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Much ado about Majorana fermions

What are Majorana fermions?

“Majorana returns”, F. Wilczek, Nat. Phys. 5 (2009). 

Particles that are own antiparticles 

Real solutions of Dirac eq.  Electrically neutral

Neutrinos might be Majoranas?

Emergent Majoranas in condensed matter 

Experimental Signatures
Mourik et al., Science 336, 1003 (2012).

Nadj-Perge et al., Science 346, 602 (2014), … 

“Unpaired Majorana fermions in quantum wires”, 

A. Kitaev, Phys. Usp., cond-mat/0010440 (2000).

Majorana fermions = edge zero modes 

qubit?

2/31



Surprisingly, the word “Ising” does not appear in Kitaev's

paper (except inside “Surprisingly”) nor in the review … ; 

often this chain is now referred to as the “Kitaev chain”.

Majorana fermions in Stat. Mech.

Kitaev chain = Quantum Ising chain

P. Fendley, J. Stat. Mech. P11020 (2012).

History of the 2d Ising model

1941: Kramers-Wannier, transition temperature

1941-1944: Onsager, exact free energy

1949: Kaufman, Majorana-fermion method, Pffafian

1949-1952: Onsager, Yang, exact magnetization

1970~: McCoy-Wu, Jimbo-Miwa-Sato, …, still ongoing!

Spontaneous magnetization
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Tower of Babel
Exotic “particles” appear in several seemingly-unrelated fields.  

People in these fields use different languages. Dictionary reads

Topological cond-mat. 2d stat-mech. Math-phys.

Majorana fermions

2d Ising model Onsager algebra

Parafermions Chiral Potts model

superintegrable case

Yang-Baxter w/o

difference property

PLUS Onsager alg. 

Fibonacci anyons

RSOS (ABF) model Temperley-Lieb alg.

Their critical points are described by 2d CFTs, 

correlators of which give FQHE wavefunctions. 

What people are doing these days are just a rephrasing 

of what have been known for many decades…?
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Interacting Majorana fermions

Motivation

Do what no one else can do! Let’s solve interacting Majorana

fermions exactly. What is topo. order in interacting systems?

If that’s not motivation enough…

1. Interactions narrow or expand the topo. phase?

Narrow) S. Gangadharaiah et al., PRL 107, 036801 (2011).

Expand) E.M. Stoudenmire et al., PRB 84, 014503 (2011).

2. Physical realization of coupled Majorana wires

Array of Josephson junctions
F. Hassler & D. Schuricht, New. J. Phys. 14 (2012). 

Dictionary again…

Kitaev chain Quantum Ising chain

Interacting Kitaev chain XYZ chain in a field

Via Jordan-Wigner transformation,
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On May 6th, 2014: 

H.K.: I found that the interacting Kitaev/Majorana chain is 

exactly solvable if the chemical potential is tuned to 

a particular function of the other parameters (t, Δ, U).

D.S.: That sounds very interesting. But did you know the 

Peschel-Emery line? [Z. Phys. B, 43, 241, (1981).]

H.K.: No, I didn’t. But I will look into their paper...

It turns out that I’m also the guy who is just 

rephrasing the known results in the literature… 

E-mail discussion

Kind of disappointing…

But I will try to add something new to both topological 

condensed matter physics and mathematical physics.
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Chemical potential

Kitaev/Majorana chain (non-interacting)
 Hamiltonian (complex fermions, with OBC)

site          j-1               j               j+1             j+2             j+3

hopping pairing

A. Kitaev, Phys. Usp. (2001). 

 Complex fermion = pair of real (Majorana) fermions

site j 

Defining 

relations
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Phases in the Kitaev/Majorana chain
 Hamiltonian (Majorana fermions, with OBC)

 Trivial phase 

The fully filled state is 

the unique g.s. (μ>0)

 Topological phase 
New, non-local fermion: 

presence/absence of f⇔ two-fold degenerate g.s.

Non-local zero mode commuting with H0 exists as long as w>μ. 

Topological order! Quantum phase transition occurs at w=μ.

Unpaired 

Majorana

Unpaired 

Majorana
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Kitaev chain = Quantum Ising chain

 Hamiltonian in terms of spins

Jordan-Wigner transformation

Ising model!

 Ground states of the spin model (Jx >> |h|)

2-fold degenerate g.s.: Ferromagnetically

ordered in x direction

Order parameter

Local in spin variables, 

but non-local in fermions!
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Bulk topological invariant

 Hamiltonian in k-space (PBC assumed, -π<k≦π)

Symmetry

 Topological number

k= 0 and π are special!

n-vector Nonzero gap 

⇔

J. Alicea, Rep. Prog. Phys. 

75, 076501 (2012)
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topological

Majorana edge zero modes

 Implication of topological invariant

 Zero mode in real space

Trivial ~ vacuum

Gap should close at the boundary!

Uniform chain

Disordered chain

Majorana zero mode!

Majorana zero mode!

Majorana zero mode at the edge is robust against disorder!

Gap closing  zero mode in the spectrum of system with OBC
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Edge characterization

 Fermionic (Z2) Parity

H0 conserves fermion # mod 2, 

 H0 commutes with  

Characteristic of topological order

PLUS iv) existence of Majorana edge zero modes s.t.

•

•

•

• localized near the edge, and normalizable

as              even in the infinite-size limit. 

Parity=＋ ー

i) Nonvanishing energy gap,  

ii) g.s. degeneracy (OBC), and

iii) locally indistinguishable g.s. (in the fermionic basis) 

NOTE) i), …, iv) are not totally independent.
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Interacting Kitaev/Majorana chain
 Hamiltonian (complex fermions, with OBC)

H  H0 when t =Δ=w, μj =μ, and U=0. μj may depend on j.

 Spin Hamiltonian = XYZ chain in a magnetic field

Symmetries: H commutes with fermionic parity  

Integrable when μj =0 for all j (Baxter, 1971).

4-Majorana int.

Easily solvable for a particular set of μj. (Frustration free!!)
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A crash course in inequalities

: finite-dim. Hilbert space.

 Positive semidefinite operators (H. Tasaki, PTP 99, 489 (1998).) 

Def. 2. For two hermitian matrices A and B on , 

we write if 

Def. 1. For a hermitian matrix on    , we write           

and say A is positive semidefinite if 

Lem. 1. iff all the eigenvalues of A are nonnegative.

Lem. 2. If             and            , then 

 Min-max theorem (Courant-Fischer-Weyl)

Let A and B be two hermitian matrices on    . 

Let ai and bi be the i-th eigenvalues of A and B, respectively. 

(Assume the order,                                                 )

If            , then we have  

For i=1, theorem simply implies the variational principle.

16/31



Frustration-free Hamiltonian

 Anderson’s bound (Phys. Rev. 83 , 1260 (1951). 

 Frustration-free Hamiltonian 

Suppose Hamiltonian takes the form 

where each local hj satisfies

(        is the lowest eigenvalue of hj .)

(The g.s. energy of H) =: 
Gives a lower bound on 

the g.s. energy of AFM 

Heisenberg model.

The case where the equality holds. 

(Pseudo-)Definition. A Hamiltonian                       is said to be 

frustration-free when the ground state is obtained by minimizing 

each term independently.

Examples: AKLT, Kitaev’s toric code, RK (quantum dimer) , … 

A similar concept, Bogomolnyi’s bound appears in field theories.
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From two to many (1)
Cook up a toy model from 2 sites

1 2

 Even and odd Hamiltonians

h1 commutes with fermion parity.  Even and odd sectors.

Even subspace: 

Odd subspace: 

g.s.1: 

g.s.2:

g.s.1 and g.s.2 become degenerate if 
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From two to many (2)

 Product ground states

When μ=μ*, the g.s. of h1 can be expressed as

g.s.1: g.s.2:

L-site Hamiltonian

is frustration free if μ=μ*, in which case the unique g. s. are

NOTE) The boundary potential is half the bulk one.

A fermionic rephrasing of the known results in XYZ spin chain.
Peschel-Emery (1981), Mueller-Schrock (1985), Giampaolo’s works, …

Disentangled (product) states are the ground states!
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Ground states in individual sectors

L=3

They are NOT eigenstates of fermionic parity 

Product form 

L=2

Frustration-free Kitaev chain (t=Δ) often discussed in the literature 

corresponds to the case with α=1.

Examples:

The power of α counts the 

number of ○ (empty sites).
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Solvable line: 

Exact g.s.: 

Solvable line in the phase diagram

 Phase diagram (t=Δ)

c=1

(XY)

c=1/2

(TFI)

 Quantum ANNNI model

Beccaria et al., PRB (2007); Sela & Pereira, PRB (2011); 

Hassler and Schuricht, New. J. Phys. 14 (2012).
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A poor man’s definition of topological order

 Topo. order in 1d interacting Majorana fermions

Fidkowski and Kitaev, PRB 81, 134509 (2010); PRB 83, 075103 (2011).

Z classification reduces to Z8 one. 

Definition (My ver.)  The interacting Kitaev chain is said to be 

in a topological phase if it can be adiabatically transformed 

into a non-interacting Kitaev chain in a topological phase.

Nonvanishing energy gap

Interacting 

model

Non-interacting 

model

The energy gap must be 

nonzero along the entire path.

We need to check …
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Proof of the energy gap –outline-
 Hamiltonian (re-parametrization, t =1)

is achieved by 

 Ground states

H(2U, θ) (interacting) and H (0, θ) (non-interacting) share 

the same ground states!

 Unique g.s. and energy gap

For s>0, we have H(s, θ)≧ H (0, θ). 

From the min-max theorem, 

the uniqueness of the g.s. and the energy gap 

of H(2U, θ) follow from those of H (0, θ).
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Spectrum of H (0, θ)  
 Single-particle spectrum

Matrix B, may not be diagonalizable, but can be written in 

SVD form: where                                        

 Miraculous properties of H(0, θ)

BBT is pentadiagonal, but 

C is tridiagonal & symmetric!

Special factorization

Exact eigenvalues of C
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t=Δ

is nonzero in the infinite-L limit.

Existence of many-body gap 
 Many-body eigenstates of H(0, θ)

I. two g.s. with opposite parities.

(Unique in each parity sector.)

g.s.1      g.s.2

II. Many-body gap (              )

Properties I & II also hold for H(2U, θ).    (min-max thm.)

 Stability away from frustration-free line?

1. Kato’s theorem ( ||V|| < ΔE/2) 

2. Cluster expansion (Kennedy-Tasaki)

3. Lieb-Robinson bound?

Main difficulty: boundary conditions

H(2U, θ) is adiabatically connected to H(0, θ) which is in a 

topological phase! The gap closing does not happen.

exc.1
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Majorana edge zero modes
 Edge zero mode of H(0, θ) ⇔ Left or Right null vector of B

Exact zero modes even for finite L.

g.s.1 g.s.2

They do not exactly commute with H(2U, θ).

Nevertheless, they map one g.s. to the other.

M.B. Hastings & X-G. Wen, PRB 72, 045141 (‘05). 

A significant overlap with many-body Majorana? 
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Josephson 

junction

Twisted Kitaev chain

 Twisted boundary conditions

: magnetic flux,          : Josephson junction

PBC:   b=1,                                   

APBC:   b=1,    
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(non-int. Kitaev)

 (Many-body) level crossing

• Level crossing occurs in topo. phase                

Solvable when 

frustration-free



Staggered case

 Hamiltonian (complex fermions, with OBC)
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• Staggered potential

 Frustration-free case

• Non-interacting (U=0) model is so with

(parametrization)

• Interacting model was worked out by Jurriaan. 

(XYZ spin chain in staggered magnetic field)

• Upper and lower bound on gap, topo. order …



What I did not touch on

Conclusions

• Studied effect of interactions on Kitaev/Majorana chains

• Solvable (frustration-free) line

• Exact ground states, proof of the gap

• Exact solution of the BdG equation

• Topological order and edge zero modes

• Some generalizations
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• Parafermionic generalization

Frustraion-free cases exist

• Interacting Majorana models with N=1 SUSY

Sannomiya-Katsura [1712.01148], solvable even in higher dim.

• Kitaev-type models with dissipation

Solvable/Integrable Lindblad (Master) eq., …


