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The 125 GeV HIGGS

CMS Preliminary ® Observed
T 35.9 b (13 TeV)
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125 GeV HIGGS In
oHDM
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ALIGNMENT LIMIT

The set of conditions under which the lightest CP-even scalar
mimics the SM Higgs by possessing SM-like gauge and Yukawa
couplings at the tree-level.

In two Higgs doublet models in usual convention

Minimizing the number of independent parameters
of scalar potential




ALIGNMENT LIMIT IN

p? = = (246 GeV)?

The gauge Higgs trilinear couphng

glﬁin = Z |Dﬂ¢k| =) _W_I_W'u_ < thk)
k=1
: W+Wﬂ— ( Z thk>
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ALIGNMENT LIMIT IN
nHDM

4 >

2 % 1L
Tac2 0 o (;Z"k’“k>

k=1 k=1

This suggests that the SM-like Higgs stands for the combination

Therefore exact SM-like gauge and Yukawa coupling at tree-level.

This state however 1s not guaranteed to be the physical eigenstate.




RETRIEVING ALIGNMENT
LIMIT IN 2HDM

COS ﬂr 1’
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where, tan g = v, /v,

The physical mass eigenstates,
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REPRODUCING ALIGNMENT
LIMIT OF 2HDM

Hence, the combination yield
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ALIGNMENT LIMIT IN 3HDM

Three doublets with three non-zero vevs,

V; = vCos f§; cos 35, Vs = psinfl cosfi, v, = vsin g,

The orthogonal combinations:

o o e —— i e p— g =

sinfi, | (1) )

(/ H, cos f,cos ff;  cos f, sin f3;
—sin f, COS p; 0 h,

—CcosS p;sinf, —sinp;sinf, cosp,

The elements of first row are derived from previous analogy.

V1 ks 3
HO . _hl o+ _h2 ot _h3
V V V




ALIGNMENT LIMIT IN 3HDM

The physical basis transformation requires a
3X3 orthogonal rotation

cosa; sina; O cosa, 0 sma

R, =|-sina; cosa; O 0 I
0 0 i —sina, 0 cosa,

1 0 0
%,=|0 cosa; sinog;

0 —sina;y cosa;




ALIGNMENT LIMIT IN 3HDM

H,
[]

For & to overlap completely with H,,

Which also ensures,




ALIGNMENT LIMIT IN 3HDM

+ | COS

Redefinition of fields as, H; - — H,,H, - — H,



3HDM WITH Z3 SYMMETRY

Ehxx

Z3 charges aSSignmé

modifiers

h = 0Py, ¢2‘>602¢2

sin a,

i 1 :
2 sSin

Sin a; COS a5

sin f; cos f,

Up type quark mass

Down type quark mass 205 16, COB &,

| * " cos B cos B
Charged lepton mass | 1 2

ky = 0,1 = cos a, cos f, cos(a; — f;) + sina, sin f3,




3HDM WITH Z3 SYMMETRY

[LHC-13 TeV | HL — LHC/ILC




SUMMARY

o Alignment limit is a recipe to recover a SM-like Higgs
in multi-Higgs doublet model.

» A suitable parametrization in the 3HDM leads to the
alignment limit that looks very similar to 2HDM
case.

e QOur analysis provides a way to efficiently implement
the alignment limit in case of a CP-conserving 3HDM




STABLE ALIGNMENT

LIMIT IN 2HDM




VACUUM INSTABILITY
PROBLEM
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THE 2HDM

Introduce second Higgs doublet.

Electroweak p- parameter remains unity at tree level.

Need some additional
FCNC is possible at tree level === discrete Z, or

continuous U(1) symmetry
to prevent.

Four variants following Z2 assignments.




72 CHARGE ASSIGNMENT




2HDM POTENTIAL

otatlo
G eie s (mstign+hc. )+ 2 (#01) +2 (01n)

o (010n) (#10n) + 40 (0162) (011) + (% (10 e}

Notatlon 2

v2 : v2 : vz+v2 .
V=4 (cbfqbl—;l) +ﬂ2(¢;¢2—§> + B, <¢3¢1+¢;¢2— 12 2)

2
+/4 {(¢f¢1)(¢§¢2> = (¢f¢2)(¢;¢1 } + s <Re ¢T¢2 i 2> + P <Im qbfqbz)

e The additional symmetry is softly broken by the term proportional to f; or

2
my,

e Nonzero tan ff implies two parametrizations are equivalent.




THE 2HDM

o Notation-II is useful for tracking breaking parameter effect and defining

scalar masses in terms of couplings.
e The symmetry enhanced from Z2 to a U(1) for f5 = [f.

o The equivalence of the two sets of parameters are given by the following relations:

mé; = — (Bvi + P3v) ; AL =201+ P3);

my, = — (5 + f3v°) ; Ay = 2Py + P3);

9 :BS /13 = (2,53 i ﬂ4) )

Ity = ?Vl"z ;

e _:BS_:B6
ﬁ52ﬂ6_ﬁ4; As = .

ﬂ4=




COUPLINGS TO MASSES
RELATION

Five independent physical parameters : (1, m,, my=, tan 5, m)

1
2. 0 -9
= MC 1S

2 (mZ — m?)

1

2.2 2 o2 2 7

mcoEmos. = 5 c tang (mH - mh)] - ?5 (Cotzﬂ = 1)




THEORETICAL CONSTRAINTS

Vacuum stability : =0,
Ay >0,

Ak hids >0 A A - A Rydid, >0

Perturbative unitarity:

E 3 9 2
ad = E(/Il +4,) £ \/Z(/ll L) B2 bt = Ay + 24, £ 34,

i l(/11 +45) £ l\/(}tl — 1,)* + 4/14% ,
2 2

a3i — l(/11 4 l\/(/ll — /12)2 -+ 4/152 :
2 2

The requirement of tree unitarity then restricts the above eigenvalues as
lazl |br] = 167




EXPERIMENTAL
CONSTRAINTS

e Oblique T-parameter constraint to restrict the splitting between the nonstandar
masses.

AT

[F(m]%]+9 mIQ—}) + F(m[%]+9 mj) o F(m]%la mj)] ’

" 167 sin2 0. .M:

. ln<

s X
F(x,y) = 0

AL=005+01)
If, my; =~ m, then AT severely restricts the splitting between charged

=X Y

and neutral scalar masses.
For Type II models m;;, > 300 GeV due to b — sy.

For Type I models, m;, > 80 GeV from direct search limit.
Alignment limit, cos(f — a) =0




EXACT Z2 SYMMETRIC CASE
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e Potential is not stable until Planck scale.

o Type I models remain stable up to a maximum of 10° GeV whereas Type II models can only be

stable up to 10* GeV due to charged Higgs mass bound.
o tan f is bounded depending upon the energy scale Ay up to which stability is demanded.




SOFTLY BROKEN Z2 SYMMETRIC 2HDM

e A stable alignment limit can only be achieved with a softly broken 2HDM potential.

o Stability of the 2HDM potential up to a cut-off scale Ay yield a lower bound on tan $ and
eventually on m, (or equivalently on fs).
e tanf > 3 and my > 120(280) GeV for Type I(II).

2 e Ay = 10 Gev]
*o Agy = 10 GeV|

e ....... ” g .... .:: ‘/\U\:' .: -1019 C-}.ev

e* ‘:~o g.o. e 0 e @ .
; ‘. "n':f.j'."::..'. s °*
0. L ‘

top Yukawa coupling higher than
For tan f lower than the required limit the SM value which worsen the

stability of the potential.

Significantly large tan f8 ——’ enough positive contribution to Higgs self-coupling.



SOFTLY BROKEN Z2 SYMMETRIC
CASE
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Theoretical Explanation for mass correlation

@ The evolution of A5 is proportional to itself and any initial nonzero value of As
will cause it to grow with energy.

@ )5 ~ 0 leads to U(1) limit.
2

@ )5 ~ 0 implies B5 ~ B¢ and hence, m? ~ mg.

IAgy = 10°GeV s HAgy = 101 GeV
Ay = 10'°GeV P | Ayy = 10" GeV
AUV = 1019 GeV _l" AU\“' = 1019 GCV
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Theoretical Explanation for mass correlation

e The unitarity and stability conditions at the electroweak scale imply, .
Das ’15]

0 < (m3; —m2)(tan? B + cot? f) + 2m32 < 32rv°

e For tan /8 away from unity, the inequality renders a degeneracy between
mpy and my.

1600
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Theoretical Explanation for mass correlation

. 2 o 2 o 2 L 1 2 2
(* ) Wlth mH NmA ~ My, AT— 87rsin29wM‘%VF(mH+’m0) .

o F (miﬁ,mg) restricts the splitting |m§1+ — mg|, the experimental limit on AT
imparts the degeneracy between m 4+ and mg.

1600
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@ Thus, mi ~ m% ~ m3 ~ m%H.

@ The lower limit of charged Higgs mass for Type II (300 GeV) and limit on
CP-even Higgs (> myp) for Type I sets the limit on my.




Theoretical Explanation for tan § limit

@ ¢2 gives masses to up-type quarks = A2 will face the negative pull of top

Yukawa copling — hy = %

@ In the limit of exact degeneracy, RG running of A2 is similar to SM Higgs
self-coupling A except some extra scalar contribution.

Dy = 16)2—3 (392 + g’2) Ao +

Z (394 +gt 2929’2) F12h2 N, — 12R%

@ Not enough to overcome the negative pull of top Yukawa = lower limit in tan 3.
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Theoretical Explanation for tan S limit

Deviation in mﬁ from degenerate value relax the tan  limit.
mo = ma = mpyg, and, m?ﬁr :mg—l—A.
In this limit,

2
2A 2A
M=de= Rt Ng=dod 2, A=—"2, A =0.
v v v
Using these, we can rearrange the terms that appear on the RHS in the RG equation
for Ao, to obtain

24\ 2 2 3 4 2
’D>\2=14>\§+2(>\2+—) —3(3g2+g’ )A2+Z(394—}—g’ + 2924’ )+12h%>\2—12h‘§‘.

v2

Extra scalar contribution aids to lower value of tan S.

40




SUMMARY

2HDM scalar potential with an exact Z, symmetry is unable to maintain stability
after 10° GeV (10* GeV) in the Type I (II) case. To ensure stability up to the Planck
scale, Z, symmetry needs to be broken softly.

By demanding high scale stability in the presence of a soft breaking, we are led to a

situation where the symmetry of the potential is enhanced from softly broken Z, to
softly broken U(1).

To have stability up to very high energies ( > 10'° GeV), all the nonstandard
masses need to be nearly degenerate: m, ~ m, ~ my = my.. Thus, there is only one

nonstandard mass parameter that governs the 2HDM in the stable alignment limit.

The value of tan f is bounded from below.










3HDM WITH Z3 SYMMETRY

The scalar potential

V= mi (¢ by) + may () hy) + miz(@lhs) + A1(h D) + () + A3(h] h3)
_|_,14(¢1‘r ¢1)(¢; ¢,) + /Is(ﬁb;r ¢1)(¢3‘r s) £ /16(45; sz)(éb; P3)
+2(h D) (@) b)) + A5(h] h3) (1) + Ao(h, h3) (b))

g [/110(453 ¢2)(¢1‘r $3) + /111(¢1Jr ¢2)(¢3T $y) + /llz(ﬁbf ¢3)(¢§ ¢3)+h.c. ]




ADDITIONAL USAGE

Deviations from the exact alignment limit can also be parametrized

rather conveniently.
Sin(al s ﬁl) — 51 Sin(aZ o ﬂZ) = 52

Q) — sin‘l(él) T A, = sin‘l(éz) + /)
Write the couplings in terms of physical masses and mixings.
0; = 0, = 0 characterizes the exact alignment limit.

Lyruon = 8 BT H R, ((=1,2)

In the exact alignment limit,

1 mé. m2
2 2 h
e Ll s ( Zm%i)

Introduce soft symmetry breaking term to avoid non-decoupling.




