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!'_ 1. Introduction



i Fast scrambling conjecture

“Black holes are the fastest scramblers in nature”
Sekino&Susskind, 08

€ The electric charge spreads out all over
the horizon.

Its time scale:

ty ~ BInS ~ BIn N
\

inverge BHZ\ The number of
Hawking entropy microscopic degree of
temperature freedom of BH.

Scrambling = Delocalization of local quantum excitation



What is scrambling time of a
* conventional matter?

coefficient

4
Scale of the excitation: <Agj‘2> ~ K1

1
Scrambling time: Ty ~ L2

K
Number of DOF X Volume Ld x N

we) ¢, oc N2/4

BH'’s scrambling is much faster than
—_— conventional matters. In N < N2/d

\ 4
Quantum DOF of BH would be strongly chaotic.

d-dim




!’_ Fast scrambling in AdS/CFT

Shenker&Stanford, 13



What is dual state of eternal
‘L black hole?

BNk

» Thermofield double state: ‘\IJ Z _BE”’/2|TL |n>
\/7

left CFT
right CFT

Maldacena, 03

Thermal property is explained by the entanglement.

(U|Og|¥) = Z7r[e PHEOR)]



Correlation is a measure of
i Scrambling- Shenker&Stanford, 13

e

Left CFT " RightCFT

causally disconnected

but entangled

Assume that CFT is “chaotic”.
Give a perturbation on Left CFT.
» Left CFT is scrambled by “chaos”.

» Destroy the correlation between L and R

¥

The correlation between left and right CFTs
quantifies the scrambling.



Exa m p I e : Shenker&Stanford, 13
i non-integrable spin system

10 spins
PP —— ML
\/

Hamiltonian: Z {0 ("H) 1.05 ag) + 0.5 US)}.

Thermofield ‘\1;> S Z e_ﬁE"/2|n>L|n>R
ﬁ -

double:

Give a

perturbation ]\I/'> (5 L)( tw)|T) Decay of the
att=-tw: correlation.
Measure the

correlation at —

t=0:



AdS/CFT calculation of
‘L scrambling

Injected energy
£1(0) O |
perturbation Geometry is
on Left CFT » Wito) deformed.

Correlation function in this geometry N | 2T
~ — (&

—Ad
PrOprOw ~ems [T\

2A weight distance
N 1 Scrambling time
OF
1+ 5% exp( % [tol)

exp t* ~ 61113




Bound on

!'_ “Lyapunov” exponent

Maldacena, Shencker&Stanford, 16



i Correlation function ~ OTOC

perturbed thermofield double

Wt (to)

v)

W (to)

(pr(0)pr(0))w ~ (W] (to)er(0)pr(0)Wy (to)| )
= S e I 2 |V () o1, (0) 2 (0) W (1) ) )

1nm

Etr[ —BHI25(0)ePH2T (1) 0 (0)W (¢ )]

(
= (W(t0)p(0)W(to)p(i6/2))s

~ (W (to)p(0)W (to)e(0))s
Out-of-time-order correlator (OTOC)




Maldacena, Shenker&Stanford, 16

‘L Lyapunov bound

1. Quantum Lyapunov exponent is defined by the OTOC.
WV O)W(H)V(0))g ~ 1 — #e !

2. The Lyapunov exponent has upper bound. Ay < 27T
AdS/CFT mm) Ap = 27T

“refinement of the fast scrambling conjecture”

3. If a QFT saturates the bound, it has an Einstein dual.
most chaotic == black hole dual

(ex. SYK model)



i In this talk

We propose one of the simplest model

which shows fast scrambling.
quark-antiquark in N=4 SYM

Holographic EPR pair. q q

entangled
causally disconnected

A, = 27T T*NBIHS

Dual picture of the EPR pair is just a probe string.

Fast scrambling or Lyapunov bound do
not directly imply the existence of an
Einstein dual.



!'_ Holographic EPR pair



i Setup

We consider a probe classical string in AdS5.

2

ds® = ;(—al?ﬁ2 +dz2? +da? + dyp + dys)

1
SNG — /dQO'\/Th ]

2o

For simplicity, we consider the string in y1=y2=0 plane.
(Effectively AdS3)



Mikhailov, 03

‘L Mikhailov solution

Worldsheet coordinates: (7’ , O )

D ), Z:é

o)
where — ft2 + f:f = —1.

AdS boundary: g0 = 0OQ.

4 X
T~ : proper time of the end point
Non-linear wave
1 from AdS boundary




[t:ft(%ft(r), o= ), :éJ

‘L Holographic EPR solution

As a special case fi(T) =

trajectory of the endpoint
A

X
>

a is the proper
acceleration.




Causal structure of
the worldsheet

Induced metric

ds; = —[0? — a®|dT* + 2d7do .

ercm" V:_U_ae—aT
o+ a

, 4dUdV
(14+UV)?

LUV 11UV 114UV

Tul-Uuv YT ai-Uuv: T al-uv:

Right quark “appears” by the maximal extension.



Why is this solution
i called EPR pair?

Worldsheet = eternal BH

Quark-antiquark is causally disconnected,
but in thermofield double state.

=) 1) = % S e BB 2y )

antiquark
quark

“Causally disconnected” & “entanglement”
= "EPR pair”



Unruh temperature and

‘L Entropy

Accelerating particle feels thermal bath. Unruh effect
a

T — 6_1 — ——  Unruh temperature
2T
Accelerating quark has entropy & energy. Jensen&Karch, 14
4 acceleration:
E=-V\T. e
3 loud of gl
cioud ot gluons
( A: 't hooft coupling - .
temperature:T = —
(] 2T

F = _TSon—shell entropy: S — Q
S = dF/dT ’

E=F+TS

Lcloud



!’_ Holographic EPR with a shock



[t—ftff)m(f), r= D é]

Changing the acceleration

As a perturbation, we slightly change the
acceleration at T = T

>

a a

acceleration
~~

Y

L coshar (T < 70)
1 coshla'T + 1]+ (7> 79)

CL/

junction condition:
, o1\ . 11
co=—(a —a)ry, c=|-—— |sinhary, cy=|(-—— |coshar.

a a



i String dynamics

o

4| -

o
Qo
|

2 F -

2/ V2 + a2

y

normalized by the ) 1

Land;;:fuf:tfgg string. x/ \/ t2 + a2
Even for tiny change of the acceleration,
the string profile is significantly deformed.

16 | | t= —S.GDUI_
0 1




‘L induced metric of the string

ds; = —[0® — M(7)]dm* + 2d7do |
M(7)=a*+ (a” —a®)0(tr — 1) .

Vaidya-like geometry with infalling null shock.

| Shock surface




!'_ Fast scrambling of EPR



Correlation between quark
i and antiquark

Correlation: Force on left and right quarks
/ —d
Qb <FL(TL)FR(TR)>W ~ €
geodesic
TL TR distance
Field on worldsheet is the target space coordinate.
a z(T,0)
Its conjugate operator is the force. )

Lquark ~ —my/ 1 —v2 +V(x)

8£quark/33} ~ F

geodesic distance

0
oa — 0, Ty — —00 , 752—ae_“70: fixed .
a



* Visualizing the correlation

geodesic

worldsheet

earlier change of acceleration



(FLFRr)w

‘L Scrambling time

(F1,(0)Fr(0))w ~ (1 + 5_aeam|> -

da
~1— al7ol

4\% Scrambling time:
4a’\” —2a|m 7- ~ — n . .
- (£> e * CL 5&

>| 70|
Tx




i Fast scrambling

acceleration:

ﬁ
cloud of gluons
4 =
@ g VA
3 Y
4
E = g\/XT .
) Lcloud ] T = ﬁ_l = i

Holographic EPR is a fast scrambler.



i Saturate Lyapunov bound

) _2
‘FLFR'w ~ <1+ Eeah‘”)
4a
N(gl_z) o—2al70]

saturates the bound.

2
~
<

Saturation of the Lyapunov bound

* Einstein dual.



i Summary

We proposed one of the simplest model showing fast
scrambling: holographic EPR pair.

scrambling time

Lyapunov exponent )\L — 27T

Fast scrambler
Saturation of the Lyapunov bound

* Einstein dual.

(SYK is really Einstein gravity?)






i Two shock case

C
o
"(B'A
o /
o
s| a @
(@)
(]
>
o 71 T
Oa

—2
‘FLFrww’ ~ (1 + _ea|T0|(1 _ e—a(T1—To))>

4a

Fast scrambling if tau1-tau2 is not too small.



i Decreasing the accerelation

oa < 0 ‘ ’y<()

~ 501 Qa | T
suri e (13) "= (1= e

Diverging ?

What is happening?



i One-way traverse wormhole

Causally connected.
“One-way traversable wormhole”

\ 4

Divergence of the
correlation or OTOC.

oa>0



induced metric

ds; = —[0® — M(7)]dm* + 2d7do |
M(1) =a®+ (a”* —a®)0(T — 79) .

Vaidya-like geometry with infalling null shock.

0‘.

| Shock surface

On the other hand, for Vaidya
spacetime, the deviation of the

mass must be positive.

\

da = a’ — @ can be negative.

/



Correlation between quark
‘L and antiquark

Correlation: distance

a (Fr,(10)Fr(tR))w ~ e ¢

TL TR
Field on worldsheet is the target space coords.

a
Its conjugate operator is the force. ZE(T, 0>

Lquark ~ —my/1 —v2 4+ V(x)

8£quark/8az ~ F

geodesic distance

0
oa — 0, Ty — —00 , 752—ae_“70: fixed .
a



i Comment on the singularity

P — The induced metric is regular here.

4dUdV
ds} = —

1+UV)?
But the string solution diveges

1U+V 1U-V 1140V

=i ov: YT uisov fTuiouve

-
= x;%z- a—/
The “singularity” corresponds to _ k. |
the Poincare horizon in the target space. 1\
If we take the global coordinates for the target space, X123
. . #] &
there is no divergence.




i Spacetime structure

For T < Tp
we introduced (U,V)-coordinates.
at U_a—a7'<:> —llU — 1-UV
U=ce ; v:_g+a6 T_Cln ) 0_a1+UV
For T > T0
we introduce (U’,V’)-coordinates as
U/ _ ea’T V/ _ _J o a/e—a’T
’ o+ a
1 1-U'V’
—> TZ;IHU’, Uza/1+U’V’ .

Matching condition at shock surface?

U = e

U — ea’ro

tglue



Matching condition

U=¢e", V:_ZJ:Z@_M — T:%IDU, Jzailgg.
U = e | V’:—Z;Z:e_‘” — Tzian', U:alilg:¥:°
(7,0) is common in (U,V) and (U’,V’) patches. /
al_UV' _a,l—U’V’
1+UV|._ 1+ UV| _

a+a)e™V _..
e .
‘ dae?™V 4+ (a + d)




‘L Double scaling limit

0
oa — 0, To — —00 , VEQ—CL_‘”O'ﬁ}ced

a+a) C”OV _a'o ,
da etV + (a+a') » Vi=V+7v,




OTOC measures chaos?

Maldacena, Shenker & Stanford, 16

Cr = —([&(t), p(0)]*) ~ {x(t),p(0) }p5

g

2
) e

Shl S,
SHES:
N W
O o+
| N

A\ :Lyapunov



i What is scrambling

Scrambling = delocalization of local quantum information

T » D

/
trou1:s.ide[|¢> <¢H =~ Pthermal

Scrambling ~ Thermalization
~ Quantum chaos, Butterfly effect

Important in the context of black hole physics or AdS/CFT.



Validity of
i the geodesic approximation

—Ad
<FLFR>W ~ € is effective for large A.

Our case is A=1...

We use the geodesic approximation
just for the rough estimation of the correlation.

(For pure AdS, the geodesic approimation is exact for any A.)



i Geodesic approximation

(Fr,Fp)w ~ e 2

/ N\

conformal weight geodesic distance

[ﬁquark ~—my/1—v2+V(x) J
0

. - - IT\T, 0
Conjugate bulk field for F: ( 7 ) Loans /0 ~ F

.

massless

= A =1



i What is scrambling

Scrambling = delocalization of local quantum information

T » D

/
trou1:s.ide[|¢> <¢H =~ Pthermal

Scrambling ~ Thermalization
~ Quantum chaos, Butterfly effect

Important in the context of black hole physics or AdS/CFT.



* Fast scrambling conjecture

“Black holes are the fastest scramblers in nature”
Sekino&Susskind, 08

\ 7‘ /’ In Schwarzshild coordinates,
M\ P the field line surrounds the BH.
fleld line
» l We cannot dlstlngwsh
BH and charge

black hole

®

ty ~ BInS ~ BInN



What is scrambling time of a
* conventional matter?

coefficient

4
Scale of the excitation: <Agj‘2> ~ K1

1
Scrambling time: Ty ~ L2

K
Number of DOF X Volume Ld x N

we) ¢, oc N2/4

BH'’s scrambling is much faster than
—_— conventional matters. In N < N2/d

\ 4
Quantum DOF of BH would be strongly chaotic.

t, ~ 6 In S : Fast scrambler

d-dim




Maldacena, Shencker&Stanford, 16

‘L Lyapunov bound

1. Quantum Lyapunov exponent is defined by the OTOC.
(WRVO)W(H)V(0))g ~ 1 — e -

[(Cr = {20, DO)P) ~ {2(0),p(0)2p = (1) — 2]

2. The Lyapunov exponent has upper bound. \; < 27T
AdS/CFT =) \p = 27T

“refinement of the fast scrambling conjecture”

3. If a QFT saturates the bound, it has an Einstein dual.
most chaotic ‘ black hole dual

(ex. SYK model)



i Lyapunov bound

OTOC

saturates the bound.

Saturation of the Lyapunov bound

* Einstein dual.
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