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Introduction
Supersymmetry is powerful enough to determine some parts of quantum 
effects in field theory.

In particular, the localization method enables us to get exact 
answer of the partition function or correlation function of supersymmetric 
gauge theory. [Pestun, Jafferis, Hama-Hosomichi-Lee]

However, the localization can be only applied to the 
theory with a Lagrangian description, though it is known the 
existence of strongly-coupled theories which are difficult to write 
Lagrangians. 

 4d N=2 class S theories [Gaiotto]
 4d N=2 Argyres-Douglas theory and its generalizations 

[Argyres-Douglas, Argyres-Plesser-Seiberg-Witten…]



UV Lagrangian

(N=1) strongly-coupled SCFT

N=1 SQCD 
in conformal window

UV

IR

RG flow

can compute 
the partition function 

from the UV Lagrangian!

SCI [Spiridonov,Vartanov]

For example….



A remarkable phenomena is that the Lagrangian has only 
N=1 supersymmetry in 4d, which is enhanced to N=2 in 

the IR

In this talk, I present Lagrangian descriptions which flow 
in the IR to N=2 Argyres-Douglas theories.
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To have Lagrangians gives a new handle to study the 
strongly-interacting theories. Non-BPS sector?

How useful?

We can compute the partition functions of the SCFTs from the 
Lagrangians (superconformal index in the full generality). 

Indeed, the superconformal indices obtained in this way agree 
with the previous results in special limits by [Buican-Nishinaka, 
Cordova-Shao, Song]



Why N=2 enhancement?

We lack the understanding of the mechanism of the 
supersymmetry enhancement. Even we don’t prove the IR theory 
has N=2 supersymmetry. 

Any comments and suggestions are helpful!!! 
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Review of Argyres-Douglas 
theories



originally has been found at the special locus on the Coulomb branch of 
N=2 SU(3) pure SYM theory, where mutually non-local 
massless particles appear [Argyres-Douglas]. 

Argyres-Douglas theory

is strongly coupled N=2 SCFT with central charges [Aharony-
Tachikawa]

has one-dimensional Coulomb branch parametrized by the chiral 
operator u of scaling dimension 6/5.

a =
43

120
, c =

11

30

(The AD theory is the minimal nontrivial SCFT which saturates the central charge bound 
[Liendo-Ramirez-Seo].)



We define Argyres-Douglas theories (generalization) by N=2 SCFTs with 
Coulomb branch operators with fractional dimensions. 

[Argyres-Plesser-Seiberg-Witten, Eguchi-Hori-Ito-Yang]
[Cecotti-Neitzke-Vafa, Bonelli-KM-Tanzini, Xie]

Generalizations

(A1, Ak) series: conformal point of N=2 SU(k+1) pure SYM

(A1, Dk) series: conformal point of N=2 SU(k-1) SQCD w/ 2 flavors

�(ui) =
2(k + 3� i)

k + 3

�(ui) =
2i

k



An N=1 gauge theory



Let us consider the following N=1 theory with SU(2) vector 
multiplets and with the following chiral multiplets:

An N=1 gauge theory

with the superpotential

q q’ 𝜙 M

SU(2) ⃞ ⃞ adj 1
U(1)R0 1/2 -5/2 1 6

U(1)𝓕 1/2 7/2 -1 -6

W = �qq +M�q0q0

Gauge invariant chiral operators:
Tr�2, M, . . .



The central charges of the SCFT are determined from the anomaly 
coefficients of the IR R-symmetry: [Anselmi-Freedman-Grisaru-Johansen]

Central charges

In our case, the IR R-symmetry is a combination of two U(1)’s. Thus 
consider the following

RIR(✏) = R0 + ✏F

a =
3

32
(3TrR3

IR � TrRIR), c =
1

32
(9TrR3

IR � 5TrRIR)

The true R symmetry is determined by maximizing trial 
central charge [Intriligator-Wecht]

a(✏) =
3

32
(3TrRIR(✏)

3 � TrRIR(✏))



decoupling of chiral 
multiplets

A caveat is that we have to check the chiral operators 
have dimension greater than one.

If it is less than one, it is interpreted as being decoupled. Thus we subtract 
its contribution from central charge, and re-a-maximize

dimension 6/5

a =
43

120
, c =

11

30
✏ =

13

15
,

Tr�2, M, . . .



N=1 deformations of N=2 
SCFTs



Suppose we have an N=2 SCFT T with non-Abelian flavor 
symmetry F.  (We use the convention for R symmetry (2I3, r) = (J+, J-).)

Then let us

N=1 deformation

give a nilpotent vev to M (which is specified by the 
embedding ρ: SU(2)→F), which breaks F.

(For F=SU(N), this is classified by a partition of N or Young diagram.)

This gives IR theory TIR[T, ρ], which is generically N=1 
supersymmetric.

couple N=1 chiral multiplet M in the adjoint rep of F by 
the superpotential

W = trµM M: (J+, J-)=(0,2)



More on N=1 deformation
M and μ in the adjoint representation of F are decomposed into su(2) 
spin j-reps                  .

By the vev, the superpotential is deformed as

Due to the first term the U(1) symmetry is broken, but the following 
combinations are preserved:

W = µ1,�1 +
X

j,j3

µj,j3Mj,�j3

J 0
+ := J+, J 0

� := J� � 2⇢(�3)

Mj,j3 , µj,j3

An argument shows that for each su(2) rep, only the 
lowest component survives: [Gadde-KM-Tachikawa-Yan]

M ! {Mj,�j3(=�j)}
W =

X

j

µj,jMj,�j



a-maximization
Input data:

1. the central charges of T
2. flavor central charge of F
3. operator spectrum of T

 
With these one can determine the central charges by a-maximization.

Note that this is applied to non-Lagrangian theories!!!



In this case, F = SO(8) 

We consider the principal embedding of SO(8), the vev 
which breaks SO(8) completely.

The adjoint rep decomposes as

       →   after integrating out the massive fields, 
             we get the Lagrangian in the previous slide

T = SU(2) w/ 4 flavors

28 → 3, 7, 7, 11  

M1,�1,M3,�3,M
0
3,�3,M5,�5

W = �qq +M1�
2qq0 +M3qq

0 +M5�q
0q0 +M 0

3�
3q0q0,



T = SU(2) w/ 4 flavors
Other choices of embeddings:

[5,13], [4,4] (SU(2))    →   (A1, A3) theory (SU(2) flavor sym.)

[32,12] (U(1)xU(1))       →   (A1, D4) theory (SU(3) flavor sym.)

[5,3] (no symmetry)      →    N=1? or N=2? SCFT

other embeddings            →     N=1 SCFTs

a =
11

24
, c =

1

2

a =
7

12
, c =

2

3

a =
6349

13872
, c =

3523

13872



T = SU(N) w/ 2N flavors
In this case, F = SU(2N) x U(1)

[N] (no sym.)         →    (A1, A2N-1) theory (U(1) sym.)

[N-1,1] (U(1))      →     (A1, D2N) theory (SU(2)xU(1) sym.)

others….        

a =
12N2 � 5N � 5

24(N + 1)
, c =

3N2 �N � 1

6(N + 1)

a =
6N � 5

12
, c =

3N � 2

6



T = Sp(N) w/ 4N+4 flavors
In this case, F = SO(4N+4) 

[4N+3,1] (no sym.)      →   (A1, A2N) theory (U(1) sym.)

[4N+1,111] (SO(3))    →   (A1, D2N+1) theory (SU(2) sym.)

others….        

a =
N(8N + 3)

16N + 8
, c =

N

2

a =
N(24N + 19)

24(2N + 3)
, c =

N(6N + 5)

6(2N + 3)



Theories with the IR N=2 enhancement when T =
rank-one theories H1, H2, D4, E6, E7, E8 →    H0

SU(N) SQCD with 2N flavors                 →   (A1, A2N)
Sp(N) SQCD with 2N+2 flavors             →   (A1, A2N+1)
(A1, Dk) theory [Cecotti-Neitzke-Vafa]              →   (A1, Ak-1)

For principal embedding

Theories with no IR N=2 enhancement when T =
other rank-one theories [Argyres et al.]

TN, and R0,N theories of class S [Gaiotto, Chacaltana-Distler]

N=4 SU(2) SYM theory



What’s the pattern of these?

principal embedding: we conjecture that for T to have 2d chiral 
algebra with the Sugawara construction [Beem-Lemos-Liendo-Peelaers-
Rastelli-van Rees] is the condition of the enhancement.

The Sugawara condition is related to the following: 

dimF

c
=

24h_

kF
� 12

next-to-principal embedding: we conjecture that for T to have 2d 
chiral algebra with the Sugawara construction and saturating the flavor 
central charge bound is the condition of the enhancement.

kF � N, SU(N)

kF � N + 2, Sp(N)

kF � N � 4, SO(N)



Full superconformal index



Now we had Lagrangian theories which flow to SCFTs in the IR. Thus 
the superconformal indices of the latter can be simply 
computed from the matter content.

Superconformal index

The index of our N=1 theory is defined by

where j1 and j2 are rotation generators of the maximal torus U(1)1 and 
U(1)2 of SO(4)=SU(2)1xSU(2)2 and R and F is the generators of the 
U(1)R and U(1)F.

(If S3 is described by equation |x1|2+|x2|2=1, j1+j2 and j1-j2 rotate x1 and x2 
by phase.)

I = TrHS3 (�1)F pj1+j2�R/2qj1�j2�R/2⇠F



Index of H0 theory

(We subtract the contributions of the decoupled operators!)
⇠ : fugacity for U(1)F

I = 
�((pq)3⇠�6)

�((pq)1⇠�2)

I
dz

2⇡iz

�(z±(pq)
1
4 ⇠

1
2 )�(z±(pq)�

5
4 ⇠

7
2 )�(z±2,0(pq)

1
2 ⇠�1)

�(z±2)

For instance one could calculate the index of the Argyres-Douglas (H0) 
theory from the Lagrangian:

We substitute                     for the correct IR R symmetry. After that ⇠ ! t
1
5 (pq)

3
10

basically one can compute the integral

Coulomb index limit (pq/t=u, p,q,t→0):

Macdonald limit (p→0) agrees with the index by [Song]

IC =
1

1� u
6
5



Questions

✪ other type of Argyres-Douglas theories (quiver gauge theories?)

✪ What is the condition of UV theory T for the enhancement?

✪ Why the enhancement?

✪ The IR Coulomb branch comes from M, gauge-singlet in the UV…

✪ string/M-theory realization?


