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1. Higgs at Planck scale



Desert

Experimentally  LHC

SM is good at least below a few TeV.

No signal for new particles or physics.

Especially no indication of low energy SUSY.

Theoretically UV region of SM by RG  

No contradiction below Planck/string scale.

SM is good to high energy scales.



It is natural to imagine that SM is directly 
connected to the string scale dynamics without 
large modification.
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All the couplings are small 
and the perturbative picture 
is very good up to the Planck 
scale.



(1) The three quantities,

become zero around the string scale.

Triple coincidence

 , ,B B Bm  

Froggatt and Nielsen ’95.

Multiple Point Criticality Principle (MPP)

(2) The Higgs potential becomes flat (or zero) 

around the string scale. 

V

As we will see in the next 2 slides, RG analyses 

indicate



Higgs self coupling 

[Hamada, Oda, HK,1210.2538, 1308.6651]
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mHiggs =125.6 GeV
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(1) A toy model – Critical Higgs inflation

Hamada, Oda, Park and HK  ‘14

Bezrukov,Shaposhnikov

We assume 

a) Nature does fine tunings so that the Higgs potential  

becomes flat around the string scale.

b) We can trust the Higgs potential including the string 

scale.

c) We introduce a non-minimal coupling 𝝃𝑹𝒉𝟐 of order 𝝃~𝟏𝟎.

⇒ A realistic model can be constructed.

Higgs inflation

Higgs potential may be flat around the string scale.

It suggests that the Higgs field can play the role of inflaton.

Here I will introduce two attempts.



non-minimal coupling 𝝃𝑹𝒉𝟐

𝜉 can be small as ~10.  

We can make a realistic model of inflation.
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In the Einstein frame the 

effective potential becomes
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𝐺𝑒𝑉



(2) General bounds

Hamada, Nakanish, Oda and HK: arXiv: 1709.9035

We trust the effective potential only below the string

scale,  and try to make bounds on the physical parameters.

We assume

a) Higgs field is the inflaton, and the inflation occurs  

beyond the string scale 𝒎𝒔 ∼ 𝟏𝟎𝟏𝟕𝐆𝐞𝐕 . 

b) We can trust field theory below the string scale.

We then have a lower bound on the vacuum energy at the 

inflation. 



Because 𝒉 should roll down to 0, we have an equality

𝑽𝐢𝐧𝐟 > 𝑽𝒉<𝒎𝒔

𝒎𝒂𝒙 .  

Because 𝑽𝐢𝐧𝐟 is proportional to the tensor perturbation as

𝑨𝒕 =0.068 𝑽𝐢𝐧𝐟 (in Planck unit),

using the value 𝑨𝒔 = 𝟐. 𝟐 × 𝟏𝟎−𝟗, we have 

𝒓 =
𝑨𝒕

𝑨𝒔
> 𝑽𝒉<𝒎𝒔

𝒎𝒂𝒙 / 𝟑. 𝟐 × 𝟏𝟎𝟏𝟔𝐆𝐞𝐕
𝟒
.

𝒎𝒔 Higgs field value 𝒉

𝑉𝐢𝐧𝐟

slow roll

inflation

𝑉𝐢𝐧𝐟

Effective Higgs potential

Field theory can be trusted.

𝑉ℎ<𝑚𝑠



This gives a rather strong constraint.
⇒ We can obtain bounds on possible modifications of SM.

ℒ~ −
𝜅

2
𝑆2𝐻2

𝑚𝐷𝑀 = 𝜅 × 3.2 TeV

(Ex.) SM + Higgs portal scalar dark matter



• Desert

SM is valid to the string scale at least theoretically. 

SM might be directly connected to string theory without 

large modification.

• Marginal stability

Higgs field is near the stability bound. 

• Zero bare mass

The bare Higgs mass is close to zero at the string scale. 

It implies that Higgs is a massless state of string theory.

• Flat potential and Higgs inflation

Higgs self coupling and its beta function become zero at the

string scale. 

Higgs potential can be flat around the string scale, which

suggests the Higgs inflation.

SM around Planck scale



2. Fine tunings by nature itself



There are several attempts to extend the 

conventional framework of the local field theory 

in order to solve the fine tuning problem.

• asymptotic safety
Weinberg, Shaposhnikov, …

• multiple point criticality principle
Froggatt, Nielsen.

• classical conformality

Bardeen
Meissner, Nicolai,

Foot, Kobakhidze, McDonald, Volkas

Iso, Okada, Orikasa.

• baby universe and multi-local action
Coleman

Okada, Hamada, Kawana, Sakai, HK 

They are related.



Imagine a system that is described by the path 

integral of not the canonical ensemble

MPP of Froggatt and Nielsen

    exp ,d S 
but the micro canonical ensemble

     ,d S C   
or an even more general ensemble  (next slide)

      1 2, , .d f S S  

Still the system is equivalent to the ordinary field 

theory in the large space-time volume limit.

But the parameters of the corresponding field theory 

are automatically fixed such that the vacuum is at a 

(multiple) criticality point.



In fact we can show that the low energy effective 

theory of QG / string theory is given by the 

multi-local action:

 eff 1 2, ,

,

( ) ( ).

i i i j i j i j k i j k

i i j i j k

D

i i

S f S S

c S c S S c S S S

S d x g x O x



   



  



Here 𝑶𝒊 are local scalar operators such as    

𝟏 , 𝑹 , 𝑹𝝁𝝂𝑹𝝁𝝂 , 𝑭𝝁𝝂 𝑭𝝁𝝂, 𝝍𝜸𝝁𝑫𝝁𝝍 , ⋯ .

Integrating coupling constants

Coleman ‘89
Tsuchiya-Asano-HK



Appendix
Low energy effective theory 

of quantum gravity



Consider Euclidean path integral which involves 

the summation over topologies,

We consider the Wilsonian low energy effective theory 

after integrating out the short-distance configurations.

Among such configurations there should be a wormhole-

like configuration in which a thin tube connects two points 

on the universe.  Here, the two points may belong to either 

the same universe or different universes.

   
topology

exp .dg S 

If we see such configuration from the side of the large 

universe(s), it looks like two small punctures. 

But the effect of a small puncture is equivalent to an 

insertion of a local operator.

Coleman (‘89)



Summing over the number of wormholes, we have

bifurcated wormholes  

⇒ cubic terms, quartic terms, …

   4 4

,

( ) ( ) ( ) ( ) exp .i j

i j

i j

c d xd d y g x g y O x O yg S 

Therefore, after integrating out the metric of a 

wormhole, it contributes to the path integral  as

  4 4

,

( ) ( ) ( ) ( )exp .i j

i j

i j

c d x d y g x g y O xg yS Od
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Thus wormholes contribute to the path integral as



The effective action becomes a multi-local form

.)()(
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End Appendix



Because 𝑺𝐞𝐟𝐟 is a function of 𝑺𝒊’s , we can express 

𝐞𝐱𝐩(𝒊𝑺𝐞𝐟𝐟) by a Fourier transform as

    1 2 1 2exp , , , , exp ,eff i i

i

iS S S d w i S   


 
 


where 𝝀𝒊’s are Fourier conjugate variables to 𝑺𝒊’s, 

and 𝒘 is a function of 𝝀𝒊’s .

       effexp exp .i i

i

dZ d iS Sd w i    


  
 

  

Then the path integral for 𝑺𝐞𝐟𝐟 becomes 

Because 𝑶𝒊 are local operators,  𝒊 𝝀𝒊 𝑺𝒊 is an ordinary 

local action where 𝝀𝒊 are regarded as the coupling 

constants.

Therefore the system is the ordinary field theory, 

but we have to integrate over the coupling constants

with some weight 𝒘(𝝀).



However, if a small region 𝝀~𝝀(𝟎)dominates the 𝝀
integral, it means that the coupling constants are fixed 

to 𝝀(𝟎) , and the theory is equivalent to a local field 

theory.

Nature does fine tunings

       

 

effexp exp

( ).

i i

i

Z d iS d w d i S

d w Z

    

  


  

 



  

 = 𝑍 𝜆
Ordinary field theory

This theory is dangerous because the locality or 

causality might be broken.



We can give some explanation to MPP.  

Essence:

We can approximate  𝒁 𝝀 = 𝐞𝐱𝐩 −𝒊𝑽𝑬𝒗𝒂𝒄 𝝀 ,

because our universe has been cooled down for long time.

1) extremum

If 𝑬𝒗𝒂𝒄 𝝀 is smooth and has an extremum at 𝝀𝑪 , the 

stationary point dominates and we have

𝐞𝐱𝐩 −𝒊𝑽𝑬𝒗𝒂𝒄 𝝀 ~
𝟐𝝅

𝒊 𝑽|𝑬′′ 𝝀𝒄 |
𝜹 𝝀 − 𝝀𝒄 + 𝑶(

𝟏

𝑽
).

Thus 𝝀 is fixed to 𝝀𝑪 in the limit 𝑽 → ∞ .



vacE

C

’14 ’15 Hamada, Kawana, HK

space-time volume



2)  Kink (need not be an extremum)

If 𝑬𝒗𝒂𝒄 𝝀 has a kink (first order phase transition), 

𝒁 𝝀 = 𝐞𝐱𝐩 −𝒊𝑽𝑬𝒗𝒂𝒄 𝝀

~
𝒊

𝑽

𝟏

𝑬𝒗𝒂𝒄′(𝝀𝒄 + 𝟎)
−

𝟏

𝑬𝒗𝒂𝒄′(𝝀𝒄 − 𝟎)
𝜹 𝝀 − 𝝀𝒄 + 𝑶(

𝟏

𝑽𝟐
)

Thus 𝝀 is fixed to 𝝀𝑪 in the limit 𝑽 → ∞ . ⇒  original MPP

 𝑎

𝑏
dx exp 𝑖𝑉𝑥 𝜑 𝑥

=
1

𝑖𝑉
exp 𝑖𝑉𝑥 𝜑 𝑥

a

b

+ O(
1

V2
)

 𝑎

𝑏
dx exp 𝑖𝑉𝑓(𝑥) 𝜑 𝑥

=
1

𝑖𝑉
exp 𝑖𝑉𝑓(𝑥 )

1

𝑓′(𝑥)
𝜑 𝑥

a

b

+ O(
1

V2
)

(𝑓is monotonic)



vacE

C

monotonic



If we consider the time evolution of universe, 

the definition of 𝒁(𝝀) is not a priori clear.

For example, we need to specify the initial and 

final sates.

Generalization

However, even if we do not know the precise form 

of 𝒁(𝝀), we expect that 𝒁(𝝀)is determined by the 

late stage of the universe, because most of the 

space-time volume comes from the late stage.

From this we can make some predictions on 𝝀’s

under some circumstances. 

Here we consider two cases.



QCD

Z

1. It becomes important only after the QCD phase

transition.

2. The masses and life-times of hadrons are 

invariant under

𝜽𝑸𝑪𝑫 → −𝜽𝑸𝑪𝑫 .

⇒We expect that 𝒁 is even in 𝜽𝑸𝑪𝑫.

⇒ 𝜽𝑸𝑪𝑫 is tuned to 0 if 𝒁 behaves like

(1) Symmetry example 𝜽𝑸𝑪𝑫 Nielsen, Ninomiya



Conditions:

1. Physics changes drastically at some 

value of the couplings.

2.  𝒁 is monotonic elsewhere.

⇒ The couplings are tuned to the value,

as we have seen for kink.

(2) Edge or drastic change



Z

C

Examples:

Cosmological constant,

Higgs inflation,

Classical conformality, 

…

∞finite

V



In this way we may introduce 

the generalized MPP,

“ Coupling constants, which are relevant in low 

energy region, are tuned to values that 

significantly change the history of the universe 

when they are changed.”



Many open questions

• Degenerate vacuum or flat potential?

• Origin of the weak scale? 

• Small cosmological constant?

• How many parameters are tuned? 

Too much big fix?

⇒ We need the precise form of 𝒁(𝝀).

⇒ We should investigate the wave function 

of multiverse.                          Okada-HK

V



3. Emergence of weak scale 

from 

Planck scale

Based on a collaboration with J. Haruna, 
arXiv:1905.05656.



Weak scale as a non-perturbative effect

Basic assumptions:

(1) SM is directly connected to the string theory 

without large modification. 

(2) The fundamental scale is only the Planck/string 

scale, which appears as the cut-off of the low  

energy effective field theory.

Question:

How does the weak scale appear?

SM+

string 

ms

(3) Relevant operators (couplings with positive 

mass dimensions) are tuned by nature itself 

through the generalized MPP.



Everybody’s guess:

Weak scale should appear as a non-perturbative 
effect.

Then it is related to the Planck scale as

𝒎𝑯 = 𝑴𝑷 𝒆−𝐜𝐨𝐧𝐬𝐭./𝒈𝒔 .

And the large hierarchy is naturally understood.

Problem:

Find a phenomenologically acceptable mechanism.



Various possibilities:

1. QCD like dimensional transmutation.

𝚲𝐐𝐂𝐃 = 𝚲 𝒆−𝐜𝐨𝐧𝐬𝐭./𝒈𝟎
𝟐

Not compatible with weakly coupled Higgs.

2. Coleman-Weinberg mechanism.

a) Original idea is to explain SSB of SM from   

the massless Higgs. 

Not acceptable.  𝒎𝑯 ≪ 𝒗𝑯

b) Additional gauge + complex scalar

Make a mass scale independently to the SM 

sector. Then transfer it to SM through VEV.

Possible to make an acceptable model.



3. Even simpler (simplest) model.

ℒ𝝓𝑺 =
𝟏

𝟐
𝝏𝝓 𝟐 +

𝟏

𝟐
𝝏𝑺 𝟐 − 𝐕

𝐕 =
𝝆

𝟒!
𝝓𝟒 +

𝜿

𝟒
𝝓𝟐𝑺𝟐 +

𝝆′

𝟒!
𝑺𝟒

For a while we assume the 𝒁𝟐× 𝒁𝟐 invariance.

𝐙𝟐: 𝝓 → −𝝓

𝐙𝟐: 𝑺 → −𝑺

More important assumption is the classical 
conformality.

Two real scalars. Adams, Tetradis, …



What is classical conformality?

This sounds nonsense for normal fields theorists: 
There is no quantum mechanical symmetry that 
guarantees masslessness of scalars except SUSY.

Classical conformality

= “renormalized masses are 0” 

On the other hand, once we accept the existence of 
self-tuning mechanism, classical conformality is 
one of the natural choices.

More concretely, we can take the MPP:

“Coupling constants are fixed to critical points.”

There are some variations in the meaning of 
“critical points”.



𝒎𝟐 > 𝟎 ⇒ 𝝓 = 𝟎 is metastable.

⇒ Universe remains in that state for a while.

𝒎𝟐 < 𝟎 ⇒ 𝝓 = 𝟎 is unstable.

⇒ Universe transitions quickly to another state. 

So the time evolution of the universe changes 
drastically at the point 𝒎𝟐= 𝟎 .

Suppose that the universe starts from 𝝓 = 𝟎.

(1) Critical points for cosmological evolution

Critical values that the time evolution of universe 

changes drastically when they are changed.

Thus “the classical conformality” is obtained.



(2) Critical points for the vacuum energy

Critical values that the phase of the vacuum 

changes when they are changed.

As we will see, there are various types of critical 
point.

In any case, renormalized masses are fixed to 
some values, and we have similar predictions.

For a while, we concentrate on the case of 
classical conformality.



3-1 SSB of the 2 scalar model



Two real scalar model

ℒ𝝓𝑺 =
𝟏

𝟐
𝝏𝝓 𝟐 +

𝟏

𝟐
𝝏𝑺 𝟐 − 𝐕

𝐕 =
𝝆

𝟒!
𝝓𝟒 +

𝜿

𝟒
𝝓𝟐𝑺𝟐 +

𝝆′

𝟒!
𝑺𝟒

Classical conformality:

𝝏𝟐

𝝏𝝓𝟐 𝑽𝐞𝐟𝐟|𝝓=𝑺=𝟎 = 𝟎,
𝝏𝟐

𝝏𝑺𝟐 𝑽𝐞𝐟𝐟|𝝓=𝑺=𝟎 = 𝟎.

Basic feature

For a large region of the parameter space, one of 
the fields has non-zero vacuum expectation value.



RG analysis

Assumption:  cut off at Planck scale,

𝝆𝟎, 𝝆𝟎
′ , 𝜿𝟎 > 𝟎.

Beta functions:

𝜷𝝆′ =
𝟑

𝟏𝟔𝝅𝟐
𝝆′𝟐 + 𝜿𝟐

𝜷𝜿 =
𝟏

𝟏𝟔𝝅𝟐
𝝆𝜿 + 𝝆′𝜿 + 𝟒𝜿𝟐

𝜷𝝆 =
𝟑

𝟏𝟔𝝅𝟐
𝝆𝟐 + 𝜿𝟐

When we decrease the renormalization point, 
one of the couplings becomes zero.  

SM +
small modifications string 

𝒎𝒔~𝑴𝑷

𝐕 =
𝝆

𝟒!
𝝓𝟒 +

𝜿

𝟒
𝝓𝟐𝑺𝟐 +

𝝆′

𝟒!
𝑺𝟒



We assume 𝝆 becomes zero first at 𝝁 = 𝝁∗ .

𝑀𝑃
𝜇∗

𝜌0′

𝜇

𝜌0

𝜅0

This is possible if 𝜿𝟎 ≫ 𝝆𝟎
′ > 𝝆𝟎 .

Then it is expected 

𝝓 ≠ 𝟎⇒ 𝑺 becomes massive through 
𝜿

𝟒
𝝓𝟐𝑺𝟐

⇒ 𝑺 = 𝟎

𝐕 =
𝝆

𝟒!
𝝓𝟒 +

𝜿

𝟒
𝝓𝟐𝑺𝟐 +

𝝆′

𝟒!
𝑺𝟒



One-loop effective potential

Effective potential for 𝑺 = 𝟎 :  

If we take 𝝁 = 𝝁∗ , this becomes  

=
𝝆(𝝁)

𝟒!
𝝓𝟒 +

𝝆 𝝁 𝟐

𝟐𝟓𝟔𝝅𝟐
𝝓𝟒 𝐥𝐨𝐠

𝝆 𝝁 𝝓𝟐

𝝁𝟐

𝑽𝐞𝐟𝐟 𝝓, 𝑺 = 𝟎

=
𝜿 𝝁∗

𝟐

𝟐𝟓𝟔𝝅𝟐
𝝓𝟒 𝐥𝐨𝐠

𝜿 𝝁∗ 𝝓𝟐

𝝁∗
𝟐

+
𝜿 𝝁 𝟐

𝟐𝟓𝟔𝝅𝟐
𝝓𝟒 𝐥𝐨𝐠

𝜿 𝝁 𝝓𝟐

𝝁𝟐

𝜙 loop 𝑆 loop

𝜙

𝑉eff

𝜇∗

𝜅(𝜇∗)

𝒗

⇒ 𝝓 = 𝒗 = 𝐜𝐨𝐧𝐬𝐭.
𝜇∗

𝜅(𝜇∗)

A mass scale 𝒗 emerges.

𝐕 =
𝝆

𝟒!
𝝓𝟒 +

𝜿

𝟒
𝝓𝟐𝑺𝟐 +

𝝆′

𝟒!
𝑺𝟒



Relation between 𝒗 𝐚𝐧𝐝 𝑴𝑷

For simplicity we consider the case 

𝝆𝟎 < 𝝆𝟎
′ ≪ 𝜿𝟎 ≪ 𝟏.

Then for 𝝁∗ ≤ 𝝁 ≤ 𝑴𝑷

𝜿 𝝁 ~𝜿𝟎, 𝜷𝝆~
𝟑𝜿𝟎

𝟐

𝟏𝟔𝝅𝟐 . 

⇒ 𝝆 𝝁 ~𝝆𝟎 +
𝟑𝜿𝟎

𝟐

𝟏𝟔𝝅𝟐 𝐥𝐨𝐠
𝝁

𝑴𝑷

𝝆 𝝁∗ = 𝟎 ⇒ 𝝁∗~𝑴𝑷 𝐞𝐱𝐩 −
𝟏𝟔𝝅𝟐

𝟑

𝝆𝟎

𝜿𝟎
𝟐

Thus we have

⇒ 𝒗~𝑴𝑷
𝟏

𝜿𝟎
𝐞𝐱𝐩 −

𝟏𝟔𝝅𝟐

𝟑

𝝆𝟎

𝜿𝟎
𝟐

Non-perturbative

𝜷𝝆 =
𝟑

𝟏𝟔𝝅𝟐
𝝆𝟐 + 𝜿𝟐

𝜷𝜿 =
𝟏

𝟏𝟔𝝅𝟐
𝝆𝜿 + 𝝆′𝜿 + 𝟒𝜿𝟐



Masses of the particles

mass of 𝝓 : 𝑴𝝓
𝟐 =

𝒅𝟐

𝒅𝝓𝟐
𝑽𝐞𝐟𝐟  

𝝓=𝒗
=

𝜿 𝝁∗
𝟐

𝟑𝟐𝝅𝟐
𝒗𝟐

mass of 𝑺: 𝑴𝑺
𝟐 =

𝜿(𝝁∗)

𝟐
𝒗𝟐

If 𝜿 ≪ 𝟏, 𝐭he general pattern is

𝒗 ≫ 𝑴𝑺 ≫ 𝑴𝝓 .

For example,

𝜿 𝝁∗ = 𝟎.1  ⇒ 𝒗 ∶ 𝑴𝝋 ∶ 𝑴𝝓 = 𝟏 ∶ 𝟎. 𝟐 ∶ 𝟎. 𝟎𝟎𝟔 .

𝑽𝐞𝐟𝐟 𝝓, 𝑺 = 𝟎 =
𝜿 𝝁∗

𝟐

𝟐𝟓𝟔𝝅𝟐
𝝓𝟒 𝐥𝐨𝐠

𝜿 𝝁∗ 𝝓𝟐

𝝁∗
𝟐

𝐕 =
𝝆

𝟒!
𝝓𝟒 +

𝜿

𝟒
𝝓𝟐𝑺𝟐 +

𝝆′

𝟒!
𝑺𝟒



3-2 Coupling to SM



Incorporating two real scalar model into SM

ℒ = ℒ𝑺𝑴 + ℒ𝝓𝑺 − 𝐕𝐇𝝓𝑺

We assume that ℒ𝑺𝑴 does not contain the Higgs 
mass term because of the classical conformality.

In general, we should consider the mixing 
between Higgs and 𝝓:

Total action:

𝐕𝐇𝝓𝑺 = −
𝜼

𝟐
𝝓𝟐 𝐇 𝟐 +

𝜼′

𝟐
𝑺𝟐 𝑯 𝟐

𝐭𝐚𝐧 𝜽 ~
𝒗𝑯

𝒗
, 𝒗𝑯~𝟐𝟓𝟎𝐆𝐞𝐕, 𝒗 = 𝝓 .

If 𝒗 ≫ 𝒗𝑯 , the mixing is small.

Farzinnia-He-Ren, Sannino-Virkajarvi.

K.Ghorbani-H.Ghorbani, Jung-Lee-Nam.



In that case, the Higgs potential is given by

𝒎𝑯
𝟐 = 𝜼 𝒗𝟐,

which means

𝝀 𝑯 𝟒 −
𝜼

𝟐
𝝓 𝟐|H|𝟐,

and the rest is the same as SM:

𝑯 =
𝟐𝒎𝑯

𝝀
.

Weak scale is generated non-perturbatively
from the Planck scale, as

𝑴𝑷 → 𝝓 → 𝑯 .

𝐕𝐇𝝓𝑺 = −
𝜼

𝟐
𝝓𝟐 𝐇 𝟐 +

𝜼′

𝟐
𝑺𝟐 𝑯 𝟐



𝑺 as dark matter

no vev: 𝑺 = 𝟎

heavy but not too heavy: 𝑴𝑺
𝟐 =

𝜿(𝝁∗)

𝟐
𝒗𝟐

couples to Higgs: 
𝜼′

𝟐
𝑺𝟐 𝑯 𝟐

It is natural to regard 𝑺 as the Higgs portal scalar 
dark matter.

Property of 𝑺



Two scalar model has 3 parameters 𝝆, 𝝆′, 𝜿 in 
addition to 𝑴𝑷.

𝝆 is replaced by 𝝓 = 𝒗.

𝜿 gives the ratios of 𝑴𝝓, 𝑴𝑺, 𝒗 .

𝝆′ is the self coupling of 𝑺.

Coupling to the Higgs has 2 parameters.

𝜼 is determined by  𝒎𝑯
𝟐 = 𝜼 𝒗𝟐.

𝜼′ gives coupling between Higgs and 𝑺 .

Parameters of the model

⇒ Only 𝜿 is new compared with the Higgs 

portal scalar dark matter scenario.

𝐕𝐇𝝓𝑺 = −
𝜼

𝟐
𝝓𝟐 𝐇 𝟐 +

𝜼′

𝟐
𝑺𝟐 𝑯 𝟐

𝐕 =
𝝆

𝟒!
𝝓𝟒 +

𝜿

𝟒
𝝓𝟐𝑺𝟐 +

𝝆′

𝟒!
𝑺𝟒



Examples

(1) 𝜿 = 𝟎. 𝟏, 𝑴𝑺 = 𝟏𝐓𝐞𝐕

⇒𝑴𝝓 = 𝟐𝟓𝐆𝐞𝐕, 𝒗 = 𝟒. 𝟓𝐓𝐞𝐕, 𝜽 = 𝟎. 𝟎𝟓𝟕

(2) 𝜿 = 𝟎. 𝟏, 𝑴𝑺 = 𝟔𝐓𝐞𝐕

⇒𝑴𝝓 = 𝟏𝟓𝟏𝐆𝐞𝐕, 𝒗 = 𝟐𝟕𝐓𝐞𝐕, 𝜽 = 𝟎. 𝟎𝟐𝟎

If we assume the Higgs inflation, (1) seems typical.

It predicts a light scalar ~ 𝟐𝟓𝐆𝐞𝐕, which may be 
tested in near future experiments.



3-3 Other criticalities than 

classical conformality



Two real scalar model revisited

ℒ𝝓𝑺 =
𝟏

𝟐
𝝏𝝓 𝟐 +

𝟏

𝟐
𝝏𝑺 𝟐 − 𝐕

𝐕 =
𝒎𝟎

𝟐

𝟐
𝝓𝟐 +

𝝆

𝟒!
𝝓𝟒 +

𝜿

𝟒
𝝓𝟐𝑺𝟐 +

𝝆′

𝟒!
𝑺𝟒

As we have discussed,

classical conformality is the assumption that the 
bare mass should be tuned so that the 
renormalized mass becomes zero:

𝐦𝟐 = 𝟎.

This is a critical point in that the time evolution of 
universe drastically changes at 𝐦𝟐 = 𝟎.

But there is another kind of critical point, that is, 
the 1-st order phase transition point.



𝑽𝐞𝐟𝐟 𝝓, 𝑺 = 𝟎 =

𝜿 𝝁∗
𝟐

𝟐𝟓𝟔𝝅𝟐
𝝓𝟒 𝐥𝐨𝐠

𝜿 𝝁∗ 𝝓𝟐

𝝁∗
𝟐

𝜙

𝑉eff

𝜇∗

𝜅(𝜇∗)

𝒗

Classical conformality 1-st order phase transition 

𝒎𝑪
𝟐

𝟐
𝝓𝟐 +

𝜿 𝝁∗
𝟐

𝟐𝟓𝟔𝝅𝟐
𝝓𝟒 𝐥𝐨𝐠

𝜿 𝝁∗ 𝝓𝟐

𝝁∗
𝟐

𝜙

𝑉eff

𝒗𝑪

𝒗𝑪 = 𝒗/ 𝒆

𝑴′𝝓 = 𝑴𝝓/ 𝟐



1-st order phase transition point is as plausible 
as classically conformality.

At any rate,

the generated mass scales 𝒗, 𝑴𝝓, 𝑴𝑺 change only 

by numerical factors.

Again we can say that the weak scale emerges from 
the Planck scale.

We can not tell which one is favored by nature 
unless we know the precise mechanism of MPP.



Further generalization

We can set 𝒈 = 𝟎 by shifting 𝝓.

⇒ 4 relevant parameters.

So far we have assumed 𝒁𝟐 × 𝒁𝟐 symmetry.

Here we assume 𝒁𝟐 only for 𝑺 .

Then the action has 5 parameters with positive 
mass dimensions (relevant parameters):

ℒ𝝓𝑺 =
𝟏

𝟐
𝝏𝝓 𝟐 +

𝟏

𝟐
𝝏𝑺 𝟐 − 𝐕

𝐕 = 𝒈𝝓 +
𝒎𝟐

𝟐
𝝓𝟐 +

𝒉

𝟑!
𝝓𝟑 +

𝝈

𝟐
𝝓𝑺𝟐 +

𝒎′𝟐

𝟐
𝑺𝟐

+
𝝆

𝟒!
𝝓𝟒 +

𝜿

𝟒
𝝓𝟐𝑺𝟐 +

𝝆′

𝟒!
𝑺𝟒



Here we assume that all the relevant parameters 
are fixed by the generalized MPP.

Instead of seeking the general solutions, here we 
construct a special solution. 

First we take the conditions 𝒎𝟐 = 𝒎′𝟐 = 𝟎 .

In fact these are criticality conditions because  

the behavior of 𝐕𝐞𝐟𝐟~
𝒎𝟐

𝟐
𝝓𝟐 +

𝒎′𝟐

𝟐
𝑺𝟐

around 𝝓 = 𝑺 = 𝟎 changes drastically depending 
on the signs of 𝒎𝟐 and 𝒎′𝟐 .

The problem is to find tetra critical points in the 
space of 4 parameters 𝒎𝟐, 𝒉, 𝝈, 𝒎′𝟐 .

𝐕 =
𝒎𝟐

𝟐
𝝓𝟐 +

𝒉

𝟑!
𝝓𝟑 +

𝝈

𝟐
𝝓𝑺𝟐 +

𝒎′𝟐

𝟐
𝑺𝟐+…



Then we take the condition 𝝈 = 𝟎 .

Again this is a criticality condition because 

the behavior of 𝐕𝐞𝐟𝐟~
𝒉

𝟑!
𝝓𝟑 +

𝝈

𝟐
𝝓𝑺𝟐 changes 

drastically depending on the signs of 𝝈 .

Then the only remaining parameter is 𝒉.

We determine it by the criticality condition of

the effective potential as in the case of 1-st 

order phase transition:

𝑽𝐞𝐟𝐟 𝝓, 𝑺 = 𝟎 =
𝒉

𝟔
𝝓𝟑 +

𝜿 𝝁∗
𝟐

𝟐𝟓𝟔𝝅𝟐
𝝓𝟒 𝐥𝐨𝐠

𝜿 𝝁∗ 𝝓𝟐

𝝁∗
𝟐

𝐕 =
𝒎𝟐

𝟐
𝝓𝟐 +

𝒉

𝟑!
𝝓𝟑 +

𝝈

𝟐
𝝓𝑺𝟐 +

𝒎′𝟐

𝟐
𝑺𝟐+…



𝑽𝐞𝐟𝐟 𝝓, 𝑺 = 𝟎 =
𝒉

𝟔
𝝓𝟑 +

𝜿 𝝁∗
𝟐

𝟐𝟓𝟔𝝅𝟐
𝝓𝟒 𝐥𝐨𝐠

𝜿 𝝁∗ 𝝓𝟐

𝝁∗
𝟐



ℎ1 = 0.71
𝜅2𝑣

32𝜋2
, 𝜙1 = 0.47𝑣

ℎ2 = 0.74
𝜅2𝑣

32𝜋2
, 𝜙2 = 0.37𝑣



Mass scales 𝒗, 𝑴𝝓, 𝑴𝑺 are similar to the 

previous ones.

Again the weak scale emerges from the Planck 
scale non-perturbatively.

These do not have 𝒁𝟐 symmetry for 𝝓.

⇒ No cosmological domain wall problem.



In wide classes of quantum gravity or string theory, 

the low energy effective action has the multi local form:

The fine tuning problem might be solved by the 

dynamics of such action. 

eff .i i i j i j i jk i j k

i i j i jk

S c S c S S c S S S     

Summary

We need a good definition of the path integral for such 

action, but as an ad hoc assumption we can consider 

the generalized MPP and make non-trivial predictions.



Appendix A
Low energy effective theory of
quantum gravity/string theory



Consider Euclidean path integral which involves 

the summation over topologies,

We consider the low energy effective theory after 

integrating out the short-distance configurations.

Among such configurations there should be a wormhole-

like configuration in which a thin tube connects two points 

on the universe.  Here, the two points may belong to either 

the same universe or different universes.

   
topology

exp .dg S 

If we see such configuration from the side of the large 

universe(s), it looks like two small punctures. 

But the effect of a small puncture is equivalent to an 

insertion of a local operator.

Coleman (‘89)



Summing over the number of wormholes, we have

bifurcated wormholes  

⇒ cubic terms, quartic terms, …

   4 4

,

( ) ( ) ( ) ( ) exp .i j

i j

i j

c d xd d y g x g y O x O yg S 

Therefore, a wormhole contributes to the path 

integral  as

  4 4

,

( ) ( ) ( ) ( )exp .i j

i j

i j

c d x d y g x g y O xg yS Od
 
  
 

 

x

y

4 4

0 ,

4 4

,

1
( ) ( ) ( ) ( )

!

exp ( ) ( ) ( ) ( ) .

n

i j

i j

N i j

i j

i j

i j

c d x d y g x g y O x O y
n

c d x d y g x g y O x O y





 
 
 

 
  

 

  

 

Thus wormholes contribute to the path integral as



The effective action becomes a multi-local form

.)()(

,eff

xOxgxdS

SSScSScScS

i

D

i

kji

kji

kjij

ji

iji

i

ii







 

By introducing the Laplace transform 

       effexp exp .i i

i

Z d S d w d S    


    
 
  

Coupling constants are not merely constant, but 

they should be integrated.

    eff 1 2 1 2exp , , , , exp ,i i

i

S S S d w S   
 

   
 


we can express the path integral as 



      expZ d w d S     

including multiverse

 

   

single

0

single

1

!

exp .

n

n

d w Z
n

d w Z

 

 













n



Coleman’s “solution” to the cosmological constant problem

     exp .Z d w dg gR g       

dominates irrespectively of  

4Sr

    

 
 

2 4exp

exp 1/ , 0

no solution, 0

d w dr r r

d w

     

  
 

 

 



r

S

1



0  .w 



Difficulty 

Problem of the Wick rotation 

WDW eq.

←wrong sign

“Ground state” does not exist.    

total 0H  

total universe matter graviton

2

universe

1

2
a

H H H H

H p

   


   

 

Wick rotation is not well defined.     t

matter ,H

universeH

: radius of the universea

matterH is bounded from below.    

universeH is bounded from above.    



We expect that the physics with gravity should 

be expressed in Lorentzian signature, but the 

low energy effective theory is still given by the 

multi local action.

In fact we obtain the same effective Lagrangian in 

the IIB matrix model with Lorentzian signature.



Y. Kimura, 
M. Hanada and HK

The basic question :

In the large-N reduced model, a background 

of simultaneously diagonalizable matrices 

𝑨𝝁
(𝟎)

= 𝑷𝝁 corresponds to the flat space,

if the eigenvalues are uniformly distributed.

In other words, the background 𝑨𝝁
(𝟎)

= 𝒊𝝏𝝁

represents the flat space.

How about curved space? 

Is it possible to consider some background  

like

𝑨𝝁
(𝟎)

= 𝒊𝛁𝝁 ?

Covariant derivatives as matrices 



Actually, there is a way to express the covariant 

derivatives on any D-dim manifold by D matrices.

More precisely, we consider 

𝑴: any D-dimensional manifold, 

𝝋𝜶: a regular representation field on 𝑴. 

Here the index 𝜶 stands for the components of 

the regular representation of the Lorentz group 

𝑺𝑶(𝑫 − 𝟏, 𝟏).

The crucial point is that for any representation 𝒓,

its tensor product with the regular representation 

is decomposed into the direct sum of the regular 

representations:

.r reg reg regV V V V   



In particular the Clebsh-Gordan coefficients for 

the decomposition of the tensor product of the 

vector and the regular representaions

vector reg reg regV V V V   

are written as ,

( ) , ( 1,.., ).b

aC a D

 

Here 𝒃 and β are the dual of the vector and the 

regular representation indices on the LHS.

(𝒂) indicates the 𝒂-th space of the regular 

reprezentation on the RHS, and 𝜶 is its index.



Then for each 𝒂 (𝒂 = 𝟏. . 𝑫)
,

( )

b

a bC 

    

is a regular representation field on 𝑴.

In other words, if we define 𝛁(𝒂) by 

  ,

( ) ( ) ,b

a a bC 
 

   

each 𝛁(𝒂) is an endomorphism on the space of the 

regular representation field on 𝑴. 

Thus we have seen that the covariant 

derivatives on any D dimensional manifold 

can be expressed by D matrices.



Therefore any D-dimensional manifold 𝑴
with 𝑫 ≤ 𝟏𝟎 can be realized in the space 

of the IIB matrix model as

0 ( ) , 1, ,
,

0, 1, ,10

a

a

a D
A

a D

where 𝛁(𝒂) is the covariant derivative on 𝑴

multiplied by the C-G coefficients. 



A. Tsuchiya,  Y. Asano and HK

Low energy effective action of IIB matrix model 

We have seen that any D-dim manifold is 

contained in the space of D matrices.

Therefore IIB matrix model should contain the 

effects of the topology change of space-time.

As was pointed out by Coleman some years 

ago, such effects give significant corrections 

to the low energy effective action.

It is interesting to consider the low energy 

effective action of the IIB matrix model.



.)()(

,eff

xOxgxdS

SSScSScScS

i

D

i

kji

kji

kjij

ji

iji

i

ii







 

Actually we can show that if we integrate out the heavy 

states in the IIB matrix model, the remaining low 

energy effective action is not a local action but has a 

special form, which we call the multi-local action:

Here 𝑶𝒊 are local scalar operators such as    

𝟏 , 𝑹 , 𝑹𝝁𝝂𝑹
𝝁𝝂 , 𝑭𝝁𝝂 𝑭𝝁𝝂, 𝝍𝜸𝝁𝑫𝝁𝝍 , ⋯ .

𝑺𝒊 are parts of the conventional local actions.

The point is that 𝑺𝐞𝐟𝐟 is a function of 𝑺𝒊’s.



0 .a a aA A  

This is essentially the consequence of the well-

known fact that the effective action of a matrix 

model contains multi trace operators.

Then we integrate over 𝝓 to obtain the low energy 

effective action.

Here we assume that the background 𝑨 𝒂
𝟎 contains 

only the low energy modes, and 𝝓 contains the rest.

We also assume that this decomposition can be 

done in a SU(N) invariant manner.

More precisely, we first decompose the matrices 𝑨𝒂

into the background 𝑨 𝒂
𝟎 and the fluctuation 𝝓 :



Substituting the decomposition into the action of 

the IIB matrix model, and dropping the linear 

terms in 𝝓, we obtain



 

    
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a b

S Tr

A A

A

A

A

A A

A

    

    

  

                

    

In principle, the 0-th order term  2
0 0

0 ( ) ( )

1
,

4
a bS Tr A A   

can be evaluated with some UV regularization, 

which should give a local action.



The one-loop contribution is obtained by the Gaussian 

integral of the quadratic part. 

Then the result is given by a double trace operator as 

usual:

𝑾 =  𝑲𝒂𝒃𝒄⋯ , 𝒑𝒒𝒓⋯ 𝑻𝒓 𝑨𝒂
𝟎𝑨𝒃

𝟎𝑨𝒄
𝟎 ⋯ 𝑻𝒓(𝑨𝒑

𝟎𝑨𝒒
𝟎𝑨𝒓

𝟎 ⋯ )

The crucial assumption here is that both of the 

diffeomorphism and the local Lorentz invariance are 

realized as a part of the SU(N) symmetry.

Then each trace should give a local action that is 

invariant under the diffeomorphisms and the local 

Lorentz transformations:

1-loop

eff

1
, ( ) ( ).

2

D

i j i j i i

i j

S c S S S d x g x O x  



In the two loop order, from the planar 

diagrams we have a cubic form of local

actions
2-loop Planar

eff

, ,

1
,

6
i jk i j k

i j k

S c S S S

while non-planar diagrams give a local 

action
2-loop NP

eff .i i

i

S c S

z y

x

x

Similar analyses can be applied for higher loops.



the low energy effective theory of the IIB matrix 

model is given by the multi-local action:

.)()(

,eff

xOxgxdS

SSScSScScS

i

D

i

kji

kji

kjij

ji

iji

i

ii







 

We have seen that

This reminds us of the theory of baby universes 

by Coleman.



Appendix B
Multiverse and naturalness



3-1. Partition function of 
the  multiverse



       effexp exp .i i

i

Z d i S d w d i S    
 

   
 
  

It is natural to apply this action to the multiverse. 
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Path integral for a universe

     

    
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2 31 1 1ˆ ( )
2

H p a U a
a a

   

:  radius of the universea

Question:

Is there a natural choice for them?

T

If the initial and final states are given, the path 

integral is evaluated as usual: (mini superspace)

 E E E E  
 

2 3 4

1
( ) matt radC C

U a
a a a

   

S3 topology



Initial state

For the initial state, we assume that the universe 

emerges with a small size ε. 

,

: probability amplitude of a universe emerging.

i a matter 



  

a 



Evolution of the universe

Λ～curvature   
～energy density

with

S3 topology

 
 

  0 1 0

1
, sin ,

,

z
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a p a
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
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  4, 2 ( ).p a a U a  
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( ) matt radC C
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   

WKB solution
 4S d x g R matter   

a
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Final state: case 1

For the final state, we have two possibilities. 

finite

The universe is closed.

We assume the final state is 

.f a matter   

The path integral

   

 

1

2
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ˆ

.E

Z f H i

const

 

 



cr  



Final state: case 2 

∞
The universe is open. 

It is not clear how to define the 

path integral for the universe:

lim . 
IR

IR IR
a

f c a a matter


 

a

     1 exp .Z d i S  

As an ad hoc assumption we consider 

cr  
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Then the partition function becomes

mat rad

2 3 4
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   
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The result does not depend on       except for the phase 

which come from the classical action.
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IRa

(cont’d) 



Thus we have 

the path integral for a universe

∞

finite

 1Z 

crfor     of order 1,const

crfor     3

4

1
sin .IRconst a   



Then the      integration for the multiverse 

    1exp .Z d w Z   

has a large peak at                 , which means that 

the cosmological constant at the late stages of the 

universe almost vanishes. 



  cr 



3-2. Maximum Entropy Principle



Maximum entropy principle

Then the multiverse partition function is given by

cr rad1/C

Maximum entropy principle (MEP) 

The low energy couplings are determined in such a way that 
the entropy at the late stages of the universe is maximized.

For simplicity we assume the      topology of the space and 

that all matters decay to radiation at the late stages.

rad

2 4
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There are many ways to obtain MPP:

Suppose that we pic up a universe randomly from the 
multiverse. Then the most probable universe is 
expected to be the one that has the maximum entropy.  

Okada and HK ’11



We may understand the flatness of the Higgs 

potential as a consequence of MEP.

If we accept the inflation scenario in which universe 

pops out from nothing and then inflates, most of the 

entropy of the universe is generated at the stage of 

reheating just after the inflation stops. Therefore the 

potential of the inflaton should be tuned in such a way 

that inflation occurs.

Furthermore, if the Higgs field plays the role of inflaton, 

the above analysis asserts that the SM parameters are 

tuned such that the Higgs potential becomes flat at high 

energy scale.

Flatness of the Higgs potential



3-3. Probabilistic interpretation
of 

multiverse wave function



Probabilistic interpretation (1)

postulate

T : age of the universe

 
2

probability of finding a universe of size z dz z 
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meaning of this measure

z

T

 
2 2

z dz dT ⇒

2
 probability of a universe emerging in unit time 

the time that has passed  

after the universe is created



Probabilistic interpretation (2)

 is a superposition of the universe with various age,

z

T

+

z

T

z

T
+ +…

 

T T dT
gives the probability of finding a

universe of age                  .
 

2 2
z dz dT 



infrared cutoff

We introduce an infrared cutoff  

for the size of universes.

IRz

ceases 
to exist

bounces 
back

or

   
2 2 2

life time of the universez dz dT    

dimensionless

∞finite

Lifetime of the universe



Wave Function of the multiverse (1)

Multiverse appears naturally in quantum gravity / string theory. 

matrix model

・

b

b

aC 




,
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b

b

aC 




,

)(

Each block 

represents 

a universe.

・

quantum gravity

Okada, HK



Wave Function of the multiverse (2)

The multiverse sate is a superposition of N-verses.
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Wave Function of the multiverse (3)

Probabilistic interpretation

 multi
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and finding the coupling constants in 
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Probability distribution of 
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is chosen in such a way that           is maximized,   

can be very large.   

irrespectively of  .w 



If we accept the probabilistic interpretation of the 

multiverse wave function, the coupling constants 

are chosen in such a way that the lifetime of the 

universe becomes maximum.



WKB sol with

Cosmological constant

Λ～curvature～energy density

(extremely small)

What value of Λ maximizes

0 

?

S3 topology

The cosmological constant in 
the far future is predicted to be 
very small. 
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assuming all matters decay to radiation
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The other couplings (Big Fix) 
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The exponent is divergent, and regulated by the IR cutoff :
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are determined in such a way that 
is maximized.
Again we have MEP.
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assuming all matters decay to radiation


