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1. Introduction



What we learn from the Higgs mass

mh ≃ 125 GeV ⇒ V = λ(|H|2 − v2)2 with λ(mh) ≃ 0.13

λ becomes negative at a very high scale

~ 10    GeV10

H

EW scale

Pontential

• EW vacuum is not stable in the standard model (SM)

• λ is minimized at µ ∼ 1017 GeV



Is the decay rate small enough so that tnow ≃ 13.6 Gyr?

⇒ Many previous works said “yes”
[Isidori, Ridolfi & Strumia; Degrassi et al.; Alekhin, Djouadi & Moch; Espinosa

et al.; Plascencia & Tamarit; Lalak, Lewicki & Olszewski; Espinosa, Garny,

Konstandin & Riotto; · · ·]

How precisely can we estimate the decay rate?

• Gauge-invariance of the result was unclear

• Effects of zero modes were not properly taken into ac-
count

• There has been progresses in the calculation of the decay
rate of false vacuum
[Endo, TM, Nojiri & Shoji; Chigusa, TM & Shoji; see also Andreassen, Frost

& Schwartz]



Today, I discuss

• A precise calculation of the decay rate of EW vacuum

• Effects of extra matters
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2. Bounce in the SM



The decay rate is related to 4D Euclidean partition function
[Coleman; Callan & Coleman]

Z = ⟨FV|e−HT |FV⟩ ∝ exp(iγV T )

The path integral is dominated by the “bounce”

Bounce: a saddle-point solution of classical EoM

Z = + + + ...

= exp [ ]

one-bounceV

Φ

bouncet = -∞

t = ∞

γ ≃ 1

V T
Im


∫
1-bounce

DΨ e−SE∫
0-bounce

DΨ e−SE

 ≡ Ae−B with B = SE(Bounce)



Main concern of this talk: calculation of the prefactor A

⇔ A takes account of loop effects

We expand the action around the classical EoM

SE[ϕ̄+Ψ] = SE[ϕ̄] +
1

2

∫
d4xΨMΨ+O(Ψ3)

SE[v +Ψ] = SE[v] +
1

2

∫
d4xΨM̂Ψ+O(Ψ3)

Prefactor A (for bosonic contribution)

A ≃ 1

V T

∣∣∣∣∣DetM
DetM̂

∣∣∣∣∣
−1/2

∝
∏
n

√√√√ω̂n
ωn

with


ωn = eigenvalue of M

ω̂n = eigenvalue of M̂

Sometimes M has zero eigenvalue

⇒ A careful treatment is needed



Higgs potential in the SM: V = −m2H†H + λ(H†H)2

• We consider very large Higgs amplitude for which λ < 0

• We will neglect quadratic term because λ < 0 occurs at a
scale much higher than the EW scale

We use the following potential (choosing µ≫ 1010 GeV):

V = −|λ|(H†H)2

The “bounce solution” (Fubini-Lipatov instanton)

Hbounce =
1√
2
eiσ

aθa
0
ϕ̄

 with ∂2r ϕ̄+
3

r
∂rϕ̄+ 3|λ|ϕ̄2 = 0

⇒ Explicit form of the bounce:

ϕ̄(r) =

√√√√ 8

|λ|
R−1 1

1 +R−2r2
with R = (free parameter)



Bounce action for the SM

B =
8π2

3|λ|
Possible deformations of the bounce

• Dilatation: parameterized by R

• SU(2) transformation: parameterized by θa

Effects of zero modes in association with these transfor-
mations were not properly taken into account before

• Translation
[Callan & Coleman]

Expansion around the bounce:

H =
1√
2
eiσ

aθa
 φ1 + iφ2

ϕ̄+ h− iφ3

 , W a
µ = wa

µ, Bµ = bµ



3. Effects of the Higgs Mode



We need to calculate the functional determinant of M(h)

L ∋ 1

2
h (−∂2 − 3|λ|ϕ̄2)h =

1

2
hM(h) h

Expansion of h w.r.t. 4D spherical harmonics YJ,mA,mB

h(x) =
∑

J,mA,mB ,n

cn,J,mA,mB
Gn,J(r)YJ,mA,mB

(r̂)

J = 0, 1/2, 1, 3/2, · · ·

Gn,J : radial mode function

cn,J,mA,mB
: expansion coefficient

Fluctuation operator for angular-momentum eigenstates:

M(h)
J ≡ −

(
∆J + 3|λ|ϕ̄2

)
≡ −

∂2r + 3

r
∂r −

4J(J + 1)

r2
+ 3|λ|ϕ̄2





Radial mode function Gn,J

• M(h)
J Gn,J(r) = ωn,JGn,J(r)

• Gn,J(r = 0) <∞

• Gn,J(r → ∞) = 0

Higgs-mode contribution to the prefactor A

A(h) =
∏
J

DetM(h)
J

DetM̂(h)
J


−(2J+1)2/2

≃
∏
n,J

ωn,J
ω̂n,J

−(2J+1)2/2

The ratio of the functional determinants can be evaluated
with so-called Gelfand-Yaglom theorem



Functional determinant for operators defined in 0 ≤ r ≤ r∞

DetM ≃
∏
n
ωn with



MGn = ωnGn with M = −∆J + δW (r)

Gn(0) <∞

Gn(r∞) = 0

We introduce a function f which obeys: Mf(r;ω) = ωf(r;ω)

• f(r = r∞;ω)|ω=ωn
= 0

• Det(M− ω)|ω=ωn
= 0

f (r; ω)

r

O r

ω = ωn

ω = ωn

8



Gelfand-Yaglom theorem
[Gelfand & Yaglom; Coleman; Dashen, Hasslacher & Neveu; Kirsten & McKane]

Det(M− ω)

Det(M̂ − ω)
=
f(r = r∞;ω)

f̂(r = r∞;ω)
with



Mf(r;ω) = ωf(r;ω)

M̂f̂(r;ω) = ωf̂(r;ω)

f(r = 0) = f̂(r = 0) <∞

⇒ Notice: LHS and RHS have the same analytic behavior

• LHS and RHS have same zeros and infinities

• LHS and RHS becomes equal to 1 when ω → ∞

We need:

DetM
DetM̂

=
f(r = ∞; 0)

f̂(r = ∞; 0)
with Mf(r; 0) = M̂f̂(r; 0) = 0



Zero modes exist for M(h)

• Dilatational zero mode (for J = 0)

GD(r) ∝
∂ϕ̄

∂R
⇔ M(h)

0 GD(r) = 0 and GD(r → ∞) = 0

• Translational zero modes (for J = 1/2)
[Callan & Coleman]

GT(r) ∝
∂ϕ̄

∂r
⇔ M(h)

1/2GT(r) = 0 and GT(r → ∞) = 0

Gauge zero modes are in gauge and NG sector

• A gauge transformation of the bounce gives the gauge
zero mode

• A global SU(2)×U(1) symmetry remains after gauge fixing



Path integral over dilatational zero mode = integral over R

H ∋ ϕ̄+ h = ϕ̄+ cDND
∂ϕ̄

∂R
+ · · · ≃ ϕ̄

∣∣∣
R→R+cDND

+ · · ·

⇒
∫
Dh(dilatation) ≡

∫
dcD →

∫ dR

ND

⇒
DetM(h)

0

DetM̂(h)
0


−1/2

→
∫ dR

ND

Det′M(h)
0

DetM̂(h)
0


−1/2

Det’: zero eigenvalue is omitted from the Det

Higgs-mode contribution:
[Chigusa, TM & Shoji; Andreassen, Frost & Schwartz]

A(h) →
∫
d lnR

16π
|λ|

1/2 ∏
J≥1/2

DetM(h)
J

DetM̂(h)
J


−(2J+1)2/2



4. Comment on gauge and NG contribution



Gauge fixing is important

• Gauge fixing function in previous analysis (for U(1))

F = ∂µBµ − 2ξg(ReH)(ImH) ⇒ L ∋ 1

2ξ
F2 + · · ·

• The gauge-fixing terms depend on Higgs field

With such a choice, gauge and NG fields couple in the EoM

⇒ Bounce configuration

H =
1√
2
ϕ̄eiΘ(r), Aµ =

1

g
∂µΘ(r)

∂2rΘ+
3

r
∂rΘ− 1

2
ξg2ϕ̄2 sin 2Θ = 0

⇒ Gauge zero modes were not properly treated (and I don’t
know how to deal with them with this gauge fixing)



Gauge fixing function in our calculation
[Kusenko, Lee & Weinberg]

F = ∂µBµ, Fa = ∂µW
a
µ

General form of the bounce

Hbounce =
1√
2
eiσ

aθa
0
ϕ̄

, Bµ = Wµ = 0

θa = constants

Path integral over gauge zero modes = integral over θa

DetM(W,Z,NG)

DetM̂(W,Z,NG)

−1/2

→ VSU(2)

16π
|λ|

3/2 ∏
J≥1/2

DetM(W,Z,NG)
J

DetM̂(W,Z,NG)
J


−1/2



5. Total Decay Rate



Decay rate:

γ =
∫
d lnR

[
I(h)I(W,Z,NG)I(t)e−SC.T.e−B]

We derived complete and gauge-invariant expressions of I(X)

I(h): Higgs contribution

I(W,Z,NG): gauge and NG contribution

I(t): top contribution

We are calculating the effective action at one-loop

⇒ Renormalization is necessary

⇒ We subtract the divergence with MS scheme

⇒ The result has µ-dependence



Choice of µ?

γ(one-loop) ∝
∫
d lnR

1

R4
exp

− 8π2

3|λ(µ)|
− 8π2β

(1)
λ (µ)

3|λ(µ)|2
ln(µR)


⇒ The µ-dependence vanishes at the leading-log level

[Endo, TM, Nojiri & Shoji]

We take the renormalization scale as µ ∼ 1/R

γ =
∫
d lnR

[
I(h)I(W,Z,NG)I(t)e−SC.T.e−B]

µ∼ 1/R

⇒ The effects of µ-dependent terms from higher loops, i.e.,
∼ lnp(µR), are expected to be minimized

⇒ This is important for the convergence of the integral



We use:

• mh = 125.09± 0.24 GeV

• mt = 173.1± 0.6 GeV

• αs(mZ) = 0.1181± 0.0011

• 3-loop RGEs (with relevant threshold corrections)

Decay rate of the EW vacuum (taking µ = 1/R)

• log10[ γ (Gyr−1Gpc−3) ] ≃ −564+38
−43

+173
−312

+137
−208

For the present universe:

• Cosmic age: t0 ≃ 13.6 Gyr

• Horizon scale: H−1
0 ≃ 4.5 Gpc



log10[γ (Gyr−1Gpc−3)] on mh vs. mt plane (with µ = 1/R)
[Chigusa, TM & Shoji]

γ = 10      /Gyr/Gpc-100 3

γ = 10      /Gyr/Gpc-300 3

γ = 10        /Gyr/Gpc-1000 3

• Instability: γ > H4
now

• Metastability: γ < H4
now

• Absolute stability: λ > 0



6. Case with Extra Matters



Extra particles may affect the stability of the EW vacuum
[Espinosa, Garny, Konstandin & Riotto; Casas, Di Clemente, Ibarra & Quiros; Gogo-

ladze, Okada & Shafi; He, Okada & Shafi; Rodejohann & Zhang; Chakrabortty, Das

& Mohanty; Chao, Gonderinger & Ramsey-Musolf; Masina; Khan, Goswami & Roy;

Bhupal Dev, Ghosh, Okada & Saha; Kobakhidze & Spencer-Smith; Datta, Elsayed,

Khalil & Moursy; Chakrabortty, Konar & Mondal; Xiao & Yu; Hamada, Kawai &

Oda; Khan & Rakshit; Bambhaniya, Khan, Konar & Mondal; Khan & Rakshit;

Salvio; Lindner, Patel & Radovcic; Rose, Marzo & Urbano; Haba, Ishida, Okada &

Yamaguchi; · · ·]

• RG evolution of λ may change

• A new particle much heavier than the EW scale may affect
the decay rate



Let us consider vector-like fermions coupled to H

L = LSM + yψHψLψR + yψ̄H
∗ψ̄Lψ̄R +Mψψ̄LψL +Mψψ̄RψR + · · ·

RGE for λ

= + + ...λ(μ)
H

H*

H*

H

ψ

SM

dλ

d lnµ
=

[
dλ

d lnµ

]
SM

− 1

4π2
∑
ψ

N (ψ)y4ψ + · · ·

With extra fermions, λ may become smaller (at high scale)

⇒ Enhancement of the decay rate

C.f., γ = Ae−B with B =
8π2

3|λ|



Case 1: Down-quark-like colored fermions

⇒ ψL(3,2, 1/6) and ψR(3̄,1,−1/3)

• ϕ̄(max)
C =MPl

γ = 10      /Gyr/Gpc-250 3

γ = 10      /Gyr/Gpc-500 3

γ = 10        /Gyr/Gpc-1000 3

⇒ Yukawa coupling larger than ∼ 0.4− 0.5 is dangerous



Case 2: Charged-lepton-like fermions

⇒ ψL(1,2, 1/2) and ψR(1,1,−1)

• ϕ̄(max)
C =MPl

γ = 10      /Gyr/Gpc-250 3

γ = 10      /Gyr/Gpc-500 3



Case 3: Right-handed neutrino

L = LSM + yνHℓLν
c
R +

1

2
Mνν

c
Rν

c
R + · · ·

• ϕ̄(max)
C =MPl

γ = 10      /Gyr/Gpc-250 3

γ = 10      /Gyr/Gpc-500 3

m  = 0.05 eVνm  = 0.08 eVν



7. Summary



We calculated the decay rate of the EW vacuum at one-loop

• Zero modes are properly treated

• We performed a gauge-invariant calculation

Numerical result

log10[ γ (Gyr−1Gpc−3) ] ≃ −564+38
−43

+173
−312

+137
−208

⇒ In the SM, the EW vacuum decays if we wait ∼ 10562 Gyr

Extra fermions may change the above conclusion

⇒ y >∼ 0.4− 0.6 is dangerous

ELVAS: C++ package to study ELectroweak VAcuum Stability
[https://github.com/YShoji-HEP/ELVAS/]

⇒ Decay rate is calculated once the RG evolutions of the
coupling constants are provided


