

ALIGNMENT LIMIT IN MULTI-HIGHS DOUBLET MODELS

Ipsita Saha

Particle Theory Seminar, Osaka University 26th Nov. 2019

Based on:

- Phys.Rev. D100 (2019) no.3, 035021
- Phys.Rev. D91 (2015) no.9, 095024 Collaborator: Dipankar Das

The 125 GeV HIGGS

The 125 GeV HIGGS In 2HDM

ALIGNMENT LIMIT

The set of conditions under which the lightest CP-even scalar mimics the SM Higgs by possessing SM-like gauge and Yukawa couplings at the tree-level.

In two Higgs doublet models in usual convention

$$\cos(\alpha - \beta) = 0$$

Minimizing the number of independent parameters of scalar potential

$$\phi_k = \begin{pmatrix} w_k^+ \\ (h_k + iz_k)/\sqrt{2} \end{pmatrix}, \qquad (k = 1, 2, ..., n).$$

$$\langle \phi_k \rangle = v_k / \sqrt{2};$$
 $v^2 = \sum_{k=1}^n v_k^2 = (246 \text{ GeV})^2$

The gauge Higgs trilinear coupling :

$$\mathscr{L}_{kin}^{S} = \sum_{k=1}^{n} |D_{\mu}\phi_{k}|^{2} \quad \ni \frac{g^{2}}{2} W_{\mu}^{+} W^{\mu-} \left(\sum_{k=1}^{n} v_{k}h_{k}\right)$$
$$\equiv \frac{g^{2}v}{2} W_{\mu}^{+} W^{\mu-} \left(\frac{1}{v}\sum_{k=1}^{n} v_{k}h_{k}\right)$$

$$\mathscr{L}_{kin}^{S} = \sum_{k=1}^{n} |D_{\mu}\phi_{k}|^{2} \ni \frac{g^{2}v}{2} W_{\mu}^{+} W^{\mu-} \left(\frac{1}{v} \sum_{k=1}^{n} v_{k} h_{k}\right)$$

This suggests that the SM-like Higgs stands for the combination

$$H_0 = \frac{1}{\nu} \sum_{k=1}^n \nu_k h_k$$

Therefore exact SM-like gauge and Yukawa coupling at tree-level. This state however is not guaranteed to be the physical eigenstate.

RETRIEVING ALIGNMENT LIMIT IN 2HDM

$$H_0 = \frac{1}{v}(v_1h_1 + v_2h_2)$$

The orthogonal states can be obtained as,

$$\begin{pmatrix} H_0 \\ R \end{pmatrix} = \mathcal{O}_{\beta} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

where, $\tan \beta = v_2/v_1$

The physical mass eigenstates,

$$\begin{pmatrix} h \\ H \end{pmatrix} = \mathcal{O}_{\alpha} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

REPRODUCING ALIGNMENT LIMIT OF 2HDM

Hence, the combination yield

$$\begin{pmatrix} h \\ H \end{pmatrix} = \mathcal{O}_{\alpha} \mathcal{O}_{\beta}^{T} \begin{pmatrix} H_{0} \\ R \end{pmatrix} = \begin{pmatrix} \cos(\alpha - \beta) & \sin(\alpha - \beta) \\ -\sin(\alpha - \beta) & \cos(\alpha - \beta) \end{pmatrix} \begin{pmatrix} H_{0} \\ R \end{pmatrix}$$

The alignment limit becomes

$$\cos(\alpha - \beta) = 1 \Rightarrow \alpha = \beta$$

Three doublets with three non-zero vevs,

 $v_1 = v \cos \beta_1 \cos \beta_2$, $v_2 = v \sin \beta_1 \cos \beta_2$, $v_3 = v \sin \beta_2$

The orthogonal combinations:

$$\begin{pmatrix} H_0 \\ R_1 \\ R_2 \end{pmatrix} = \mathcal{O}_{\beta} \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} \cos \beta_2 \cos \beta_1 & \cos \beta_2 \sin \beta_1 & \sin \beta_2 \\ -\sin \beta_1 & \cos \beta_1 & 0 \\ -\cos \beta_1 \sin \beta_2 & -\sin \beta_1 \sin \beta_2 & \cos \beta_2 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix}$$

The elements of first row are derived from previous analogy.

$$H_0 = \frac{v_1}{v}h_1 + \frac{v_2}{v}h_2 + \frac{v_3}{v}h_3$$

The physical basis transformation requires a 3X3 orthogonal rotation

$$\mathcal{O}_{\alpha} = \mathcal{R}_3 \cdot \mathcal{R}_2 \cdot \mathcal{R}_1$$

For *h* to overlap completely with H_0

$$\mathcal{O}_{11} = 1$$

Which also ensures,

$$\mathcal{O}_{12} = \mathcal{O}_{21} = \mathcal{O}_{13} = \mathcal{O}_{31} = 0$$

$$\mathcal{O}_{11} = 1$$

 $\cos \alpha_2 \cos \beta_2 \cos(\alpha_1 - \beta_1) + \sin \alpha_2 \sin \beta_2 = 1$

$$\rightarrow \left[\sin\left(\frac{\alpha_1 - \beta_1}{2}\right)\cos\left(\frac{\alpha_2 + \beta_2}{2}\right)\right]^2 + \left[\cos\left(\frac{\alpha_1 - \beta_1}{2}\right)\sin\left(\frac{\alpha_2 - \beta_2}{2}\right)\right]^2 = 0$$

 $\alpha_1 = \beta_1; \alpha_2 = \beta_2$

Or,
$$\alpha_1 = \pi + \beta_1; \alpha_2 = \pi - \beta_2$$

Redefinition of fields as, $H_1 \rightarrow -H_1, H_2 \rightarrow -H_2$

3HDM WITH Z3 SYMMETRY

SUMMARY

- Alignment limit is a recipe to recover a SM-like Higgs in multi-Higgs doublet model.
- A suitable parametrization in the 3HDM leads to the alignment limit that looks very similar to 2HDM case.
- Our analysis provides a way to efficiently implement the alignment limit in case of a CP-conserving 3HDM

STABLE ALIGNMENT LIMIT IN 2HDM

$$M_h \,[\text{GeV}] > 129 + 2.0(M_t - 173.34) - 0.5\left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 0.3$$

VACUUM INSTABILITY PROBLEM

THE 2HDM

Introduce second Higgs doublet.

Electroweak ρ - parameter remains unity at tree level.

FCNC is possible at tree level \longrightarrow discrete Z_2

Need some additional discrete Z_2 or continuous U(1) symmetry to prevent.

Four variants following Z2 assignments.

Z2 CHARGE ASSIGNMENT

The second	Φ_1	Φ_2	UR	d_R	E_R	Q_L, L_L
Type I	+	-	-	-	-	+
Type II	+	-	-	+	+	+
Type X	+	-	-	-	+	+
Type Y	Ŧ			ł		Ŧ

2HDM POTENTIAL

Notation 1

$$V = m_{11}^2 \phi_1^{\dagger} \phi_1 + m_{22}^2 \phi_2^{\dagger} \phi_2 - \left(m_{12}^2 \phi_1^{\dagger} \phi_2 + \text{h.c.} \right) + \frac{\lambda_1}{2} \left(\phi_1^{\dagger} \phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\phi_2^{\dagger} \phi_2 \right) \\ + \lambda_3 \left(\phi_1^{\dagger} \phi_1 \right) \left(\phi_2^{\dagger} \phi_2 \right) + \lambda_4 \left(\phi_1^{\dagger} \phi_2 \right) \left(\phi_2^{\dagger} \phi_1 \right) + \left\{ \frac{\lambda_5}{2} \left(\phi_1^{\dagger} \phi_2 \right)^2 + \text{h.c.} \right\}$$

Notation 2

$$V = \beta_1 \left(\phi_1^{\dagger} \phi_1 - \frac{v_1^2}{2} \right)^2 + \beta_2 \left(\phi_2^{\dagger} \phi_2 - \frac{v_2^2}{2} \right)^2 + \beta_3 \left(\phi_1^{\dagger} \phi_1 + \phi_2^{\dagger} \phi_2 - \frac{v_1^2 + v_2^2}{2} \right)^2 + \beta_4 \left\{ (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) - (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) \right\} + \beta_5 \left(\operatorname{Re} \phi_1^{\dagger} \phi_2 - \frac{v_1 v_2}{2} \right)^2 + \beta_6 \left(\operatorname{Im} \phi_1^{\dagger} \phi_2 \right)^2$$

- The additional symmetry is softly broken by the term proportional to β_5 or m_{12}^2
- Nonzero $\tan \beta$ implies two parametrizations are equivalent.

THE 2HDM

• Notation-II is useful for tracking breaking parameter effect and defining scalar masses in terms of couplings.

- The symmetry enhanced from Z2 to a U(1) for $\beta_5 = \beta_6$.
- The equivalence of the two sets of parameters are given by the following relations:

);

•

$$m_{11}^{2} = -(\beta_{1}v_{1}^{2} + \beta_{3}v^{2}); \qquad \lambda_{1} = 2(\beta_{1} + \beta_{3})$$

$$m_{22}^{2} = -(\beta_{2}v_{2}^{2} + \beta_{3}v^{2}); \qquad \lambda_{2} = 2(\beta_{2} + \beta_{3})$$

$$m_{12}^{2} = \frac{\beta_{5}}{2}v_{1}v_{2}; \qquad \lambda_{3} = (2\beta_{3} + \beta_{4})$$

$$\lambda_{4} = \frac{\beta_{5} + \beta_{6}}{2} - \beta_{4}; \qquad \lambda_{5} = \frac{\beta_{5} - \beta_{6}}{2}.$$

COUPLINGS TO MASSES RELATION

<u>Five independent physical parameters</u> : $(m_H, m_A, m_{H^{\pm}}, \tan \beta, m_0)$

$$\beta_{1} = \frac{1}{2v^{2}c_{\beta}^{2}} \left[m_{H}^{2}c_{\alpha}^{2} + m_{h}^{2}s_{\alpha}^{2} - \frac{s_{\alpha}c_{\alpha}}{\tan\beta} \left(m_{H}^{2} - m_{h}^{2} \right) \right] - \frac{\beta_{5}}{4} \left(\tan^{2}\beta - 1 \right)$$
$$\beta_{2} = \frac{1}{2v^{2}s_{\beta}^{2}} \left[m_{h}^{2}c_{\alpha}^{2} + m_{H}^{2}s_{\alpha}^{2} - s_{\alpha}c_{\alpha}\tan\beta \left(m_{H}^{2} - m_{h}^{2} \right) \right] - \frac{\beta_{5}}{4} \left(\cot^{2}\beta - 1 \right)$$

$$\beta_3 = \frac{1}{2v^2} \frac{s_\alpha c_\alpha}{s_\beta c_\beta} \left(m_H^2 - m_h^2 \right) - \frac{\beta_5}{4}$$

$$\beta_4 = \frac{2}{v^2} m_{H^+}^2$$

 $\beta_6 = \frac{2}{v^2} m_A^2$; $m_0 = \frac{1}{2} \beta_5 v^2$ is the soft-symmetry breaking parameter.

THEORETICAL CONSTRAINTS

Vacuum stability :

$$\lambda_2 > 0 \,,$$

 $\lambda_1 > 0$

$$\lambda_3 + \sqrt{\lambda_1 \lambda_2} > 0, \quad \lambda_3 + \lambda_4 - |\lambda_5| + \sqrt{\lambda_1 \lambda_2} > 0.$$

Perturbative unitarity:

$$a_1^{\pm} = \frac{3}{2}(\lambda_1 + \lambda_2) \pm \sqrt{\frac{9}{4}(\lambda_1 - \lambda_2)^2 + (2\lambda_3 + \lambda_4)^2}, \qquad b_1^{\pm} = \lambda_3 + 2\lambda_4 \pm 3\lambda_5,$$

$$a_{2}^{\pm} = \frac{1}{2}(\lambda_{1} + \lambda_{2}) \pm \frac{1}{2}\sqrt{(\lambda_{1} - \lambda_{2})^{2} + 4\lambda_{4}^{2}}, \qquad b_{2}^{\pm} = \lambda_{3} \pm \lambda_{5},$$

$$a_{3}^{\pm} = \frac{1}{2}(\lambda_{1} + \lambda_{2}) \pm \frac{1}{2}\sqrt{(\lambda_{1} - \lambda_{2})^{2} + 4\lambda_{5}^{2}}, \qquad b_{3}^{\pm} = \lambda_{3} \pm \lambda_{4}.$$

The requirement of tree unitarity then restricts the above eigenvalues as $|a_i^{\pm}|, |b_i^{\pm}| \le 16\pi$

EXPERIMENTAL CONSTRAINTS

Oblique T-parameter constraint to restrict the splitting between the nonstandard masses.

$$\Delta T = \frac{1}{16\pi \sin^2 \theta_w M_W^2} \left[F(m_{H^+}^2, m_H^2) + F(m_{H^+}^2, m_A^2) - F(m_H^2, m_A^2) \right]$$

$$\frac{x+y}{2} - \frac{xy}{x-y} \ln\left(\frac{x}{y}\right) \quad , x \neq y$$

$$F(x,y) = \qquad 0 \qquad , x = y$$

 $\Delta T = 0.05 \pm 0.12$

- If, $m_H \approx m_A$ then ΔT severely restricts the splitting between charged and neutral scalar masses.
- For Type II models $m_H^+ > 300$ GeV due to $b \to s\gamma$.
- For Type I models, $m_H^+ > 80$ GeV from direct search limit.
- Alignment limit, $\cos(\beta \alpha) = 0$

EXACT Z2 SYMMETRIC CASE

- Potential is not stable until Planck scale.
- Type I models remain stable up to a maximum of 10⁸ GeV whereas Type II models can only be stable up to 10⁴ GeV due to charged Higgs mass bound.
- $\tan \beta$ is bounded depending upon the energy scale $\Lambda_{\rm UV}$ up to which stability is demanded.

SOFTLY BROKEN Z2 SYMMETRIC 2HDM

- A stable alignment limit can only be achieved with a softly broken 2HDM potential.
- Stability of the 2HDM potential up to a cut-off scale $\Lambda_{\rm UV}$ yield a lower bound on tan β and eventually on m_0 (or equivalently on β_5).
- $\tan \beta \ge 3$ and $m_0 \ge 120(280)$ GeV for Type I(II).

SOFTLY BROKEN Z2 SYMMETRIC CASE

Theoretical Explanation for mass correlation

- The evolution of λ_5 is proportional to itself and any initial nonzero value of λ_5 will cause it to grow with energy. RGE
- $\lambda_5 \approx 0$ leads to U(1) limit.
- $\lambda_5 \approx 0$ implies $\beta_5 \approx \beta_6$ and hence, $m_A^2 \approx m_0^2$.

Theoretical Explanation for mass correlation

- The unitarity and stability conditions at the electroweak scale imply, [D. Das '15] 0 $\leftarrow (-2, -2)(1, -2, 0) + 0, -2 - \frac{32\pi v^2}{2}$
 - $0 < (m_H^2 m_0^2)(\tan^2\beta + \cot^2\beta) + 2m_h^2 < \frac{32\pi v^2}{3}.$
- For $\tan \beta$ away from unity, the inequality renders a degeneracy between m_H and m_0 .

Theoretical Explanation for mass correlation

• With
$$m_H^2 \approx m_A^2 \approx m_0^2$$
, $\Delta T = \frac{1}{8\pi \sin^2 \theta_w M_W^2} F\left(m_{H^+}^2, m_0^2\right)$.

• $F(m_{H^+}^2, m_0^2)$ restricts the splitting $|m_{H^+}^2 - m_0^2|$, the experimental limit on ΔT imparts the degeneracy between m_{H^+} and m_0 .

• Thus,
$$m_0^2 \approx m_A^2 \approx m_H^2 \approx m_{H^+}^2$$
.

• The lower limit of charged Higgs mass for Type II (300 GeV) and limit on CP-even Higgs $(> m_h)$ for Type I sets the limit on m_0 .

Theoretical Explanation for $\tan \beta$ **limit**

- ϕ_2 gives massles to up-type quarks $\Rightarrow \lambda_2$ will face the negative pull of top Yukawa copling $\rightarrow h_t = \frac{\sqrt{2}m_t}{(v \sin \beta)}$.
- In the limit of *exact degeneracy*, RG running of λ_2 is similar to SM Higgs self-coupling λ except some extra scalar contribution.

$$\mathcal{D}\lambda_2 = 16\lambda_2^2 - 3\left(3g^2 + {g'}^2\right)\lambda_2 + \frac{3}{4}\left(3g^4 + {g'}^4 + 2g^2{g'}^2\right) + 12h_t^2\lambda_2 - 12h_t^4$$

• Not enough to overcome the negative pull of top Yukawa \Rightarrow lower limit in tan β .

Theoretical Explanation for $\tan \beta$ **limit**

Deviation in m_H^{\pm} from degenerate value relax the tan β limit.

$$m_0 = m_A = m_H$$
, and, $m_{H^+}^2 = m_0^2 + \Delta$.

In this limit,

$$\lambda_1 = \lambda_2 = \frac{m_h^2}{v^2}, \quad \lambda_3 = \lambda_2 + \frac{2\Delta}{v^2}, \quad \lambda_4 = -\frac{2\Delta}{v^2}, \quad \lambda_5 = 0.$$

Using these, we can rearrange the terms that appear on the RHS in the RG equation for λ_2 , to obtain

$$\mathcal{D}\lambda_2 = 14\lambda_2^2 + 2\left(\lambda_2 + \frac{2\Delta}{v^2}\right)^2 - 3\left(3g^2 + {g'}^2\right)\lambda_2 + \frac{3}{4}\left(3g^4 + {g'}^4 + 2g^2{g'}^2\right) + 12h_t^2\lambda_2 - 12h_t^4.$$

Extra scalar contribution aids to lower value of $\tan \beta$.

SUMMARY

- 2HDM scalar potential with an exact Z_2 symmetry is unable to maintain stability after 10^8 GeV (10^4 GeV) in the Type I (II) case. To ensure stability up to the Planck scale, Z_2 symmetry needs to be broken softly.
- By demanding high scale stability in the presence of a soft breaking, we are led to a situation where the symmetry of the potential is enhanced from softly broken Z_2 to softly broken U(1).
- To have stability up to very high energies ($\geq 10^{10}$ GeV), all the nonstandard masses need to be nearly degenerate: $m_0 \approx m_A \approx m_H \approx m_{H^+}$. Thus, there is only one nonstandard mass parameter that governs the 2HDM in the *stable alignment limit*.
- The value of $\tan \beta$ is bounded from below.

THANK YOU

BACKUP

3HDM WITH Z3 SYMMETRY

The scalar potential

$$\begin{split} V &= m_{11}^2 (\phi_1^{\dagger} \phi_1) + m_{22}^2 (\phi_2^{\dagger} \phi_2) + m_{33}^2 (\phi_3^{\dagger} \phi_3) + \lambda_1 (\phi_1^{\dagger} \phi_1)^2 + \lambda_2 (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_3^{\dagger} \phi_3)^2 \\ &+ \lambda_4 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_5 (\phi_1^{\dagger} \phi_1) (\phi_3^{\dagger} \phi_3) + \lambda_6 (\phi_2^{\dagger} \phi_2) (\phi_3^{\dagger} \phi_3) \\ &+ \lambda_7 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \lambda_8 (\phi_1^{\dagger} \phi_3) (\phi_3^{\dagger} \phi_1) + \lambda_9 (\phi_2^{\dagger} \phi_3) (\phi_3^{\dagger} \phi_2) \\ &+ \left[\lambda_{10} (\phi_1^{\dagger} \phi_2) (\phi_1^{\dagger} \phi_3) + \lambda_{11} (\phi_1^{\dagger} \phi_2) (\phi_3^{\dagger} \phi_2) + \lambda_{12} (\phi_1^{\dagger} \phi_3) (\phi_2^{\dagger} \phi_3) + \mathrm{h.c.} \right] \end{split}$$

ADDITIONAL USAGE

Deviations from the exact alignment limit can also be parametrized rather conveniently.

 $\sin(\alpha_1 - \beta_1) = \delta_1 \qquad \sin(\alpha_2 - \beta_2) = \delta_2$ $\alpha_1 = \sin^{-1}(\delta_1) + \beta_1; \qquad \alpha_2 = \sin^{-1}(\delta_2) + \beta_2$

Write the couplings in terms of physical masses and mixings.

 $\delta_1 = \delta_2 = 0$ characterizes the exact alignment limit.

$$\mathscr{L}_{H_i^+H_i^-h} = g_{H_i^+H_i^-h} H_i^+ H_i^-h, \qquad (i = 1, 2)$$

In the exact alignment limit,

$$g_{H_i^+H_i^-h} = -\frac{1}{\nu} \left(m_h^2 + 2m_{Ci}^2 \right) = -\frac{gm_{Ci}^2}{M_W} \left(1 + \frac{m_h^2}{2m_{Ci}^2} \right)$$

Introduce soft symmetry breaking term to avoid non-decoupling.