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Does BFSS MM contain all states in M-theory?

a single M2)
multiple M2)
a single M5)
multiple M5)

—_

multiple M2/M5)

Relatively

"~ well understood in MM

Longstanding problem

[ = This talk



€ The world volume theory of M5-branes is not known.

€ M>5-brane charge is missing in SUSY algebra of MM.

[Banks-Seiberg-Shenker]

No guiding principle to find M5-branes in MM

€ Mass deformation of BFSS matrix model is very useful
to understand this problem



g BFSS MM = M-theory on R".10 A

ﬁ Mass deformation

Plane wave (BMN) MM = M-theory on pp-wave
k [Berenstein-Maldacena-Nastase] /

€ M-theory on 11D pp-wave background admits spherical
M2/M5 branes with vanishing light cone energy.

® This M5-brane should be described in PWMM as a vacuum state.

In finding this M5-brane in PWMM,
the target is restricted to the vacuum sector

Conjecture [BMN, Maldacena-Sheiki-Jabbari-Raamsdonk] :

“ The trivial vacuum (all fields=0) in PWMM corresponds to the spherical M5.”




The conjecture for M5-branes in PWMM



€ The potential terms vanish for
1
puX; + §€ijk[Xja Xy =0, X,=0

This is solved by any N-dimensional representation of SU(2) generator

Xi — ,uLZ [Li,Lj] — iGijkLk

Fuzzy sphere

€ The fuzzy sphere is the regularization of S?, not of S°.

€ We cannot see any spherical M5-brane like object...



@ “Trivial vacuum (X; = 0) corresponds to a single spherical M5”. [BMN]

@ More generally: Make an irreducible decomposition, [Maldacena-Sheiki-
Jabbari-Raamsdonk]

A
X; = pL; = p @@ L
s=1

T g dimirrep
- Vacua are labelled by partitions of N ng® * ° |NA
¢ Young Tableau ™
- Let £, be the length of a-th row k2
k1

Ng — OO is commutative limit of fuzzy sphere (M2-brane limit)
Dual limit ka —> 0OXO is conjectured to be the M5-brane limit

For the trivial vacuum (125 = 1), they checked the conjecture by showing that
the mass spectra of PWMM and a single M5-brane agree with each other.



Partltlons < M5-branes

MG} L[-nS] %1 pT _;N(r)/R

Light cone & Number of
Momentum M5-branes

N )/

(p;'&_7 nA

N 5 00, n,: fixed

Radii ~ (pT)1/4



Decoupling limit



In order to isolate M5-branes form bulk modes, we can take the decoupling limit

Bulk newton constant (G117 ~ lg . positive length dimension
= if we look at very large distance thanG;; , the bulk mode decouples.

We take a limit where the radius of M5 becomes large (in the Planck unit)

M5 2> Zp

In this limit, we can fine tune other parameters in such a way that only
DOF on M5-branes survive.



2.2 9
ds? = —2dxtde — B —datdat + r2dQ2 + - - - r’=) a2

36 —
Tt =zt + %dw‘, T =x
4T
2
2 2 M ~+ 3~+4 2 36 ~ g~
ds“ =r (—%daz dx™ + dQ5) + uzrzdaz dz= + - --
(Z%,27) ~ (2T + 36R/(ur)*, 3~ + R) (z7,27) ~ (z¥,27 + R)

We look at r ~ rps > 1 = spatial compactification with radius R /(urps)
= NS5-brane in the type A superstring
(bulk modes decouple)



We look at r ~ rys > 1 = spatial compactification with radius R /(urps)
= NS5-brane in the type lIA superstring
(bulk modes decouple)
= The theory on NS5-brane (Little string theory)
is parametrized by the tension ~ 1/12

-Decoupling limit of NS5-brane

2 4.+

T M5 9 1/4 TMs5 Rp™\

e ) o B (T et (e
P 8 p
Bulk modes decouple DOF on NS5 survive

for large radius

N =00, A=¢g>N: fixed tHooft limit

-Decoupling limit of M5-branes

Take A\ — OO in the ‘t Hooft limit



Decoupling limit of multiple M5

1 2 A
N N (b, ma)

A Y A \ {_A_\

We first consider the ‘t Hooft limit such that the large-N limit is taken as

A
N = 00, n,: fixed ZnsNQ(S) =N — 00

s=1

and then, take the strong coupling limit. )\ — g



Assumption



€ We first assumed that in the strong coupling limit,
the matrices (dominant configurations) become mutually commuting

X4 X5 =0

We thought this is an reasonable assumption but...

€ Maldacena gave us an email saying that this assumption should be wrong!

€ But for the moment, let us assume this (though this may be wrong) and in the last
part of my talk, | will introduce Maldacena'’s suggestion.

(Actually, Maldacena’s comment does not change our main claim.
it only changes some interpretation of the result.)



Our result



1 , 1

1 1
Sewar = = [ dtTr [5DX%4 - X X - S [X, X
g

4

0 | . 2
—%Xi -5 (,U'Xi + %Gijk[Xja Xk]) + fermions ]

€ For the moment, let us consider the simplest partition,

X; = pul; = ,LLL,EN5] ® 1N,  (Ng=1 ¢ the trivial vacuum)

& After Wick rotation, we set the boundary condition as

All fields — The vacuum configuration (7 = +o0)



€ We consider a complex scalar field,

o(t) = X3(t) +i(Xg(t)sint + Xo(t) cost)

There exist supersymmetries such that ()¢ = 0 (4 SUSYs, V4 BPS)

Att =0, ¢ = X3+ 11X

Eigenvalue distribution of ¢ gives
the moduli distribution on the (x3, X,)-plane

The eigenvalue distribution of ¢ IS computable by the localization



® Any correlation function made of ¢ can be computed by localization
(Trg™ (t1)Tre"™ (t2) - - -)

& Localization

We add a nice Q-exact term tQV to the action
= The partition function is shown to be independent of ¢
= Taking the large-t limit, the saddle points of the Q-exact term dominate

= Saddle point ¢ = X3 +1 X9 = Lz + 1M

M : constant matrix commuting with L;

@ Our result of the localization

(Tre™ (t1)Trd™(t) - -+ ) = (Tr(uLs + M) Tr(uLs + M)"? - - ety

Effective action

2 4 (mi —m;)D)((2J +2)2 + (mi — m;)?)
s= By omie Y St (L m G 2l o))

J=0 11#£)

Classical part 1-loop determinant



This also means that the spectrum of ¢ is determined by the effective action;
(Tr(z — ¢) ") = (Tr(z — pLy +iM) " )egy

Under the assumption of the commutativity of matrices,
eigenvalue distribution of M = eigenvalue distribution of X®

@ In the large-N limit, the saddle points of Seff dominate.

- Weak coupling limit — the saddle is trivial (Xg =M =0)
- Strong coupling limit — There is a non-trivial equilibrium

— Moduli distribution of Xg in the decoupling limit of M5-brane

3/2

p(z) = c(a — z?) a, ¢ : constants

(M > L4 in this limit = only SO(6) scalars expand)



¥ Assuming SO(6) symmetry and the commutativity of matrices
we introduce the six dimensional distribution o by  [Filev-O‘Connor]

/dxgxg’p(a:g) =: /da:4dac5 -+~ dxgrgp(r)  foranyn

@ For p(x) = c(a — $2)3/2 , we find p(r) = ¢ d(r — 7o)

SO(6) scalars form a spherical shell in R®

€ Furthermore, the radius of the distribution agrees with the radius of M5,

4\ 1/4
ro = o = TM5

In the M5-brane limit, SO(6) scalars form a spherical M5-brane!



At weak coupling,
vacuum configuration

was ftrivial
RG
X,=0
Trivial

At strong coupling, however,
typical moduli configuration
Is a spherical shell

Spherical M5-brane



For the most general partition. the eigenvalue integral is given by a multi-matrix model.

A (nstng)/2—1 N§ NP 9 2 217 1/2
{(2J + 2)? + (mg — mei)* H(2J)* + (ms; — my;)*}
H H H H [ {(2J +2)% + (my — my;)?}2

Zl —loop —
s,t=1 J=|ns—n¢|/2 i=1 j=1

We found an exact solution to this model



Ps = Z Pr
r=1

Solution in the decoupling limit

3/2
83/4 8 N(T’) 2 S
ﬁs(l') — Zr:l 2 1 — (ﬂ) . T = (8)\3)1/4, A, = gz ZN2(T)

37’(’)\;/4 L

r=1

The SO(6) symmetric uplift is A-stacks of spherical shells

Agrees with the claim of the conjecture!

upt 1/4 s
re = (67:3) pf =Y N{/R

r=1




€ We computed eigenvalue distribution of = X3 +1X9  Correct, Nice!

€ Assuming the commutativity, [Xa,Xs]~0, we identified the real and imaginary
parts of the distribution of ¢ = X3 +iXy as the distributions of X3, X, respectively.

Maybe wrong! Some modification needed.

€ Assuming the commutativity again, we defined uplifted distribution function in 6D.
And then we found that the uplifted distribution agrees with the shape of M5-branes.

With a suitable modification of the interpretation, this result gives
a nice evidence for the emergence of the M5-branes!



- Assumption of the commutativity contradicts with Polchinski’s paper [hep-th/9903165]

- From some basic equations like the uncertainty inequality and the Ward identity,
Polchinki showed that

TI(XA)2 > O(r3:)

Contradicts with our result = Our commuting assumption may be wrong

- Supergravity objects corresponds to low energy modes of the matrices
A\2 AN2 AN2
Tr(X ) — TI“(X ) |high eng T TY(X ) ‘low eng

High energy modes will be This part can be O(r3 )
irrelevant in low energy physics



- Our correlators are independent of time coordinates

(Tre™ (t1)Tre™ (ta) - -+ ) = (Tr(puLs + iM)" Tr(uLs + M)™ - - ety

- They are invariant under taking time averages = contain only low energy modes

- Then, we can just change our assumption as

X4 are commuting Low energy modes of X4 are commuting

- The conclusion is that the M5-branes are formed by the eigenvalues of the
low energy modes of the matrices.



€ By applying localization, we derived a spherical distribution for
low energy moduli of SO(6) scalars in the M5-brane limit of PWMM.

€ The radius agrees with that of the spherical M5-brane in M-theory
€ This result can be generalized to multiple concentric M5-branes
€ (multiple) M5-brane states are indeed contained in PWMM

Nice evidence for PWMM to be the second quantization of M-theory!

€ Excited states? (Rotating M5 etc)
€ Theory for multiple M5-branes?

€ Numerical work?



