Valentin Titus Tenorth

Osaka University December 3rd

INTERNATIONAL MAX PLANCK RESEARCH SCHOOL

Overview

1. Towards Dark Matter Models for the LHC

2. Extended DM EFT

3. Flavor and DM from the EW scale

Overview

1. Towards Dark Matter Models for the LHC

2. Extended DM EFT

3. Flavor and DM from the EW scale

T.Tait

Ø

V.Tenorth

Dark Matter - Search Strategies

1810.09420

Direct Detection

1310.8327, 1408.4371, 1805.12562 (Latest Xenon1t results)

Man,Planck, Institut für Presi

Collider Searches

Theory for DM Collider Searches

Need models for LHC searches Prefer general models that can account for many UV theories In addition compare different DM searches

Theory for DM Collider Searches

Need models for LHC searches Prefer general models that can account for many UV theories In addition compare different DM searches

Theory for DM Collider Searches

Need models for LHC searches Prefer general models that can account for many UV theories In addition compare different DM searches

Quest for new observables: "Leave no stone unturned." Open for new ideas, like displaced vertices!

Theory Evolution

G. Polesello, U. Haisch, F.Goertz

DM EFT and Simplified Models

- $+ \ \ Valid \ for \ \, Direct \ \, Detection$
- $+ \ \mbox{Wide class of models}$
- Break down @LHC
 - \rightarrow Restore Mediator

1008.1783, 1402.1275

DM EFT and Simplified Models

$$\mathcal{L}_{\mathsf{EFT}} = \frac{c_{\chi}}{\Lambda^2} \left(\bar{q} \, \Gamma^a q \right) \left(\bar{\chi} \, \Gamma'_a \, \chi \right)$$

- + Valid for Direct Detection
- + Wide class of models
- Break down @I HC _ \rightarrow Restore Mediator

1008.1783, 1402.1275

 $\mathcal{L}_{\mathsf{simp}} = g_q \, S \, \bar{q} q + g_\chi S \, \bar{\chi} \chi$

$$\propto \frac{g_q \, g_\chi}{p^2 - M_S^2}$$

- + Improve LHC kinematics
- Not gauge invariant
- Rather specific \rightarrow Need for improvement

1409.2893, 1507.00966 (ref. therein)

Consistent Simplified Models

Recently discussed: 2HDM + Mediator1810.09420 (ref. therein) \rightarrow Gauge invariance restored + richer Phenomenology(Most) Important case: 2HDM + a1701.07427, 1712.06597Pseudoscalar \rightarrow No Direct Detection limits

$$\mathcal{L} \subset \mathcal{L}_{2\mathrm{HD}} + \lambda_H a^2 H_1^{\dagger} H_2 - i y_{\chi} a \bar{\chi} \gamma_5 \chi$$

New benchmark model:

ATLAS-CONF-2018-52, CMS-PAS-16-050

Overview

1. Towards Dark Matter Models for the LHC

2. Extended DM EFT

3. Flavor and DM from the EW scale

Work in progress with T.Alanne, G.Arcadi, F.Goertz, K.Tame-Navaez & S.Vogl Based on: TA,FG, 1712.07626

Idea: Combine advantages of both approaches TA,FG, 1712.07626

Allow for:

Lowest order of non-renormalizable operators

- $\rightarrow 4$ Effective Lagrangian up to dimension 5
- \rightarrow Small set of operators
- \rightarrow Consistently include heavier new physics

$$\begin{split} \mathcal{L}_{\text{eff}}^{S\chi} &= -\mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{kin}} - V(\mathcal{S}) \\ &+ \lambda'_{HS} v |H|^2 \mathcal{S} - \lambda_{HS} |H|^2 \mathcal{S}^2 \\ &- \frac{\mathcal{S}}{\Lambda} \left[c_{\lambda \mathcal{S}} \mathcal{S}^4 + c_{HS} |H|^2 \mathcal{S}^2 + c_{\lambda H} |H|^4 \right] \\ &- y_{\mathcal{S}} \mathcal{S} \bar{\chi} \chi - \frac{y_{\mathcal{S}}^{(2)} \mathcal{S}^2 + y_{H} |H|^2}{\Lambda} \bar{\chi} \chi + \text{h.c.} \\ &+ \frac{\mathcal{S}}{\Lambda} \left[(y_d^{\mathcal{S}})^{ij} \bar{Q}_{\text{L}}^i H d_{\text{R}}^j + (y_u^{\mathcal{S}})^{ij} \bar{Q}_{\text{L}}^i \tilde{H} u_{\text{R}}^j \right. \\ &+ (y_\ell^{\mathcal{S}})^{ij} \bar{L}_{\text{L}}^i H \ell_{\text{R}}^j + \text{h.c.} \right] \\ &- \frac{\mathcal{S}}{16\pi^2 \Lambda} \left[g'^2 c_B^{\mathcal{S}} B_{\mu\nu} B^{\mu\nu} + g^2 c_W^{\mathcal{S}} W^{I\mu\nu} W_{\mu\nu}^I \right. \\ &+ g_s^2 c_G^{\mathcal{S}} G^{a\mu\nu} G_{\mu\nu}^a \right] \end{split}$$

$$\begin{split} \mathcal{L}_{\text{eff}}^{\mathcal{S}\chi} &= -\mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{kin}} - V(\mathcal{S}) \\ &+ \lambda'_{HS} v |H|^2 \mathcal{S} - \lambda_{HS} |H|^2 \mathcal{S}^2 \\ &- \frac{\mathcal{S}}{\Lambda} \left[c_{\lambda S} \mathcal{S}^4 + c_{HS} |H|^2 \mathcal{S}^2 + c_{\lambda H} |H|^4 \right] \\ &- y_S \, \mathcal{S} \, \bar{\chi} \chi - \frac{y_S^{(2)} \mathcal{S}^2 + y_H |H|^2}{\Lambda} 2 \\ &+ \frac{\mathcal{S}}{\Lambda} \left[(y_d^S)^{ij} \bar{Q}_{\text{L}}^i H d_{\text{R}}^j + (y_u^S)^{ij} \bar{Q}_{\text{L}}^i \tilde{H} u_{\text{R}}^j \\ &+ (y_\ell^S)^{ij} \bar{L}_{\text{L}}^i H \ell_{\text{R}}^j + \text{h.c.} \right] \\ &- \frac{\mathcal{S}}{16\pi^2 \Lambda} \left[g'^2 c_B^S \, B_{\mu\nu} B^{\mu\nu} + g^2 c_W^S \, W^{I\mu\nu} W_{\mu}^j \right] \end{split}$$

$$\begin{split} \mathcal{L}_{\text{eff}}^{\mathcal{S}\chi} &= -\mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{kin}} - V(\mathcal{S}) \\ &+ \lambda'_{HS} v |H|^2 \mathcal{S} - \lambda_{HS} |H|^2 \mathcal{S}^2 \\ &- \frac{\mathcal{S}}{\Lambda} \left[c_{\lambda S} \mathcal{S}^4 + c_{HS} |H|^2 \mathcal{S}^2 + c_{\lambda H} |H|^4 \right] \\ &- y_S \mathcal{S} \bar{\chi} \chi - \frac{y_S^{(2)} \mathcal{S}^2 + y_H |H|^2}{\Lambda} \bar{\chi} \chi + \text{h.c.} \\ &+ \frac{\mathcal{S}}{\Lambda} \left[(y_d^S)^{ij} \bar{Q}_{\text{L}}^i H d_{\text{R}}^j + (y_a^S)^{ij} \bar{Q}_{\text{L}}^i \tilde{H} u_{\text{R}}^j \\ &+ (y_\ell^S)^{ij} \bar{L}_{\text{L}}^i H \ell_{\text{R}}^j + \text{h.c.} \right] \\ &- \frac{\mathcal{S}}{16\pi^2 \Lambda} \left[g'^2 c_B^S B_{\mu\nu} B^{\mu\nu} + g^2 c_W^S W^{I\mu\nu} W_{\mu\nu}^I \\ &+ g_s^2 c_G^S G^{a\mu\nu} G_{\mu\nu}^a \right] \end{split}$$

Example: Scalar Mediator \mathcal{S} + Fermionic DM χ

$$\begin{split} \mathcal{L}_{\text{eff}}^{S\chi} &= -\mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{kin}} - V(\mathcal{S}) \\ &+ \lambda'_{HS} v |H|^2 \mathcal{S} - \lambda_{HS} |H|^2 \mathcal{S}^2 \\ &- \frac{\mathcal{S}}{\Lambda} \left[c_{\lambda S} \mathcal{S}^4 + c_{HS} |H|^2 \mathcal{S}^2 + c_{\lambda H} |H|^4 \right] \\ &- y_S \, \mathcal{S} \, \bar{\chi} \chi - \frac{y_S^{(2)} \mathcal{S}^2 + y_H |H|^2}{\Lambda} \, \bar{\chi} \chi + \text{h.c.} \\ &+ \frac{\mathcal{S}}{\Lambda} \left[(y_d^S)^{ij} \bar{Q}_{\text{L}}^i H d_{\text{R}}^j + (y_u^S)^{ij} \bar{Q}_{\text{L}}^i \tilde{H} u_{\text{R}}^j \\ &+ (y_\ell^S)^{ij} \bar{L}_{\text{L}}^i H \ell_{\text{R}}^j + \text{h.c.} \right] \\ &- \frac{\mathcal{S}}{16\pi^2 \Lambda} \left[g'^2 c_B^S \, B_{\mu\nu} B^{\mu\nu} + g^2 c_W^S \, W^{I\mu\nu} W_{\mu\nu}^I \\ &+ g_s^2 c_G^S \, G^{a\mu\nu} G_{\mu\nu}^a \right] \end{split}$$

Dim-5 Yukawa-like

$$\begin{split} \mathcal{L}_{\text{eff}}^{S\chi} &= - \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{kin}} - V(\mathcal{S}) \\ &+ \lambda'_{HS} v |H|^2 \mathcal{S} - \lambda_{HS} |H|^2 \mathcal{S}^2 \\ &- \frac{\mathcal{S}}{\Lambda} \left[c_{\lambda S} \mathcal{S}^4 + c_{HS} |H|^2 \mathcal{S}^2 + c_{\lambda H} |H|^4 \right] \\ &- y_S \, \mathcal{S} \, \bar{\chi} \chi - \frac{y_S^{(2)} \mathcal{S}^2 + y_H |H|^2}{\Lambda} \, \bar{\chi} \chi + \text{h.c.} \\ &+ \frac{\mathcal{S}}{\Lambda} \left[(y_d^S)^{ij} \bar{Q}_{\text{L}}^i H d_{\text{R}}^j + (y_a^S)^{ij} \bar{Q}_{\text{L}}^i \tilde{H} u_{\text{R}}^j \right. \\ &+ (y_\ell^S)^{ij} \bar{L}_{\text{L}}^i H \ell_{\text{R}}^j + \text{h.c.} \right] \\ &- \frac{\mathcal{S}}{16\pi^2 \Lambda} \left[g'^2 c_B^S \, B_{\mu\nu} B^{\mu\nu} + g^2 c_W^S \, W^{I\mu\nu} W_{\mu\nu}^I \, 1 \right. \\ &+ g_s^2 c_G^S \, G^{a\mu\nu} G_{\mu\nu}^a \right] \end{split}$$

Mono-Jet Limits - Gluon Coupling

Preliminary Plot

Phythia8 +

CheckMATE

V.Tenorth

Mono-Jet Limits - Gluon Coupling

 $\mathcal{L}_{\text{eff}}^{\mathcal{S}\text{int}} \supset -y_{\mathcal{S}} \,\mathcal{S} \, \bar{\chi} \chi$ MS=100 GeV - MS=250 GeV - MS=500 GeV 0.540 $-\frac{g_s^2 c_G^S}{16\pi^2 \Lambda} \, \mathcal{S} \, G^{a\mu\nu} G^a_{\mu\nu}$ 0.535 χ_L 0.530 y_S v 0.525 Leele 0.520 χ_R 0.515 ATLAS Mono-let 0.510 1711 03301 10 5 15 • $\Lambda = 1$ TeV, $y_S = 1$ M_X [GeV] Use MadGraph5 +

Preliminary Plot

Ose MadGraph5 Phythia8 +
 CheckMATE

Ø

V.Tenorth

Mono-Jet Limits - Yukawa-like Coupling

Preliminary Plot

Phythia8 + CheckMATE

eDMEFT

V. Tenorth

Higgs Mixing + Gluon Coupling - Scalar

$$\mathcal{L}_{\text{eff}}^{\text{Sint}} \supset -\lambda_{HS}' v |H|^2 S - y_S S \, \bar{\chi} \chi - \frac{g_s^2 c_G^S}{16\pi^2 \Lambda} \, S \, G^{a\mu\nu} G^a_{\mu\nu}$$

Preliminary Plots

Yukawa-like + Gluon Couplings - Pseudoscalar

$$\mathcal{L}_{\text{eff}}^{\tilde{\mathcal{S}}\text{int}} \supset -\frac{i\tilde{\mathcal{S}}}{\Lambda} \left[y_b^{\tilde{\mathcal{S}}} \bar{Q}_L H b_R + y_t^{\tilde{\mathcal{S}}} \bar{Q}_L \tilde{H} t_R \right] - y_{\tilde{\mathcal{S}}} \tilde{\mathcal{S}} \, \bar{\chi} \chi - \frac{g_s^2 c_G^{\tilde{\mathcal{S}}}}{16\pi^2 \Lambda} \, \tilde{\mathcal{S}} \, G^{a\mu\nu} G_{\mu\nu}^{\tilde{a}}$$

Preliminary Plots

19/35 🔫

Matching-Example: 2HDM + S

 $\mathcal{L}_{\text{2HDM}+\mathcal{S}} \supset \mathcal{L}_{\text{2HDM}} + \lambda_{12}^{\mathcal{S}} v H_1^{\dagger} H_2 \mathcal{S} + \lambda_{12}^{2\mathcal{S}} H_1^{\dagger} H_2 \mathcal{S}^2 + y_{\mathcal{S}} \mathcal{S} \bar{\chi} \chi$

 H_2 heavy - motivated by Higgs signal strength

Matching-Example: 2HDM + S

 $\mathcal{L}_{2\text{HDM}+\mathcal{S}} \supset \mathcal{L}_{2\text{HDM}} + \lambda_{12}^{\mathcal{S}} v H_1^{\dagger} H_2 \mathcal{S} + \lambda_{12}^{2\mathcal{S}} H_1^{\dagger} H_2 \mathcal{S}^2 + y_{\mathcal{S}} \mathcal{S} \bar{\chi} \chi$

 H_2 heavy - motivated by Higgs signal strength

$$\mathcal{L}_{\text{eff}}^{S\text{int}} \propto \frac{-\lambda_{12}^{S}v}{M^{2}} S\left(Z_{6}|H|^{4} + \sum_{f=u,d,l} \frac{\eta_{f} y_{f}}{\tan \beta} \bar{F}_{\text{L}} H f_{\text{R}} + 2\lambda_{12}^{2S} S^{2}|H|^{2}\right) - \frac{S v}{16\pi^{2} M^{2}} \left[c_{B} B_{\mu\nu} B^{\mu\nu} + c_{W} W^{i\mu\nu} W^{i}_{\mu\nu}\right] 1\text{-loop}$$

$$c_{HS} = \frac{-2\lambda_{12}^{S}\lambda_{12}^{2S}v}{M} \quad \bullet \quad c_{\lambda S} = \frac{2Z_{6}\lambda_{12}^{S}v}{M} \quad \bullet \quad y_{q}^{S} = \frac{\lambda_{12}^{S}\eta_{q}}{M\tan\beta}$$

Preliminary Result

Summary and Outlook I

- Increase applicability of Dark Matter EFT
- Allows matching of various UV theories
- Account for correlations by gauge symmetry
- Proper treatment of Higgs mixing and interaction
- Prepare FeynRules model database entry
- Extend LHC analyses to richer phenomenology
- Present constrains on the Wilson coefficients
- Provide matching of simpler (vector quarks, $\rm 2HDM+\mathcal{S})$ and more complex theories (Composite Models, NMSSM, \ldots)

Overview

1. Towards Dark Matter Models for the LHC

2. Extended DM EFT

3. Flavor and DM from the EW scale

Work in progress with M.Bauer and F.Goertz

Flavor Hierarchy Problem

Explanation by Froggatt-Nielsen '79:

- \rightarrow Fermions charged under spontaneously broken $U_F(1)$
- \rightarrow Effective Yukawa couplings
- $\rightarrow\,$ Number of flavon insertions due to charges $\rightarrow\,$ Hierarchy

$$\mathcal{O} = y \, \left(\frac{S}{\Lambda}\right)^n \bar{Q}_L H q_R$$

Flavor Hierarchy Problem

Explanation by Froggatt-Nielsen '79:

- \rightarrow Fermions charged under spontaneously broken $U_F(1)$
- \rightarrow Effective Yukawa couplings
- $\rightarrow\,$ Number of flavon insertions due to charges $\rightarrow\,$ Hierarchy

$$\mathcal{O} = y \left(\frac{S}{\Lambda}\right)^n \bar{Q}_L H q_R \rightarrow y \left(\frac{\langle S \rangle}{\Lambda}\right)^n \bar{Q}_L H q_R$$

Scale of $\langle S \rangle$ and Λ is not determined!

Flavon at the Electroweak Scale

Proposed by Babu-Nandi and Giudice-Lebedev:

9907213, 0804.1753

$$\frac{S}{\Lambda} \rightarrow \frac{H^{\dagger}H}{\Lambda^2} \rightarrow \frac{v^2}{\Lambda^2}$$

Problems:

- Singlet under all gauge groups
 → Number of insertions n arbitrary
- ▶ Implies $g_{h\bar{b}b} = 3 g_{h\bar{b}b}^{SM}$ → Excluded by Higgs measurements

Flavor from the Electroweak Scale

Use 2nd Higgs Doublet

1506.01719, 1512.03458

$$\frac{S}{\Lambda} \rightarrow \frac{H_u H_d}{\Lambda^2} = \frac{H_u^T(i\sigma_2)H_d}{\Lambda^2} \rightarrow \frac{v_u v_d}{2\Lambda^2}$$

$$\tan \beta = \frac{v_u}{v_d}$$
$$\frac{v_u v_d}{2\Lambda^2} = \epsilon \approx \frac{m_b}{m_t} \quad \rightarrow \quad \Lambda \approx 1.5 \text{ TeV } \sqrt{\frac{\tan \beta}{1 + \tan^2 \beta}}$$

Advantages:

- Valid, predictable and testable model
- Connects flavor and the EW scale

Problems:

· Highly under pressure, especially by direct searches for new scalars

This Work

- 3 Phenomena: Dark Matter Flavor EWSB
- \rightarrow 3 Possible Scales

What if all this happens at one scale?

This Work

- 3 Phenomena: Dark Matter Flavor EWSB
- \rightarrow 3 Possible Scales

What if all this happens at one scale?

Very predictive model with interesting phenomenology for Flavor, Collider and Dark Matter searches!

The Model

Extension of a $2\mathrm{HDM}$ type II

$$\mathcal{L} = y_{ij}^{u} \left(\frac{H_{u}H_{d}}{\Lambda^{2}}\right)^{a_{i}-a_{u_{j}}-a_{H_{u}}} \bar{Q}_{i} H_{u} u_{R_{j}}$$

$$+ y_{ij}^{d} \left(\frac{H_{u}H_{d}}{\Lambda^{2}}\right)^{a_{i}-a_{d_{j}}-a_{H_{d}}} \bar{Q}_{i} H_{d} d_{R_{j}}$$

$$+ c_{\chi} \frac{H_{u}H_{d}}{\Lambda} \bar{\chi}\chi + c_{5} \frac{H_{u}H_{d}}{\Lambda} \bar{\chi}\gamma_{5}\chi + \text{h.c}$$

Free physical Parameters:

 $M_A, M_H, M_{H^{\pm}}, \tan \beta, \cos(\beta - \alpha), c_{\chi}, c_5, m_{\chi}$ $y_{ij}^{u,d} \in \mathcal{O}(1), a_i, a_{u.d_j}, a_{H_{u,d}}$

Higgs Couplings

$$g_{hff} = \kappa_f \, g_{hff}^{\mathsf{SM}}$$
$$g_{hVV} = \kappa_V \, g_{hVV}^{\mathsf{SM}}$$

Here: Production as in 2HDM

$$\kappa_t = \frac{\cos \alpha}{\sin \beta}$$
$$\kappa_V = \sin(\beta - \alpha)$$

But:

$$\kappa_b = \left(2\frac{\sin\alpha}{\cos\beta} - \frac{\cos\alpha}{\sin\beta}\right)$$

 \rightarrow Decay widths change!

ATLAS-CONF-2018-31

Higgs Signal Strength Fit

ATLAS-CONF-2018-31

- ▶ 2HDM of type II
- Restricted to $\kappa_b \approx \pm 1$
- Far from decoupling limit

Electroweak Precision, Perturbativity, Unitarity

Deviation from decoupling limit + $\mathsf{Perturbativity}$ of potential of quartic couplings

- \rightarrow New Scalars not arbitrary heavy
- \rightarrow Mediator to Dark Matter can not decouple

Stability + Unitarity + Electroweak Precision tests

 \rightarrow Limits on mass splittings between the new states

 $M_A \approx M_H \approx M_{H^\pm} \lesssim 700~{\rm GeV}$

Flavor Bounds

Potentially dangerous FCNCs at tree-level

Under control due to several suppressions

$$\begin{split} |C_4^{sd}| &\propto \frac{f^2(\alpha,\beta)}{m_h^2} \, g^2(y) \left(\frac{m_s}{v}\epsilon\right)^2 \\ &\propto f^2(\alpha,\beta) \, \frac{10^{-15}}{\text{GeV}^2} \\ &\lesssim \, \frac{10^{-17}}{\text{GeV}^2} \, \text{ exp. bound} \end{split}$$

1512.03458

Heavy Resonance Searches

Preliminary Plots No longer relevant: $A \rightarrow hZ$

Consistent Model for Pseudoscalar Mediators

$$\mathcal{L}_{\chi} \supset c_5 \ \frac{H_u H_d}{\Lambda} \ \bar{\chi} \gamma_5 \chi \ + \ h.c.$$

Pseudoscalar embedded in the 2nd Higgs Doublet1712.06597 \rightarrow Minimalistic way to restore Gauge Invariance1711.02110 \rightarrow Safe from Direct Detection1711.02110

Coupling to DM via effective operators \rightarrow Accounting for more complex dark sectors

 $\rightarrow \text{Universal signal}$

Mono-Z Resonantly enhanced if $M_H \ge M_A + M_Z$

Relic Density

Relic abundance

- $M_A = M_H = M_{H^\pm} = 600 \text{ GeV}$
- $c_{\chi} = 0$
- $\tan \beta = 4$
- $\cos(\beta \alpha) = 0.22$

Preliminary Plot

Relic Density

Relic abundance

- $\bullet \ M_A = M_H = M_{H^\pm} = 600 \ {\rm GeV}$
- $c_{\chi} = 0$

•
$$m_{\chi} = 140 \text{ GeV}$$

• $c_5 = 0.001$

Preliminary Plot

1.0

Summary and Outlook II

- Consistent model for Flavor and Dark Matter from the Electroweak Scale
- Flavor and Higgs constraints point to same parameter region
- Predicts new particles around $1 \ {\rm TeV}$
- Left over region testable by future LHC runs!
- More detailed analyses, projections for LHC27

Summary and Outlook II

- Consistent model for Flavor and Dark Matter from the Electroweak Scale
- Flavor and Higgs constraints point to same parameter region
- Predicts new particles around $1 \ {\rm TeV}$
- Left over region testable by future LHC runs!
- More detailed analyses, projections for LHC27

Thanks for your attention!

