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Main question

Possible new roles of topology in quantum many-body 
and non-equilibrium problems in high-energy physics?

• Early Universe

• Heavy ion collisions

• Neutron stars and supernovae

• … 

Beyond Nambu paradigm (spontaneous symmetry breaking)
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Chirality and topology

momentum space spin space
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Topology and Berry curvature

• Berry curvature Ω = Curvature of a Fermi surface

• Winding number = Area integral of Ω 

• Equation of motion with Ω  → Chiral kinetic theory                            
Son-NY (2012, 2013); Stephanov-Yin (2012)

Non-equilibrium dynamics is modified by topological effects

p-space

⌦ = ± p

2|p|3
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• Current in the presence of μ5: 

jL = �µLB

Chiral Magnetic Effect (CME)
je ⇠ (µR � µL)B

Vilenkin (1980); Nielsen, Ninomiya (1983); Son, Zhitnitsky (2004); 
Kharzeev, Warringa, Fukushima (2008)

jR = +µRB
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Chiral vortical effect (CVE)

s p

right-handed

left-handed
v

jR = (Cµ2
R +DT 2)!

jL = �(Cµ2
L +DT 2)!

! = r⇥ v

Vilenkin (1979); Son-Surowka (2009); K. Landsteiner et al. (2011); K. Jensen et al. (2012)



Chiral Matter

• Electroweak plasma in early Universe

• Quark-gluon plasma in RHIC/LHC

• Weyl semimetals (“3D graphene”)

• Neutrino media in supernovae

Electromagnetic Response of Weyl Semimetals

M.M. Vazifeh and M. Franz
Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1

(Dated: March 26, 2013)

It has been suggested recently, based on subtle field-theoretical considerations, that the electro-
magnetic response of Weyl semimetals and the closely related Weyl insulators can be characterized
by an axion term ✓E · B with space and time dependent axion angle ✓(r, t). Here we construct a
minimal lattice model of the Weyl medium and study its electromagnetic response by a combina-
tion of analytical and numerical techniques. We confirm the existence of the anomalous Hall e↵ect
expected on the basis of the field theory treatment. We find, contrary to the latter, that chiral mag-
netic e↵ect (that is, ground-state charge current induced by the applied magnetic field) is absent in
both the semimetal and the insulator phase. We elucidate the reasons for this discrepancy.

When a three-dimensional topological insulator (TI)
[1–3] undergoes a phase transition into an ordinary band
insulator, its low-energy electronic spectrum at the crit-
ical point consists of an odd number of 3D massless
Dirac points. Such 3D Dirac points have been experi-
mentally observed in TlBi(S

1�x

Se
x

)
2

crystals [4] and in
(Bi

1�x

In
x

)
2

Se
2

films [5]. In the presence of the time re-
versal (T ) and inversion (P) symmetries the Dirac points
are doubly degenerate and occur at high-symmetry po-
sitions in the Brillouin zone. When T or P is broken,
however, each Dirac point can split into a pair of ‘Weyl
points’ separated from one another in momentum k or
energy E, as illustrated in Fig. 1. The resulting Weyl
semimetal constitutes a new phase of topological quan-
tum matter [6–14] with a number of fascinating physical
properties including protected surface states and unusual
electromagnetic response.

The low energy theory of an isolated Weyl point is
given by the Hamiltonian

h
W

(k) = b
0

+ v� · (k � b), (1)

where v is the characteristic velocity, � a vector of the
Pauli matrices, b

0

and b denote the shift in energy and
momentum, respectively. Because all three Pauli matri-
ces are used up in h

W

(k), small perturbations can renor-
malize the parameters, b

0

, b and v, but cannot open a
gap. This explains why Weyl semimetal forms a stable
phase [6]. Although the phase has yet to be experimen-
tally observed there are a number of proposed candidate
systems, including pyrochlore iridates [7, 8], TI multilay-
ers [9–12], and magnetically doped TIs [13, 14].

The purpose of this Letter is to address the remarkable
electromagnetic properties of Weyl semimetals. Accord-
ing to the recent theoretical work [15–18], the universal
part of their EM response is described by the topological
✓-term,

S
✓

=
e2

8⇡2

Z
dtdr✓(r, t)E ·B, (2)

(using ~ = c = 1 units) with the ‘axion’ angle given by

✓(r, t) = 2(b · r � b
0

t). (3)

� � � �

�

�

FIG. 1: Low energy spectra in Dirac and Weyl semimetals.
a) Doubly degenerate massless Dirac cone at the transition
from a TI to a band insulator. Weyl semimetals with the
individual cones shifted in b) momenta and c) energy. Panel
d) illustrates the Weyl insulator which can arise when the
excitonic instability gaps out the spectrum indicated in c). In
all panels two components of the 3D crystal momentum k are
shown.

This unusual response is a consequence of the chiral
anomaly [19–21], well known in the quantum field the-
ory of Dirac fermions. The physical manifestations of the
✓-term can be best understood from the associated equa-
tions of motion, which give rise to the following charge
density and current response,

⇢ =
e2

2⇡2

b ·B, (4)

j =
e2

2⇡2

(b⇥E � b
0

B). (5)

Eq. (4) and the first term in Eq. (5) encode the anoma-
lous Hall e↵ect that is expected to occur in a Weyl
semimetal with broken T [7–10]. The second term in Eq.
(5) describes the ‘chiral magnetic e↵ect’ [22], whereby a
ground-state dissipationless current proportional to the
applied magnetic field B is generated in the bulk of a
Weyl semimetal with broken P.
The anomalous Hall e↵ect is known to commonly oc-

cur in solids with broken time-reversal symmetry. In the
present case of the Weyl semimetal its origin and magni-
tude can be understood from simple physical arguments
[7–10] applied to the bulk system as well as in the limit
of decoupled 2D layers [18]. Understanding the chiral
magnetic e↵ect (CME) in a system with non-zero en-
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Chiral kinetic theory
Son-NY (2012); Stephanov-Yin (2012)



Kinetic theory
Kinetic theory, typified by Boltzmann equation, describes the 
statistical behavior of a system in and out of equilibrium

@np

@t
+ v · @np

@x
+ (E + v ⇥B) · @np

@p
= c[np]

Schwinger-Keldysh formalis

From fields to kinetic theory

Collisionless kinetic equations
●Free transport
●Vlasov equation

Boltzmann equation

Transport coefficients

CERN

François Gelis – 2007 Lecture III / III – 2nd Rio-Saclay meeting, CBPF, Rio de Janeiro, September 2007 - p. 33/53

Vlasov equation

■ At the time t0 :
Schwinger-Keldysh formalis

From fields to kinetic theory

Collisionless kinetic equations
●Free transport
●Vlasov equation

Boltzmann equation

Transport coefficients

CERN

François Gelis – 2007 Lecture III / III – 2nd Rio-Saclay meeting, CBPF, Rio de Janeiro, September 2007 - p. 35/53

Vlasov equation

■ At the time t : F

after time t

Ludwig Boltzmann



Boltzmann equation

• Formulated w.r.t. the distribution function: 

• First ignore collisions; Liouville’s theorem implies

dnp

dt
=

@np

@t
+ ẋ · @np

@x
+ ṗ · @np

@p
= 0

np(t,x)



Boltzmann equation

• Formulated w.r.t. the distribution function: 

• First ignore collisions; Liouville’s theorem implies

dnp

dt
=

@np

@t
+ v · @np

@x
+ (E + v ⇥B) · @np

@p
= 0

Lorentz force

np(t,x)



• Formulated w.r.t. the distribution function: 

• Add collisions: 

• This describes, e.g., Ohm’s law:

@np

@t
+ v · @np

@x
+ (E + v ⇥B) · @np

@p
= c[np]

j
noneq

=

Z
dp v�np = �E

np(t,x)

Boltzmann equation



• Formulated w.r.t. the distribution function: 

• Add collisions: 

• This describes, e.g., Ohm’s law:

• CME?  Quantum anomalies?

j
noneq

=

Z
dp v�np = �E

np(t,x)

Boltzmann equation

@np

@t
+ v · @np

@x
+ (E + v ⇥B) · @np

@p
= c[np]



Topology and Berry curvature

• Berry curvature Ω = Curvature of a Fermi surface

• Winding number = Area integral of Ω 

• Equation of motion with Ω  → Chiral kinetic theory                            
Son-NY (2012, 2013); Stephanov-Yin (2012)

Non-equilibrium dynamics is modified by topological effects

p-space

⌦ = ± p

2|p|3



ẋ = p̂+ ṗ⇥⌦p = !�1[p̂+E ⇥⌦p + (p̂ ·⌦p)B]

ṗ = E + ẋ⇥B = !�1[E + p̂⇥B + (E ·B)⌦p]

! = 1 +B ·⌦pLorentz force

Equations of motion



ẋ = p̂+ ṗ⇥⌦p = !�1[p̂+E ⇥⌦p + (p̂ ·⌦p)B]

ṗ = E + ẋ⇥B = !�1[E + p̂⇥B + (E ·B)⌦p]

! = 1 +B ·⌦p

“Lorentz force” in p-space 

Lorentz force in x-space

Equations of motion

Sundaram-Niu, PRB (1999)



ẋ = p̂+ ṗ⇥⌦p = !�1[p̂+E ⇥⌦p + (p̂ ·⌦p)B]

ṗ = E + ẋ⇥B = !�1[E + p̂⇥B + (E ·B)⌦p]

! = 1 +B ·⌦p

Equations of motion



Boltzmann equation

• Formulated w.r.t. the distribution function: 

• First ignore collisions; Liouville’s theorem implies

dnp

dt
=

@np

@t
+ ẋ · @np

@x
+ ṗ · @np

@p
= 0

np(t,x)



Chiral kinetic theory

Son-NY (2012); Stephanov-Yin (2012)

⌦ = ± p

2|p|3

(1 +B ·⌦)
@np

@t
+ [v +E ⇥⌦+ (v ·⌦)B] · @np

@x

+[E + v ⇥B + (E ·B)⌦] · @np

@p
= c[np]

p-space



Chiral Plasma Instability
Akamatsu-NY (2013, 2014)



δB 

Chiral Plasma Instability (CPI)

Assume homogeneous     initiallyµ5



δj ~ µ5δB  

Chiral Plasma Instability (CPI)

Chiral magnetic effect



δj 
δBind 

Chiral Plasma Instability (CPI)

r⇥B = j

Ampere’s law



δj 
δjind ~ µ5δBind 

Chiral Plasma Instability (CPI)

Chiral magnetic effect



δjind 
δB + δB’ind 

Chiral Plasma Instability (CPI)

Positive feedback: instability

r⇥B = j

Ampere’s law



δEind δBind 

δB + δB’ind 

Chiral Plasma Instability (CPI)

Quantum anomaly (non-linear effects) tends to make L and R equal

r⇥E = �@tB

Faraday’s law

�Q5 = #E ·B < 0

anomaly relation



Some applications



Magnetar
• Magnetar: the strongest “magnet” in the Universe 

• ~1015 G at the surface 

• How is the stable and strong magnetic field generated?



Magnetic helicity

• Magnetic helicity (Chern-Simons number):

• Proportional to linking number: (approximate) topological stability

• Assumed as an initial condition in magneto-hydrodynamics (MHD)

• However, its origin is not trivial (P-odd quantity).

poloidal/toroidal B

H = 0 H = �2�1�2

Hmag =

Z

V
A ·B



Magnetic field from CPI?

• Neutrino emission at supernovae:

• More right-handed electrons remain, which is unstable (CPI) 

• Magnetic field ~1018 G at the core (at most)

• Helicity conservation: fermion’s helicity → magnetic helicity

p+ e�L ! n+ ⌫Le

Ohnishi-NY (2014)

eLeR eLeR

+ helical B

eLeR

supernovae CPI



Evidence of toroidal magnetic field?



Chiral transport of neutrinos 
in supernovae



Neutrinos in supernovae

• Neutrino production at supernovae:

• Neutrino mean free path ~ 1cm when ρN ~1015 g/cm3.

• Even neutrinos can make up matter in supernovae                              
→ chiral quantum liquids (μν ~ 200 MeV)

p+ e�L ! n+ ⌫Le

NY, arXiv:1511.00933 (astro-ph.HE) 

l⌫mfp =
1

�AnA

cross section
(computable in SM)

number density of nuclei



Chiral turbulence

• Possibility of supernova exp. ⇄ cascade direction of turbulence

NY, arXiv:1603.08864 (hep-th) & work in progress

Left-handedness of neutrinos flips the cascade direction of turbulence!
• 3D chiral matter: inverse cascade → explosion becomes easier

………………

Direct cascade
(3D usual matter)

Inverse cascade
(2D usual matter)

explosion difficult explosion easier



Summary

• Chirality = Topology in relativistic many-body systems.

• Relevance of chiral transport in astrophysics:                       
magnetars and supernova (SN) explosions.

• Future simulations of SN must include Berry curvature of ν

• More applications of chiral transport theories to cond-mat, 
nuclear, and astro physics.


