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1. Higgs at Planck scale



Desert

SM is good to high energy scales.

Experimentally LHC
SM Is good at leasbelowa few TeV.
No signal for new particles or physics.
Especially no indication of low energy SUSY.

Theoretically UV region of SM by RG
No contradiction below Planck/string scale.



All the couplings are small
and the perturbative picture
IS very good up tothe Planck
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It IS natural to iImagine that SM Is directly
connected to the string scale dynamics without
large modification.
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Triple coincidence

As we will see In the next 2 slidesiRG analyses
Indicate

(1) The threequantities, /,, H( 4/, m;

become zeraaround the string scale

(2) TheHiggs potentialbecomes flat (or zero)

around the string scale
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Froggatta nd NI el sen 095.
Multiple Point Criticality Principle (MPP)
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Higgs potential V()= ()
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Higgs inflation

Higgs potential may be flat around the string scale.
It suggestghat the Higgs field can play the role ofnflaton.
Here | will introduce two attempts.

(1) A toy model o Critical Higgs inflation

We assume
a) Nature does fine tunings sothat the Higgs potential
becomes flat around the string scale.
b) We can trust the Higgs potential including the string
scale.
c) We introduce a non -minimal coupling K ] of order K

K A realistic model can be constructed.
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non-minimal coupling K

| n the Einstein frame the
effective potential becomes
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We can make a realistic model of inflation.

- can be small as ~10.



(2) General bounds

We trust the effective potential only below the string
scale, and try to make bounds on the physical parameters .

We assume

a) Higgs field is the inflaton , and the inflation occurs
beyond the string scale 0 D e "HR

b) We can trust field theory below the string scale.

We then have a lower bound on the vacuum energy at the
inflation.



A n n -
Effective Higgs potential slow roll
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Because ; 7 i proportional to the tensor perturbation as
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This gives a rather strong constraint.
We can obtain bounds on possible modifications of SM.

(Ex.)SM + Higgs portal scalar dark matter

Excluded
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+ Vertical line from potential positivity.



SM aroundPlanck scale

A Desert
SM is valid to the string scale at least theoretically.
SM might be directly connected to string theory without
large modification.
A Marginal stability
Higgs field is nearthe stability bound.
A Zero bare mass
The bare Higgs masss close to zero at the string scale.
It iImplies that Higgs Isa massless state of string theory.
A Flat potential and Higgs inflation
Higgs self coupling andits beta functionbecome zerat the
string scale.
Higgs potential can beflat around the string scale, which
suggestghe Higgs inflation.




2. FIne tunings by nature itself



There are several attempts to extend the
conventional framework of the local field theory
in order to solve the fine tuning problem.

A asymptotic safety

A multiple point criticality principle

A classical conformality

A baby universe and multi -local action

They are related.



MPP of Froggatt and Nielsen

Imagine a system that is described by the path
integral of not the canonical ensemble

A/ Jexp(- 5[ /]) .
but the micro canonical ensemble
Ad ] 49 - 9.
or an even more general ensemble (next slide)
Ad/1f(s[. sl F-)
Still the system is equivalent to the ordinary field

theory in the large space -time volume limit.

But the parameters of the corresponding field theory
are automatically fixed such that the vacuum is at a

(multiple) criticality point




Integrating coupling constants

In fact we can show that the low energy effective

theory of QG / string theory is given by the
multi -local action :

Sw = 1(S. 50
=acs +tag S5 *tag SRS+

i | ] I jk

S=Rd" x/ d 3 A X

Here F are local scalar operators such as

& h=| d "yt Ay FE



Appendix
Low energyeffective theory
of qguantum gravity



Col eman (0689)

Consider Euclidean path integral which involves
the summation over topologies,

a fdg]exp(- 9 .

topology

e ——

We consider the Wilsonian low energy effective theory
after integrating out the short -distance configurations .

Among such configurations there should be a wormhole -
like configuration in which a thin tube connects two points
on the universe. Here, the two points may belong to either
the same universe or different universes.

If we see such configuration from the side of the large
universe(s), it looks like two small punctures .

But the effect of a small puncture is equivalent to an
insertion of a local operator.



Therefore, after integrating out the metric of a
wormbhole, it contributes to the path integral as XS

fdg] & ¢, fe'xd vy o/ gy O O yexp(-5) | Y

Summing over the number of wormholes, we have
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Thus wormholes contribute to the path integral as

O

ﬁdg]expaeS +a G xd' wd 3/ 4y A XO(y)
c

bifurcated wormholes
K cubic terms, quartic terms, €

A ): OO0



The effective action becomes a multi -local form

S =a0.3+a C.jSSj"'éC.ijSjSK"'? ;
| i j

i jk

S = " x/9(X)O (X).

End Appendix



Becauseﬂ +Hg a function of 6 s
"HO ‘#|+rwby a Fourier transform as
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Then the path integral for 4|-hgcomes

Z=pfdflexp(iSy) = diyw( )/ﬁdf]engéa /Sg

Because|= are localoperators,B § | i

:A|:1s an ordinary

local action wherey - are regarded as the coupling
constants.

Therefore the system is the ordinary field theory ,

but we have to integrate over the coupling constants
with some weight < ¢ .



Nature does fine tunings

z=f{orlexp(isn) = oW )/ [ dpeedl 53

=/ w( )z( ) )
Ordinary field theory

This theory Is dangerous because the locality or
causality might be broken.

However, If a small regionfx ¥ dominates they
Integral, it means that thecoupling constants are fixed
toy , and the theory is equivalent to a local field
theory.



We can give some explanation to MPP.

Essence: - space time volume
We can approximate=<y) "Ho(l 1 F+)),
becauseour universe has been cooled down for longme.

1) extremum

If [Fo +£0f) is smooth and has an extremum & _, the
stationary point dominates and we have

HO(l i 5 +¢)) V. Tsr (H%)sﬁ(y PP |=% |
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2) Kink (need not be an extremum)

If 7o £0f ) has a kink (first order phase transition),
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Generalization

| f we consider the time evolution of universe,
the definition of 2t ¢ is not a priori clear.
For example, we need to specify the initial and

final sates.

However, even if we do not know the precise form
ofi ¢ , we expect that 2 ¢ is determined by the
late stage of the universe, because most of the
space-time volume comes from the late stage .

From this we can make some predictionson f0 s
under some circumstances.
Here we consider two cases.



(1) Symmetry example P

1. It becomesimportant only after the QCD phase
transition .

2. The masses and life -times of hadrons are
invariant under

Pher Pred

K We expect that ==is evenin P _

K Py _istunedtoO if I behaves like
7

A

N

>ocp




(2) Edge or drastic change

Conditions: E
1. Physics changes drastically at some |,
value of the couplings. //\
2. 4Lis monotonic elsewhere. / . |
C

K The couplings are tuned to the value,
as we have seen for kink.

Examples: .
. finite
Cosmological constant,

Higgs inflation,
Classicalconformality, 1 =

é / X




In this way we may introduce

the generalized MPP,

0 Coupling constants, whioc
energy region, are tuned to values that

significantly change the history of the universe

when they are changed. o



/1 -

Many open questions /\/

A Degenerate vacuum or flat potential?
A Origin of the weak scale?
A Small cosmological constant?
A How many parameters are tuned?
Too much big fix?

K We need the precise form of &y .

K We should investigate the wave function
of multiverse.



3. Emergence ofweak scale
from
Planck scale

Based on a collaboration with JHaruna,
arxiv:1905.05656.



Weak scale as a noiperturbative effect

Basic assumptions
(1) SM Is directly connected to the string theory
without large modification. _sm+ .
string
(2) The fundamental scale Is only the Planck/string
scale, which appears as the cudff of the low

energy effective field theory.

(3) Relevant operators (couplings with positive
mass dimensions) are tuned by nature itself
through the generalized MPP.

Question:
How does the weak scale appear?



Everybodyos guess

Weak scale should appear as aon-perturbative
effect

Then it Is related to the Planck scale as
1l "Hi (9]~
L pm

And the large hierarchy is naturally understood.

Problem:
Find a phenomenologically acceptable mechanism.



Various possiblilities

1. QCD like dimensional transmutation.
EA A - Hi id]

Not compatible with weakly coupled Higgs.

2. ColemanWeinberg mechanism.

a) Original idea is to explain SSB of SM from
the massless Higgs.
Not acceptable.C] . L o_

b) Additional gauge + complex scalar
Make a mass scale independently to the SM
sector. Then transfer it to SM through VEV.

Possible to make an acceptable model.




3. Even simpler (simplest) model.

Two real scalars.

) N

fl- 1 - ") — (s-|

L By 5
L A
For a while we assume thét <& invariance.
Hq" o -
Hd{° A

More important assumption is theclassical
conformality.



What Is classicalconformality ?

Classicalconformality
= Nrenormali zed mas s

This sounds nonsense for normal fields theorists:
There iIsno guantum mechanical symmetrythat
guarantees masslessness of scalars except SUSY.

On the other hand, once we accept the existence of
sel-tuning mechanism classicalconformality Is
one of the natural choices.

More concretely, we can take the MPP:
NCoupling constantsaref | xed t o cr It

There are some variations in the meaning of
Acritical Dol Nt so.



(1) Critical points for cosmological evolution
Critical values that the time evolution of universe
changes drastically when they are changed.

Supposethat the universe starts from{ ) 8

K ¢ ) IS metastable.

K Universe remainsin that state for awhile.

K ¢ ) IS unstable.

K Universe transitions quickly to another state.

Sothe time evolution of the universe changes
drastically at the point

Thus nt heonorimalyd iicalobt ali



(2) Critical points for the vacuum energy
Critical values that the phase of the vacuum
changes when they arehanged.

As we will see, there are various types of critical
point.

In any case, renormalized masses are fixed to
some values, and we have similar predictions.

For a while, we concentrate on the case of
classicalconformality .



3-1 SSB of the 2 scalar model



Two real scalar model
fly =G ) =GP 1
., 2 A Z
R e

Classicalconformality

-~ N Z

: -I-l-.,HfrﬁfrH _” h ’ _|
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~

Basic feature

For a large region of the parameter space, one of
the fields has nonzero vacuum expectation value.




RG analysis < A, A

Beta functions: ”z ; (Z ¢()

DZ Z(Z& a)

4 Z(Z¢Z¢ 4 )

Assumption: cut off at Planck scale,

Z g

x
SM + vk
small modifications string

When we decrease the renormalization point,
one of the couplings becomes zero.



We assumez becomes zero firstaHH H. .
This Is possible ifd | z Z

Then it is expected
¢ ) K { becomes massive through

K ()




One-loop effective potential

Effective potential for () @ 2. Ry 3%
b ) ?’OIOOP ;Yloop

zH. 2| . T(ﬁ(l-l)‘ ) G T(ﬁ("l)“ )

A Z H 4 H
If we takeH H., this becomes
t )
ad(H.) . ’1’ T("—%I(HJ )
VA H

K ¢) o H (et

A mass scaleo emerges.



Relation betweeno H i jI—I!IL

For simplicity we consider the case
z z L#aL 8

2z —Z(Z A )
ThenforH H Ik fg —5(d zd A)
ACHX # h sy
K z(H¥ 2 i l(ﬁ)

Thus we have
z(H) K Hxd \}"HC’)G -2
K o A ”_— HOQ 4

)
L3)

Non perturbative




Masses of the particles

—
mass of @ 4.  m—iy

O
‘rr'H’ﬁ*H F‘“ )

mass of|: 4 LI

If 4L Hhe general pattern is
o] 4 ﬂl 4.

For example,
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3-2 Coupling to SM



Incorporating two real scalar model into SM

Total action:

fl flys fly nNe- g
t

-

fe- 4 — 181 — 9

We assume thatl y 1 does not contain the Higgs
mass term because of the classicabnformality .

In general, we should consider the mixing
between Higgs and d

| 'HPX %Lﬁ 0_X ¢ Hio ¢ ).

If ol o_ , the mixing Is small.



In that case, the Higgs potential is given by

b
Yl =-¢ ) s, L )
which means ey — Bl — =l
- t 0o h
and the rest Is the same as SM:
[]
(ﬂ ) T—;L :

Weak scale iggeneratednon-perturbatively
from the Planckscale,as

Lo ¢)o @),




il as dark matter

Property of

novev: ()

A e

heavy but not too heavy:

couples to Higgs = |5 |

It is natural to regard 4| as the Higgs portal scalar
dark matter.



Parameters of the model

Two scalar model has 3 parametergz M in
addition to I . Z. & p A%

Z IS replaced by ) o. tA
A gives the ratios of! - R jho .

Z @8 the self coupling of{|. ) L
= &l — =l

Coupling to the Higgs has 2 parameters.

t Is determined by - Lo

t gives coupling between Higgs and] .

e

K Only & Is new compared with the Higgs
portal scalar dark matter scenario.



Examples

DA s8Ry i HA
K . ¢ Tl B8R HP 8

24 8hy f"HA
K 4. ¢ "Hip R "HiP 8

If we assume the Higgs inflation, (1) seems typical.

It predicts a light scalar ~ ¢ Hvhich may be
tested In near future experiments.



3-3 Other criticalities than
classicalconformality



Two real scalar model revisited
floy =G ) =G A

o= & B A
As we have discussed,

classicalconformality Is the assumption that the
bare mass should be tuned so that the
renormalized mass becomes zero:

[ .
This Is a critical point in that the time evolution of
universe drastically changes at

But there Is another kind of critical point, that Is,
the 1-st order phase transition point.




THicuR )

Classicalconformality 1-st order phase transition
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1-st order phase transition point is as plausible
as classicallyconformality .

We can not tell which one is favored by nature
unless we know the precise mechanism of MPP.

At any rate,
the generated mass scaled' - k' y change only
by numerical factors.

Again we can say that the weak scale emerges from
the Planck scale.



Further generalization

So far we have assumed  Z£ symmetry.
Here we assume: only for | .

Then the action has 5 parametersvith positive
mass dimensions (relevant parameters):.

floy =G ) =G A
T S G

We can sef by shifting™ .
K 4 relevant parameters.



Here we assume that all the relevant parameters
are fixed by the generalized MPP.

The problem is to find tetra critical points in the
space of 4 parametersl h Iﬂhi

y d. ,
7 R e B

Instead of seeking the general solutions, here we
construct a special solution.

First we take the conditions_ .
In fact these are criticality conditions because

the behavior of ﬁ.,H.,an,.H'lJ D—-”

around” A changes drastically depending
on the signs of1 and




I S B -

Then we take the conditiond

Agalin this Is a criticality condition because
the behavior ofﬁvHﬁqu!/; o 1| changes
drastically depending on the signs od .

Then the onlyremaining parameter is |

We determine it by the criticality condition of
the effective potential as in the case ofdt
order phase transition:

o | (GO 7(@((&7 )
TriEnh] ) 7 L+ m
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These do not havet symmetry for™ 8
K No cosmological domain wall problem.

Mass scalesh! - Rl j are similar to the
previous ones.

Again the weak scale emerges from the Planck
scale nonperturbatively .



Summary

In wide classes of guantum gravity or string theory,
the low energy effective action haghe multi local form:

Skr=aA ¢% tas SS *tafc  $8 St
| i |

i jk

The fine tuning problem might be solved by the
dynamics of such action.

We need a good definition of the path integral for such
action, but as an ad ho@ssumptionwe can consider
the generalizedMPP and make nontrivial predictions.



Appendix A
Low energyeffective theory of
guantum gravity/string theory



Col eman (0689)

Consider Euclidean path integral which involves
the summation over topologies,

a fdg]exp(- 9 .

topology -

We consider the low energy effective theory after
integrating out the short -distance configurations .

Among such configurations there should be a wormhole -
like configuration in which a thin tube connects two points
on the universe. Here, the two points may belong to either
the same universe or different universes.

If we see such configuration from the side of the large
universe(s), it looks like two small punctures .

But the effect of a small puncture is equivalent to an
insertion of a local operator.



Therefore, a wormhole contributes to the path <
integral as X

ﬁdg]a c P xd 'y o( R oY O x O yexp(-9) . y

Summing over the number of wormholes, we have
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Thus wormholes contribute to the path integral as

O

ﬁdg]expaeS +a G xd' wd 3/ 4y A XO(y)
c

bifurcated wormholes
K cubic terms, quartic terms, €

A ): OO0



The effective action becomes a multi -local form

S :aC.S"'a stsj+é(3|jk38j3<+? ;
| i j

i jk

S = " x/9(X)O (X).

By introducing the Laplace transform

ex(-s. (5. s [

we can express the path integral as

~Y

- ferles( 5.) il V1 a4

Coupling constants are not merely constant, but
they should be integrated.



