𝛼 Ƹ𝑡 → Ƹ𝑡 cosh𝛼(𝑥𝐴) − 𝑦 sinh𝛼 (𝑥𝐴)

This boost symmetry is also broken in 1/D corrections (give NG modes)



SUMMARY

 Decoupled modes are NG modes of large D BHs

- Black holes generically have 2D structure in the metric

- 2D structure has two conformal symmetries in coordinate 

transformations

- Broken generators with zero energy give decoupled modes

Scalar type : Conformal symmetry, Vector type: Boost symmetry

- Rotations are introduced as boost transformation

- This understanding gives complete counting of number of 

decoupled modes

- Useful or some help in application of (non)decoupled modes ?


