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Origin of macroscopic irreversibility 

micro (Quantum mechanics) 

 reversible (unitary) 

MACRO (Thermodynamics) 

 irreversible 0S

Fundamental question since Boltzmann 



Bloch group,  Nature physics (2012) 

Experiments: 

Modern progress 

Numerical simulation: 

 Exact diagonalization 

  

   Hard-core bosons 

M. Rigol et al., Nature 452, 854 (2008) 

Superconducting qubits 

Martinis group, Nature Physics (2016) 

Ultracold atoms 



A pure state can reach thermal equilibrium after 
(reasonable) relaxation time by unitary dynamics 
 

When and why  𝑂 ≃ tr[𝑂𝜌MC] ? 
 

 
Long-time average Microcanonical average 

Quantum ergodicity 

Long time average 𝑂  

𝑡 

〈𝜓 𝑡 𝑂 𝜓 𝑡 〉 
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Eigenstate-thermalization hypothesis (ETH) 

All the energy eigenstates are thermal 

Srednicki, PRE 50, 888 (1994); Rigol, Dunjko, Olshanii, Nature 452, 854 (2008) 

𝐸𝑖 𝑂 𝐸𝑖 ≃ tr[𝑂𝜌MC] 

Believed to be true  (from numerical evidences) 
only for non-integrable systems under reasonable assumptions 
(e.g., local interaction, translation invariance,…) 

Microcanonical average 

Sufficient condition for thermalization! 

Long time average =  𝑐𝑖
2 𝐸𝑖 𝑂 𝐸𝑖𝑖 ≃ tr[𝑂𝜌MC] 



K. Kaneko, E. Iyoda, T. Sagawa, Bulletin of Physical Society of Japan (2018) 

Integrable: XXZ, Non-integrable: XXZ +nnn 



Especially, we focus on situations where: 
• 𝑑-dim, periodic boundary 
• Local interaction 
• Translation invariant  ⇒ No localization 
• Exponential decay of correlation functions  ⇒ Not on a critical point 
 
𝑁: the system size (the number of the lattice sites) 
𝐷: the dimension of the microcanonical energy shell 
 Boltzmann entropy: 𝑆 = 𝑘B ln 𝐷 

Lattice systems 

A good platform to study quantum many-body systems 
 Fundamental theorems have been rigorously established 
 Various numerical studies 
 Experimentally accessible with ultracold atoms 

M. Cheneau et al., Nature 481, 484 (2012) 



Formalize ETHs 

Strong ETH:  All the energy eigenstates are thermal 
Weak ETH:  Almost all the energy eigenstates are thermal  

Let 𝑂 an observable with 𝑂 = 1. 

An energy eigenstate |𝐸𝑖〉 is called 𝜀-thermal with respect to 𝑂 iff  
  tr 𝑂𝜌MC − 〈𝐸𝑖 𝑂 𝐸𝑖〉 < 𝜀. 

Let 𝜀 > 0. 

Let 𝐷out
𝜀  be the number of eigenstates |𝐸𝑖〉 that are not 𝜀-thermal.   

𝐸𝑖 𝑂 𝐸𝑖  

tr 𝑂𝜌MC  

𝜀 −𝜀 

Now define: 
 

 (𝐻, 𝑂) satisfies the strong ETH, iff 
for any 𝜀 > 0, there exists 𝑁0 such that for all 𝑁 ≥ 𝑁0, 𝐷out

𝜀 = 0. 
 

 (𝐻, 𝑂) satisfies the weak ETH, iff for any 𝜀 > 0, lim
𝑁→∞

𝐷out
𝜀

𝐷
= 0. 

Rem. If the Hamiltonian has degeneracy, we should add “there exists an energy eigenbasis…” 



Validity of ETH 

Strong 
ETH 

Weak 
ETH 

Nonintegrable 

Integrable 

Localized 

○ ○ 

× ○ 

× × 

Thermalization to 
microcanonical 

○ 

× 

× 

Integrable system does not thermalize: 
Strong ETH is the plausible scenario of thermalization! 



Weak ETH: Variance  

𝑂: quasi-local observable with 𝑂 = 1, 
       Size of its support: |supp𝑂| = 𝒪(𝑁𝛼), 0 ≤ 𝛼 < 1/2 

Fluctuation over energy eigenstates: 

Δ𝑂wETH
2 ≔
1

𝐷
 𝐸𝑖 𝑂 𝐸𝑖 − tr 𝑂𝜌MC

2

𝑖∈𝑀
 𝐸𝑖 𝑂 𝐸𝑖  

tr 𝑂𝜌MC  

Δ𝑂wETH 

Make some additional assumptions:  
that are needed for the local equivalence of ensembles: 
 Exponential decay of correlations ⇒ Not on a critical point 
 Rapid convergence of the free energy 

The case of  𝛼 = 0 was discussed by Biroli, Kollath, Läuchli, PRL 105, 250401 (2010)  

 (But their proof was not rigorous.  Our proof is based on the local equivalence of ensembles by Tasaki, arXiv:1609.0698) 

𝛿 > 0: can be arbitrarily small 

Iyoda, Kaneko, Sagawa, Phys. Rev. Lett. 119, 100601 (2017) 

Δ𝑂wETH
2 ≤ 𝒪(𝑁−

1−2𝛼
4 +𝛿) 

Our theorem: 

In reality (numerics):  

Integrable: Δ𝑂wETH
2 = 𝑂(𝑁−1),    Non-integrable: Essentially, Δ𝑂wETH

2 = 𝑒−𝑂 𝑁  



Weak ETH: Large deviation 

This is rigorous and applicable to both integrable and non-integrable cases 

Under the assumptions of translation invariance, not on a critical point, etc 

𝐸𝑖 𝑂 𝐸𝑖  

tr 𝑂𝜌MC  

𝜀 −𝜀 

𝐷out
𝜀

𝐷
≤ exp(−𝛾𝜀𝑁 + 𝑜(𝑁)) 

𝑂: local observable with 𝑂 = 1 

𝛾𝜀 > 0, 𝛾𝜀 = 𝒪(𝜀
2) 

𝐷: dimension of the microcanonical energy shell 
𝐷out
𝜀  : the number of athermal eigenstates 
𝑁: the number of lattice sites  

K. Netocny, F. Redig, J. Stat. Phys. 117, 521 (2004). 
M. Lenci, L. Rey-Bellet, J. Stat. Phys. 119, 715 (2005). 
Y. Ogata, Comm. Math. Phys. 296, 35 (2010). 

 H. Tasaki, J. Stat. Phys. 163, 937 (2016). 
 T. Mori, arXiv:1609.09776 (2016) . 

But this theorem does not guarantee the strong ETH,  

because 𝐷out
𝜀  itself can be exponentially large (as 𝐷 is exponentially large) 
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Numerical large deviation analysis 

𝐸𝑖 𝑂 𝐸𝑖  

tr 𝑂𝜌MC  

𝜀 −𝜀 
Slightly modified definition of 
athermal eigenstates: 

Cf. The previous (standard) definition: 

  tr 𝑂𝜌MC(𝐸, Δ) − 〈𝐸𝑖 𝑂 𝐸𝑖〉 > 𝜀,  𝒪 1 ≤ Δ ≤ 𝒪( 𝑁)  

Let 𝐷out be the number of eigenstates 𝑖 ∈ 𝑀(𝐸, Δ) that are not thermal 
in the following sense: 

 tr 𝑂𝜌MC 𝐸𝑖 , 𝛿 − 𝐸𝑖 𝑂 𝐸𝑖 > 𝜀   
     Δ = 𝒪 𝑁 , 𝛿 = 𝒪(1)  

T. Yoshizawa, E. Iyoda, T. Sagawa, 
PRL 120, 200604 (2018). 



Numerical large deviation analysis: Integrable 

1d spin chain (= hardcore bosons) 

Exponential decay of 𝐷out/𝐷 Strong ETH is false 

Integrable case: XX model  

T. Yoshizawa, E. Iyoda, T. Sagawa, PRL 120, 200604 (2018). 



Numerical large deviation analysis: Non-integrable 

Nonintegrable case: XXX +nnn  

: XXX Hamiltonian : next-nearest term 

𝜆 : intergrability-breaking parameter 

𝜆 = 0  

𝜆 = 1  

Double exponential decay of 𝐷out/𝐷 
Strong ETH is true 
(even near integrability!) 

T. Yoshizawa, E. Iyoda, T. Sagawa, PRL 120, 200604 (2018). 



Double exponential decay of 𝐷out/𝐷 

An example of the fitting 

Consistent with random matrix theory 

T. Yoshizawa, E. Iyoda, T. Sagawa, PRL 120, 200604 (2018). 



Validity of ETH 
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ETH 
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0

1e

Second law  Entropy production is non-negative on average 

Fluctuation theorem Universal relation far from equilibrium 

Second law as an equality! 

Classical Quantum (Ion-trap) 

J. Liphardt et al.,  

Science 296, 1832 (2002)  

A. An et al., Nat. phys. 11, 193 (2015)  

RNA 
Theory（1990’s-） 
Dissipative dynamical systems, 
Classical Hamiltonian systems,  
Classical Markov (ex. Langevin), 
Quantum Unitary, Quantum Markov, … 

Experiment（2000’s-） 
Colloidal particle, Biomolecule, 
Single electron, Ion trap, NMR, … 

Second law and fluctuation theorem 



Total system: system S and bath B 

(arbitrary: Not necessarily on a lattice!) 

S+B obeys unitary dynamics 

 Initial state of S: arbitrary 

 Initial state of B: Canonical 
→ This is a very special assumption that leads to the second law. 

 No initial correlation between S and B. 

B

H
Ze B /)0(ˆ   ),0(ˆ)0(ˆ)0(ˆ

ˆ

BBS

 


)ˆexp(ˆ   ,ˆ)0(ˆˆ)(ˆ † tHiUUUt  

Setup for previous studies 
By J. Kurchan, H. Tasaki, C. Jarzynski, … 

BIS
ˆˆˆˆ HHHH 

system S 

bath B 
(Inv. Temp.      ) 



Information entropy and Heat are linked! 
（if the initial state of bath B is canonical） 

   )(ˆtr)(ˆ   ,)(ˆln)(ˆtr)( BSSSSS tttttS  

 BB
ˆ))0(ˆ)(ˆ(tr HtQ  

QS  S

Second law (Clausius inequality) 

0S  QS  : entropy production on average 
  (non-negative) 

system S 

bath B 
(Inv. Temp.      ) 

von Neumann 

entropy 
Heat 



Projection measurements of          at initial and final times 
Difference of outcomes:  

：stochastic entropy production (fluctuates) 

BHtt ˆ)(ˆln)(ˆ S  



)(ˆ t


Fluctuation theorem 

Let 

Integral fluctuation theorem (Jarzynski equality) 

1e
Second law can be expressed by 

an equality with full cumulants 

(even if S is far from equilibrium) 

Reproduces the second law by 

 

and the fluctuation-dissipation theorem, etc. 

   ee

system S 

bath B 
(Inv. Temp.      ) 
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Second law for a single energy eigenstate? 

Our theorem (roughly): 

Δ𝑆𝑆 − 𝛽𝑄 ≥ −𝜀 holds for most of the energy eigenstates 

Conventional derivation of the second law: 
The initial canonical distribution of the bath ⇒ The second law 

ETH argument: 
Even a single energy eigenstate can be thermal; 
The canonical distribution is just a statistical-mechanical ansatz to compute 
thermodynamic quantities in equilibrium. 

Question: 
Is it possible to prove the second law when the initial state of the bath is 
a single energy eigenstate, as a theorem of quantum mechanics? 



Setup 

• Small system S is locally in contact with  

      a large bath B:   𝐻 = 𝐻S +𝐻I +𝐻B 

 

• Initial state: 𝜌(0) = 𝜌S(0) ⊗ |𝐸𝑖〉〈𝐸𝑖| 

 𝜌S(0) is arbitrary, |𝐸𝑖〉 is a thermal eigenstate 
 

• B is on a lattice and satisfies some assumptions required for 
the ETH and the “Lieb-Robinson bound.”  Especially: 

– Local interaction 

– Translation invariant ⇒ No localization 

– Exponential decay of correlations ⇒ Not on a critical point 

 

 

System S 

Bath B 

(on a lattice) 



  QSS



Even though the state of B is an energy eigenstate,  
information and thermodynamics are linked 

：Small error term 

For any    , for any  t, there exists a sufficiently large bath, such that... 

→ Mathematically rigorous  

0

Second law (Clausius inequality) 

Size of the bath: )( )21(4   ON

0)( / dNO  Lieb-Robinson time: 2/10 



→ small vt /)B,dist(S 0 

    1)exp()B,dist(SexpBˆˆ ˆ),(ˆ 00
00 BSBS   tvSOOCOtO 

Lieb-Robinson bound 

E. Lieb and D. Robinson, Commun. Math. Phys. 28, 251 (1972) 

M. Hastings and T. Koma, Commun. Math. Phys. 265, 781 (2006) 

 : Lieb-Robinson time 

/v ：Lieb-Robinson velocity 

The velocity of “information propagation” 
in B is finite, due to locality of interaction 

Key of the proof: Lieb-Robinson bound 

B1 

S is not affected by B1 in the short time regime 

Effective “light-cone” like structure 

 boundary 

∂B0 

S feels as if B is in the canonical distribution  

   if the initial energy eigenstate of B satisfies ETH 

iE

B0 

S 



Universal property of thermal fluctuation far from equilibrium 
emerges from quantum fluctuation of pure states 

For any      , for any time t, there exists a sufficiently large bath, such that… 

→ Mathematically rigorous  

 

0

In addition,           is assumed. 
If this commutator is not zero but small,  
a small correction term is needed. 

0],[ IBS  HHH

Integral fluctuation theorem 

  1e

Size of the bath: )( )21(4   ON

0)( / dNO  Lieb-Robinson time: 2/10 



   
ji

jjii

ji

ijjiii ccccgccccc
i

cH
,

††

,

†††

B
ˆ ˆˆ ˆˆ ˆˆ ˆˆˆˆ 

Hard core bosons with nearest-neighbor repulsion 

11)0(ˆ
S Initial state:  

Method: Exact diagonalization (full) 

Numerical simulation: Setup 

0

†

0S
ˆˆˆ ccH    

j

jj ccccH
,0

0

†
0

†

I
ˆ ˆˆ ˆ'ˆ 

1.0

1.0/   ,1/   g

0} ˆ, ˆ{}ˆ,ˆ{   ,1} ˆ,ˆ{  †††
iiiiii cccccc jicccccc jijiji  for    0] ˆ, ˆ[]ˆ,ˆ[] ˆ,ˆ[ †††

B 

S 

(equivalent to XXZ) 

Bath: 4 bosons, 



Average entropy production is always non-negative 

Second law 

Lieb- 

Robinson 

Time 

𝜏 ∼ 1/𝛾 

Even beyond the Lieb-Robinson time 
 → Kaneko, Iyoda, Sagawa, Phys. Rev. E 96, 062148 (2017).   



Integral fluctuation theorem 

Integral FT holds 
(But quite subtle, because of the 
large finite-size effect) 

      Deviation comes from  
      “bare” quantum fluctuation  

Dynamical crossover from thermal 
fluctuation to bare quantum fluctuation 

Lieb- 

Robinson 

Time 

𝜏 ∼ 1/𝛾 



Estimation of the LR time 𝜏 

Coffee in a room: 𝜏 ∼ms  very short! 

If air of the room was in an energy eigenstate,  

then the FT would hold only in such a short time scale. 

M. Cheneau et al., Nature 481, 484 (2012) 

Ultracold atoms: 𝜏 ∼ 𝐿1/2ℏ/𝐽 

Can be hundreds times of the 

experimental time scale ℏ/𝐽  

𝐽: tunneling amplitude 

𝐿: the side length (the number of the sites) of the system 

Clear verification of the FT would be possible 



For pure states under reversible unitary dynamics, 

 

 Second law 
   
relates thermodynamic heat and the von Neumann entropy 
 Both in the short and long time regimes 

 

 Fluctuation theorem 

   

 Fundamental property of entropy production far from equilibrium 
 Only in the short time regime 

2ndS   QS

Key ideas: ETH and Lieb-Robinson bound 

Summary 

FT1  e

B1 

S 

iE

B0 

E. Iyoda, K. Kaneko, T. Sagawa, 
Phys. Rev. Lett. 119, 100601 (2017) 
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Thank you for your attention! 


