Gravitational waves from first order phase transition of the Higgs field at high energy scales

Kazunori Nakayama (University of Tokyo)

in collaboration with R.Jinno (KEK), M.Takimoto (KEK)

2016/5/17, Osaka University

R.Jinno, KN, M.Takimoto, 1510.02697

Contents

- Introduction
- Ist order phase transition and GWs
- Phase transition of Higgs at high scale and GWs

Introduction

Recent discoveries

Higgs boson

Gravitational wave (GW)

LIGO (2016)

- Unfortunately (?), both are NOT new physics beyond SM
- However, both (Higgs & GWs) can be a new probe of physics beyond SM
- In some extension of SM, electroweak phase transition can be 1st order

 - Electroweak baryogenesis
 GWs from bubble collisions

```
f~ImHz (LISA range)
```

We show that Higgs phase transition can happen at much higher energy scale and resulting GWs may probe the nature of Higgs and physics beyond SM

GWs from 1st order phase transition

Phase transition (toy model)

$$V(\phi) = V_0 - m_\phi^2 \phi^2 + \lambda \phi^4$$

$$\mathcal{L} = -g^2 \phi^2 \chi^2$$

Suppose that χ is in thermal equilibrium

$$V_T(\phi) \simeq \frac{g^2}{12} T^2 \phi^2 \qquad (\phi \ll T)$$

 $T\gtrsim m_{\phi}/g$: Symmetric phase $T\lesssim m_{\phi}/g$: Broken phase

• Phase transition (toy model)
• Finite-temperature effective potential

$$V_T^{B/F}(\phi) = \frac{T^4}{2\pi^2} J_{B/F}\left(\frac{m^2}{T^2}\right)$$

$$m(\phi) = g\phi$$

$$J_B[m^2\beta^2] = \int_0^{\infty} dx \ x^2 \log\left[1 - e^{-\sqrt{x^2 + \beta^2 m^2}}\right]$$
• High-temperature expansion $(m \ll T)$

$$J_B(m^2/T^2) = -\frac{\pi^4}{45} + \frac{\pi^2}{12} \frac{m^2}{T^2} - \frac{\pi}{6} \left(\frac{m^2}{T^2}\right)^{3/2} - \frac{1}{32} \frac{m^4}{T^4} \log \frac{m^2}{a_b T^2}$$
Thermal mass term
$$V \sim g^2 T^2 \phi^2$$

$$V \sim -g^3 T \phi^3$$

• Zero + Finite-T potential

Bubble nucleation

Coleman (1977), Linde (1983)

Vacuum decay rate

$$\Gamma \sim T^4 e^{-S_3/T}$$

 $V(\Phi)$

 $r = \infty$

• S_3 :Action of O(3) symmetric bounce solution

$$S_3(T) = \int d^3x \left[\frac{1}{2} (\nabla \Phi)^2 + V(\Phi, T) \right]$$
$$\frac{d^2 \Phi}{dr^2} + \frac{2}{r} \frac{d\Phi}{dr} - \frac{\partial V}{\partial \Phi} = 0, \qquad -$$

Boundary condition:

$$\Phi(r = \infty) = \Phi_{\text{false}},$$
$$\frac{d\Phi}{dr}(r = 0) = 0.$$

~ Dynamics of scalar field with inverted potential -V with r being "time"

$$\Phi = 0$$

$$\Phi \neq 0$$

$$r = 0$$

$$\Phi = 0$$

$$V \sim (g^2 T^2 - m_{\phi}^2)\phi^2 - AT\phi^3 + \lambda\phi^4 \qquad \left(\frac{m_{\phi}}{g} < T < T_c\right)$$

Thin wall limit

GWs from bubble collision

- Collision of bubbles produce GWs
- Important parameter is bubble size at collision: β^{-1}
- Bubble size just after the production is $\ \sim T^{-1}$
- β^{-1} is determined by duration of phase transition $\beta^{-1} \sim c \Delta t$ Note that $T^{-1} \ll \ll \beta^{-1} \ll H^{-1}$

- Duration of phase transition
 - Tunneling rate

$$\Gamma \sim T^4 e^{-S_3/T}$$

- Phase transition happens at $\Gamma \sim H^4 \longrightarrow \left. \frac{S_3}{T} \right|_{T=T_*} = 137 + 4 \log(100 \, \text{GeV}/T_*)$
- Duration of phase transition $(S_* \equiv S_3/T)$

Typical duration:
$$\frac{\Gamma}{H^4} = 1 \rightarrow 10$$

$$\frac{dS_*}{dt}\Delta t \sim \mathcal{O}(1) \longrightarrow \Delta t \sim \frac{1}{\beta} \sim \left(\frac{dS_*}{dt}\right)^{-1} \sim \frac{1}{H_*} \left(T\frac{dS_*}{dT}\right)^{-1}$$

$$\frac{\beta}{H_*} = T \frac{d(S_3/T)}{dT} \Big|_{T=T_*}$$

If $S_3 \sim T^4$, $\beta/H \sim 400$. Actually the temperature dependence is complicated.

Typically, the duration of PT is much shorter than the Hubble scale at PT.

$$\begin{array}{l} \mbox{GWs from bubble collision} \\ \mbox{Kosowsky et al. (92), Caprini et al. (2007), Jinno, Takimoto 1605.01403} & R \sim v\beta^{-1} \\ \mbox{Frequency:} & f \sim \beta \frac{a_*}{a_0} \\ & & & \\ \mbox{GWs constraints} \\ \mbox{Frequency:} & f \sim \beta \frac{a_*}{a_0} \\ & & & \\ \mbox{C} \\ \mbox{C} \\ \mbox{GWs constraints} \\ \mbox{GWs constraints} \\ \mbox{GWs constraints} \\ \mbox{GWs constraints} \\ \mbox{C} \\ \mbox{C} \\ \mbox{GWs constraints} \\ \mbox{GWs constraints} \\ \mbox{C} \\ \mbox{C} \\ \mbox{C} \\ \mbox{GWs constraints} \\ \mbox{GWs constraints} \\ \mbox{C} \\ \mbox{GWs constraints} \\ \mbox{C} \\ \mbox{C} \\ \mbox{C} \\ \mbox{GWs constraints} \\ \mbox{GWs constraints} \\ \mbox{GWs constraints} \\ \mbox{C} \\ \mbox{GWs constraints} \\ \$$

set	α	β/H	T_* / GeV
1	0.03	1000	130
2	0.05	300	110
3	0.07	100	85
4	0.1	60	80
5	0.15	40	75
6	0.2	30	70

Phase transition of Higgs at high energy and GWs

- Unfortunately, the electroweak phase transition in SM is NOT first order for $m_h = 125 \,\mathrm{GeV}$
- We need extension of SM to realize 1st order PT

Singlet extension 2HDM MSSM

Many studies on 1st order electroweak PT and GWs.

- Once extended, the scale of PT is not limited to electroweak scale. Much higher scale PT is possible.
 - → Much wider range of GW frequency.

Basic idea

- Suppose that there is a scalar field whose VEV is much higher than EW scale
 - $\phi_{\rm NP}$ Peccei-Quinn field, B-L / GUT Higgs field etc.
- EW Higgs can have huge mass term: $V \sim |\phi_{\rm NP}|^2 |H|^2$
- EW scale is generated by tuning:

 $V \sim (|\phi_{\rm NP}|^2 - v^2)|H|^2 = -m_H^2|H|^2$ $m_H \sim 100 \,{\rm GeV}$

- Before $\phi_{\rm NP}$ gets VEV, SM Higgs has huge mass term. $V\sim -v^2|H|^2$
- The scale of PT can be much different from EW scale!

- $\phi_{\rm NP}$: any scalar field having VEV of $v_{\rm NP}$ (Peccei-Quinn field, B-L Higgs, etc.)
- S_i : singlet scalar having zero VEV
- At high temperature,
 - $H = \phi_{\rm NP} = 0$
- Phase transition happens at

 $T \sim v_{\rm NP} \gg v_{\rm EW}$

• GW frequency can be much higher: e.g. f~IHz (DECIGO)

 $\log_{10} \beta$

Maybe detectable at DECIGO

Summary

- Ist order phase transition can happen at much higher energy scale than electroweak scale (Peccei-Quinn, B-L, etc.)
- Frequency of GWs from bubble collisions can be significantly different from previously thought
- Typically GW amplitude is too small, but it is possible to enhance GW signal in singlet extended models.