4 N
N N
HEE

Mass Ladder Operators from

Spacetime GConformal Symmetry
PRD 96, 024044, 2017(arXiv:1706.07339)

arXiv:1707.08534

Masashi Kimura

Universidade de Lisboa (Univ. of Lisbon)

w/ Vitor Cardoso, Tsuyoshi Hourl

26t Sep 2017 1/25



=~ Introduction

In quantum mechanics, ladder operators
are very powerful tools.

We can derive physical properties
without a detailed knowledge of solutions.

Today, we show ladder operators for
massive Klein-Gordon equations on
curved spacetime.

| expect this will be also powerful tool.
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=~ Introduction

Purpose of this project:

construct ladder operator for KG eq

reproduce known results from
different point of view

find new applications
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=~ Introduction

My personal motivation:

A phenomena around an extremal
black hole is effectively described by
a massive KG eq in AdS2.

There exists a “conserved quantity”
If the mass takes special values.

| guessed that there should be
mathematically deeper understanding.
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mass ladder operator
"properties
-applications
summary
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* mass ladder operator

In 12 Dim spacetime (or space), If there exists
a closed conformal Killing vector ¢,

VLLCI/ + VVCM — Qg;u/ (Q — n_lvucu)
V[,LCV T VUCM =0

and C. is an eigen vector of Ricci tensor
R", (" = x(n —1)C*" (x: const.)

(tﬂen, Dy := L:n — kQ satisfies

[ ,Dk](I) — X(zk +n — 2)Dk3(1)
_ +2Q(0 + xk(k+n—1))®




m? := —xk(k+n—1)
m’? = —x(k—1)(k+n — 2)

Eq. becomes
(O —m*)Dyp® = (D, +2Q)(O0 — m?)®

If & is a sol. of KG eq with m?

Dy ® becomes a sol. of KG eq with m'?

Dy 1s mass ladder operator for KG eq
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Both m?, m’? are real < k is real
m? = —xk(k +n — 1)

1 —n=x \/(n—1)2—4m2/x
2

— k= k4 =

E(n —1)?2<m?, x<0 (e.g.AdS)

%(n —1)%, x>0 (e.g.dS)
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(AdS_2 case)
m? = k(k + 1)
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Dy is surjective (onto) map
We can construct all solutions for 1m/?

from the solutions for m?

(proof Is straightforward, but need hard calculation)

In this sense, two different mass
systems are “same”
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== S72 and Spherical harmonics

(Ag2 +€(£+1))Yem =0

LiYem =VEFm)ELtm+1)Yemt1

Dy = sinf9y — kcosO@ can shift ¢




== S72 and Spherical harmonics

e'®
(Asz)tané’ =0
D_4 e x Y11
tan 6

D;, can map singular sol. to regular sol.
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d2 n—2 .
2 2 i\ 2
AdS,, d5°=—5+7° (—dt +;(dm))
0
2 —
C—1 5
8 1 .8 o
Ci = 2 = ;,rlm o Q; = z'r (’I, —0,1,-+,n — 2)
o 2x* 0 1 .
Cn—1=(—1+7r°nz'z?) + v . Qn-o1=—Frnjxta’
T r Ox? r

o
D“ak — E’Cu o kQu D_yp=1r"— —kr

or

- 0
Dy ~ x* (TZ— — k:r)

or

9]
Dp_1x ~ (nijz’a’) (fr — — k'r)
or



(Oadgs,, —m?)® =0

® ~ cp(z)rPt +ce_(z*)r>-

—(n—1)% /(n — 1)2 + 4m?
2

AL =

B,
Dyk ~ f() (,,, i k+'f‘) maps (non)normalizable
mode to (non)normalizable mode

2 2 2
If mggp <m* < mpg+1 twomodes are
normalizable, so we need to be carefull
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towards AdS/CFT

* D, can map m? to m’?

This suggests some relations between
CFT with different conformal dims

- D, may be able to map a singular sol. into

a regular sol.

Singular sols. may have physical meaning
INn AdS/CFT context

* D_p_ny2Dk IS @ Symmetry operator

2
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- KK mode in AdS5 x S5

o~

AdS.xs5 P =0 =Y,

— (Oags, — AL(L+4)® =0 (£=0,1,2,---)

mass spectrum corresponds to the masses
which can be mapped from massless scalar
flelds in AdS5

there Is a duality among the zero mode and
Kaluza-Klein modes on massless scalar fields

In AdS5 x S5
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= Comment on case
m? = —xk(k+n—1) R".,¢¥ = x(n—1)¢"

D;. can be used for massless scalarif x =0

We can construct another ladder operator if
Q(=n""'V_C*) is constant (homothetic case)

D> := e**¢ can shift m? to e?*?m?

Minkowski case Dy = e*®"9u+€"0.)
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Supersymmetric qguantum mechanics

-comformal tr of metric — CKV becomes Killing

[ — mz} P =0
—> [8)% +0 — V()_\,mz)} ®=0
V is at most 2" order of ! — or ! — or i
COSA\ cosh\ A

this Is a potential for supersymmetric guantum
mechanics which has shift shape invariance

D, Corresponds to supercharge
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=~ Aretakis const.

Aretakis showed the “instability” of test

scalar field on 4Dim extremal RN BH
[Aretakis 2011]

It IS useful to use the Aretakis const.
OtT1d|4 = const.

Relation between Newman Penrose const.?
[Bizon, Friedrich, 2013]

We can derive Aretakis const from
ladder operator Dy



" Aretakis const in AdS 2

ds?® = —r?dv?

0,011 ®

2dvdr
KG eq: 20,0, ® + 0.(r*0,.®) = m*®
If we assume m? =£(£+1),(£=0,1,2,--)

=0

r=0

AdS2 is maximally sym, we can find a quantity
which takes const. on every outgoing null

hypersurface

(oo +5%)
v 2 T

outgoing null

(

vr

2

2(£+1) ]
+ 1) otid| =0

Ay



 Ladder operator D_k in AdS_2

4|A]

_|_ —_
(zr:"‘ — az—)zdw dx

ds? =

closed conformal Killing vector :
(L1 =0, —0_
Co=xT8L —x O_
¢1 = (27)?04 — (z7)%0-

D; = L¢;, — kQ; (¢=-1,0,1)
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KGeqg: (O—-4(f+1))®=0

Acting D, ¢ times, D1Ds---Dy_1D;®
pecomes massless

(D1D2° . °Dg_1Dg(I)) =0

DiDy---Dy_1Dy® =F(x7) +G(x™)
0 ,
—D1D2' . °Dg_1Dg‘I) =G (.’L‘ )

oxr—
This coincides with Aretakis const
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(459
(Y 2 T E

OUthlng nu” ......... :.: ..................... :Ak

",

o= D1Dz2 - D1 D, coincides with L®

up to the function of =~ and (O — m?)

(z™)*

L(2) —
(z+ —x7)?

{—6—D1D2 — (Hads, — 2)}

(z7)*
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== 4D extremal RN black hole

1\ 2
ds? = — (1 — ;) dv? + 2dvdp p2dQSz

We can also derive Aretakis const in 4Dim
extremal Reissner—Nordstrom black hole

0p(D1D>- - Dy (eP~1/28)) |’H = const.

Ladder operator is useful for less symmetric
spacetimes which have approximate conformal
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== Summary, future works

*If there exists CCKV and It Is an eigen vector
of Riccl tensor, we can define mass ladder
operator for KG eq.

= Dy, can shift ¢ for Y.,

We can derive Aretakis const.

- Higher derivative operator becomes non trivial
* (non)smoothness of extremal BHs

*AdS/CFT -de Sitter case

super symmetric guantum mechanics

*vector, tensor, spinor harmonics
derivation from commutation relation 25/25




