

Mass Ladder Operators from Spacetime Conformal Symmetry PRD 96, 024044, 2017(arXiv:1706.07339) arXiv:1707.08534

Masashi Kimura Universidade de Lisboa (Univ. of Lisbon) w/ Vitor Cardoso, Tsuyoshi Houri

26th Sep 2017

Introduction

In quantum mechanics, ladder operators are very powerful tools. We can derive physical properties without a detailed knowledge of solutions.

Today, we show ladder operators for massive Klein-Gordon equations on curved spacetime.

I expect this will be also powerful tool.

Purpose of this project:

- construct ladder operator for KG eq
- reproduce known results from different point of view
- find new applications

Introduction

My personal motivation: A phenomena around an extremal black hole is effectively described by a massive KG eq in AdS2.

There exists a "conserved quantity" if the mass takes special values.

I guessed that there should be mathematically deeper understanding.

Contents

- mass ladder operator
- properties
- applications
- summary

mass ladder operator

In n Dim spacetime (or space), if there exists a closed conformal Killing vector $\zeta_{
u}$

$$egin{aligned}
abla_\mu \zeta_
u +
abla_
u \zeta_\mu &= Q g_{\mu
u} & (Q = n^{-1}
abla_\mu \zeta^\mu) \
abla_\mu \zeta_
u -
abla_
u \zeta_\mu &= 0 \end{aligned}$$

and ζ_{ν} is an eigen vector of Ricci tensor $R^{\mu}{}_{\nu}\zeta^{\nu} = \chi(n-1)\zeta^{\mu}$ (χ : const.)

then,
$$D_k := \mathcal{L}_{\zeta^\mu} - kQ$$
 satisfies
 $[\Box, D_k] \Phi = \chi(2k + n - 2)D_k \Phi + 2Q(\Box + \chi k(k + n - 1))\Phi$

$$\begin{cases} m^2 := -\chi k(k+n-1) \\ m'^2 := -\chi (k-1)(k+n-2) \end{cases}$$

Eq. becomes

$$(\Box - m'^2)D_k\Phi = (D_k + 2Q)(\Box - m^2)\Phi$$

If Φ is a sol. of KG eq with m^2 $D_k \Phi$ becomes a sol. of KG eq with m'^2

 D_k is mass ladder operator for KG eq

25

Both
$$m^2, m'^2$$
 are real $\iff k$ is real
 $m^2 = -\chi k(k+n-1)$
 $\implies k = k_{\pm} = \frac{1-n \pm \sqrt{(n-1)^2 - 4m^2/\chi}}{2}$

$$rac{\chi}{4}(n-1)^2 \leq m^2, \quad \chi < 0 \quad (ext{e.g. AdS})$$

$$m^2 \leq rac{\chi}{4}(n-1)^2, \quad \chi > 0 \quad (ext{e.g. dS})$$

D_k is surjective (onto) map

- We can construct all solutions for m'^2 from the solutions for m^2
- (proof is straightforward, but need hard calculation)

In this sense, two different mass systems are "same"

S^2 and Spherical harmonics

$$(riangle_{S^2}+\ell(\ell+1))Y_{\ell,m}=0$$

$$L_{\pm}Y_{\ell,m}=\sqrt{(\ell\mp m)(\ell\pm m+1)}Y_{\ell,m\pm 1}$$

$$D_k = {
m sin} heta \partial_ heta - k {
m cos} heta$$
 can shift ℓ

$$D_\ell Y_{\ell,m} = -\sqrt{rac{(2\ell+1)(\ell^2-m^2)}{2\ell-1}}Y_{\ell-1,m}$$

$$D_{-\ell}Y_{\ell-1,m} = \sqrt{\frac{(2\ell-1)(\ell^2 - m^2)}{2\ell + 1}}Y_{\ell,m}$$
11/25

S^2 and Spherical harmonics

$$(riangle_{S^2})rac{e^{i\phi}}{ an heta}=0$$

$$D_{-1}rac{e^{i\phi}}{ an heta} \propto Y_{11}$$

D_k can map singular sol. to regular sol.

AdS case

AdS_n $ds^2 = \frac{dr^2}{r^2} + r^2 \left(-dt^2 + \sum_{i=1}^{n-2} (dx^i)^2 \right)$ $\zeta_{-1} = r^2 \frac{\partial}{\partial r} \quad Q_{-1} = r$ $\zeta_i = x^i r^2 rac{\partial}{\partial r} + rac{1}{r} \eta^{ij} rac{\partial}{\partial x^i} \quad Q_i = x^i r \quad (i = 0, 1, \cdots, n-2)$ $\zeta_{n-1} = (-1 + r^2 \eta_{ij} x^i x^j) \frac{\partial}{\partial r} + \frac{2x^i}{r} \frac{\partial}{\partial x^i} \qquad Q_{n-1} = \frac{1}{r} + r \eta_{ij} x^i x^j$ $D_{\mu,k} = \mathcal{L}_{\zeta_{\mu}} - kQ_{\mu}$ $D_{-1,k} = r^2 rac{\partial}{\partial r} - kr$ $D_{i,k}\sim x^{i}\left(r^{2}rac{\partial}{\partial r}-kr
ight)$ $D_{n-1,k} \sim (\eta_{ij} x^i x^j) \left(r^2 rac{\partial}{\partial r} - kr
ight)$

$$egin{aligned} (\Box_{AdS_n} - m^2) \Phi &= 0 \ \Phi &\sim c_+(x^i) r^{\Delta_+} + c_-(x^i) r^{\Delta_-} \ \Delta_\pm &= rac{-(n-1) \pm \sqrt{(n-1)^2 + 4m^2}}{2} \end{aligned}$$

 $D_{\mu,k} \sim f(x^i) \left(r^2 \frac{\partial}{\partial r} - k_+ r\right)$ maps (non)normalizable mode to (non)normalizable mode

If $m_{
m BF}^2 \leq m^2 \leq m_{
m BF}^2 + 1$ two modes are normalizable, so we need to be carefull

towards AdS/CFT

- D_k can map m^2 to m'^2 This suggests some relations between CFT with different conformal dims
- *D_k* may be able to map a singular sol. into a regular sol.
 Singular sols. may have physical meaning in AdS/CFT context
- $D_{-k-n+2}D_k$ is a symmetry operator m^2 to m^2 15/25

KK mode in AdS5 x S5

$$egin{aligned} & \Box_{AdS_5 imes S^5}\Phi=0 & \Phi=Y_\ell ilde{\Phi} \ & \Longrightarrow \ (\Box_{AdS_5}-\Lambda\ell(\ell+4)) ilde{\Phi}=0 & (\ell=0,1,2,\cdots) \end{aligned}$$

mass spectrum corresponds to the masses which can be mapped from massless scalar fields in AdS5

there is a duality among the zero mode and Kaluza-Klein modes on massless scalar fields in AdS5 x S5

Comment on $\chi = 0$ case

$$m^2=-\chi k(k+n-1)$$
 $R^\mu{}_
u\zeta^
u=\chi(n-1)\zeta^\mu$

 D_k can be used for massless scalar if $\ \chi=0$

We can construct another ladder operator if $Q(=n^{-1}\nabla_{\mu}\zeta^{\mu})$ is constant (homothetic case) $\tilde{D}_{\lambda} := e^{\lambda \mathcal{L}_{\zeta}}$ can shift m^2 to $e^{2\lambda Q}m^2$

Minkowski case $ilde{D}_{\lambda} = e^{\lambda (x^{\mu} \partial_{\mu} + \xi^{\mu} \partial_{\mu})}$

Supersymmetric quantum mechanics

• comformal tr of metric \rightarrow CKV becomes Killing

$$egin{aligned} & \left[\Pi - m^2
ight] \Phi = 0 \ & \Rightarrow \left[\partial_{ar{\lambda}}^2 + ilde{\Pi} - V(ar{\lambda}, m^2)
ight] ar{\Phi} = 0 \end{aligned}$$

V is at most 2nd order of $\frac{1}{\cos \bar{\lambda}}$ or $\frac{1}{\cosh \bar{\lambda}}$ or $\frac{1}{\bar{\lambda}}$

this is a potential for supersymmetric quantum mechanics which has shift shape invariance

18/25

 D_k Corresponds to supercharge

Aretakis const.

Aretakis showed the "instability" of test scalar field on 4Dim extremal RN BH [Aretakis 2011]

It is useful to use the Aretakis const. $\partial_r^{\ell+1}\Phi|_{\mathcal{H}} = \text{const.}$

Relation between Newman Penrose const.? [Bizon, Friedrich, 2013]

We can derive Aretakis const from ladder operator D_k

Aretakis const in AdS_2

$$egin{aligned} ds^2 &= -r^2 dv^2 + 2 dv dr \ ext{KG eq: } 2 \partial_v \partial_r \Phi + \partial_r (r^2 \partial_r \Phi) &= m^2 \Phi \ ext{If we assume } m^2 &= \ell (\ell+1), (\ell=0,1,2,\cdots) \ & \partial_v \partial_r^{\ell+1} \Phi \Big|_{r=0} &= 0 \end{aligned}$$

AdS2 is maximally sym, we can find a quantity which takes const. on every outgoing null hypersurface

$$\left(\partial_v+rac{r^2}{2}\partial_r
ight)\left[\left(rac{vr}{2}+1
ight)^{2(\ell+1)}\partial_r^{\ell+1}\Phi
ight]=0$$

 A_k

outgoing null

Ladder operator D_k in AdS_2

$$ds^2 = -rac{4|\Lambda|}{(x^+ - x^-)^2} dx^+ dx^-$$

closed conformal Killing vector :

$$egin{aligned} &\zeta_{-1} &= \partial_+ - \partial_- \ &\zeta_0 &= x^+ \partial_+ - x^- \partial_- \ &\zeta_1 &= (x^+)^2 \partial_+ - (x^-)^2 \partial_- \end{aligned}$$

$$D_{i,k}=\mathcal{L}_{\zeta_i}-kQ_i \quad (i=-1,0,1)$$

KG eq: $(\Box - \ell(\ell + 1))\Phi = 0$

Acting $D_k \ \ell$ times, $D_1 D_2 \cdots D_{\ell-1} D_\ell \Phi$ becomes massless

 $\Box(D_1D_2\cdots D_{\ell-1}D_\ell\Phi)=0$

$$D_1 D_2 \cdots D_{\ell-1} D_\ell \Phi = F(x^+) + G(x^-)$$

$$\frac{\partial}{\partial x^{-}} D_1 D_2 \cdots D_{\ell-1} D_\ell \Phi = G'(x^{-})$$

This coincides with Aretakis const

 $rac{\partial}{\partial x^{-}} D_1 D_2 \cdots D_{\ell-1} D_\ell$ coincides with $L^{(\ell)}$

up to the function of x^- and $(\Box - m^2)$

$$L^{(2)} = \frac{1}{(x^{-})^2} \left\{ -\partial_- D_1 D_2 - \frac{(x^{+})^2}{(x^{+} - x^{-})^2} (\Box_{AdS_2} - 2) \right\}$$

4D extremal RN black hole

$$ds^2 = -\left(1-\frac{1}{\rho}\right)^2 dv^2 + 2dvd\rho + \rho^2 d\Omega_{S^2}$$

We can also derive Aretakis const in 4Dim extremal Reissner–Nordström black hole

$$\partial_{\rho}(D_1D_2\cdots D_\ell(e^{(\rho-1)/2}\Phi))\Big|_{\mathcal{H}} = \text{const.}$$

Ladder operator is useful for less symmetric spacetimes which have approximate conformal symmetry

Summary, future works

- If there exists CCKV and it is an eigen vector of Ricci tensor, we can define mass ladder operator for KG eq.
- D_k can shift ℓ for $Y_{\ell,m}$
- •We can derive Aretakis const.
- Higher derivative operator becomes non trivial

- (non)smoothness of extremal BHs
- •AdS/CFT •de Sitter case
- super symmetric quantum mechanics
- vector, tensor, spinor harmonics
- derivation from commutation relation