Partial deconfinement in gauge theories

Hiromasa Watanabe (Univ. of Tsukuba)
Collaborator: M. Hanada (Univ. of Southampton), G. Ishiki (Univ. of Tsukuba)

arXiv: 1911.11465 (proceedings)
JHEP 03 (2019) 145 (arXiv: 1812.05494)
Hanada \& Maltz (2016)
Hanada, Jevicki, Peng \& Wintergerst, (2019)
Hanada \& Robinson, (2019)

2019/12/10 Seminar@Osaka University

Introduction: large-Nc gauge theory

OCD : $\operatorname{SU}(3)$ gauge theory, 3 colors

$$
\left(\begin{array}{ccc}
\left(\begin{array}{ccc}
A_{\mu}^{11} & A_{\mu}^{12} & A_{\mu}^{13} \\
A_{\mu}^{21} & A_{\mu}^{22} & A_{\mu}^{23} \\
A_{\mu}^{31} & A_{\mu}^{32} & A_{\mu}^{33}
\end{array}\right) & \left(\begin{array}{c}
q_{1} \\
q_{2} \\
\text { gauge field } \\
\text { (gluon) }
\end{array}\right. & q_{3} \\
q_{3}
\end{array}\right)
$$

$\mathrm{SU}(\mathrm{Nc})$ gauge theory, \quad Nc colors

$$
\left(\begin{array}{ccc}
A_{\mu}^{11} & \cdots & A_{\mu}^{1 N} \\
\vdots & \ddots & \vdots \\
A_{\mu}^{N 1} & \cdots & A_{\mu}^{N N}
\end{array}\right) \quad\left(\begin{array}{ccc}
\Psi^{11} & \ldots & \Psi^{1 N} \\
\vdots & \ddots & \vdots \\
\Psi^{N 1} & \cdots & \Psi^{N N}
\end{array}\right) \quad\left(\begin{array}{c}
\Phi^{1} \\
\vdots \\
\Phi^{N}
\end{array}\right)
$$

Large N limit

`t Hooft large N limit; [' + Hooft, (1974)]

$$
N \rightarrow \infty, \quad \lambda \equiv g_{\mathrm{YM}}^{2} N: \text { fixed }
$$

\longrightarrow Saddle point approximation becomes exact (up to $1 / \mathrm{N}$ corrections)

- This often gives good approximation to finite N, even $N=3$
- Energy and entropy can be estimated by counting color d.o.f.
- Another motivation; equivalence to string theory

Deconfinement transition

From [Fukushima \& Hatsuda, (2012)]
"deconfinement criterion" in large- N theory
Confined phase;

$$
E \sim N^{0}
$$

Phase transition takes place Deconfined phase;

$$
E \sim N^{a}
$$ even finite volume.

$$
\begin{cases}a=1 & \text { fundamental matter } \\ a=2 & \text { adjoint matter }\end{cases}
$$

"Partial" deconfinement?

- Confined phase; $\quad E \sim N^{0}$
- Deconfined phase; $E \sim N^{2}$
(thermal excitation of color d.o.f.)

What happens
if energy is not so large or small?
ex.) $E \sim N^{2} / 100$

"Partial" deconfinement?

- Confined phase; $\quad E \sim N^{0}$
- Deconfined phase; $E \sim N^{2}$ (thermal excitation of color d.o.f.)

What happens
if energy is not so large or small?
ex.) $E \sim N^{2} / 100$
only $\operatorname{SU}(\mathrm{N} / 10)$ sector deconfines.

$$
E \sim M^{2}=\varepsilon N^{2} \quad \text { with } \quad M \sim \sqrt{\varepsilon} N=N / 10
$$

"Partially deconfined" phase

Phase structures

(Precise arguement is given later)

Phase structures

(Precise arguement is given later)
There are TWO transitions.

One of transitions is Gross-Witten-Wadia(GWW) transition [Gross \& Witten, (1980)/ Wadia, (1980)]

Relation to Gross-Witten-Wadia transition

$1 / \mathrm{N}$ and $1 / \mathrm{N}^{\prime}$ corrections are both negligible.
At $M \leq N^{\prime}, \mathrm{SU}(\mathrm{N})$ and $\mathrm{SU}\left(\mathrm{N}^{\prime}\right)$ theories behave in same manner.

> | SU(N') sector |
| :--- |
| in $\mathrm{SU}(\mathrm{N})$ theory |

GWW-transition point of $\mathrm{SU}\left(\mathrm{N}^{\prime}\right)$ theory

In partially deconfined phase,

$$
E=E_{\mathrm{GWW}}(M), \quad S=S_{\mathrm{GWW}}(M)
$$

Point of view from Polyakov loop

Polyakov loop : an order parameter of confine/deconfine transition

$$
P=\frac{1}{N} \operatorname{Tr} \mathscr{P} \exp \left[-\oint_{\text {temporal }} A_{t}\right]=\frac{1}{N} \sum_{j=1}^{N} \mathrm{e}^{\mathrm{i} \theta_{j}}=\int d \theta \rho(\theta) \mathrm{e}^{\mathrm{i} \theta}
$$

$\rho(\theta)=\frac{1}{N} \sum_{j} \delta\left(\theta-\theta_{j}\right):$ phase distribution
Can be regarded as continuous function in large N limit

Confined phase

Deconfined phase

Phase distribution of Polyakov line phases

Polyakov loop : an order parameter of confine/deconfine transition

confined

"partially" deconfined

"completely" deconfined

Deconfinement transition (Hagedorn transition)

GWW transition

$$
\rho(\theta)=\frac{N-M}{N} \rho_{\mathrm{conf}}(\theta)+\frac{M}{N} \rho_{\mathrm{GWW}, M}(\theta)=\frac{N-M}{N} \cdot \frac{1}{2 \pi}+\frac{M}{N} \rho_{\mathrm{GWW}, M}(\theta)
$$

Partial deconfinement is "the mixture."

$M \theta_{j} \mathrm{~s}$ are in deconfined phase and $N-M \quad \theta_{j} \mathrm{~s}$ are in confined phase
(For string theorists)

Connection to String Theory

Berkowitz, Hanada \& Maltz, (2016)
Hanada \& Maltz, (2016) Berenstein, (2018)

Black hole in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}<=>4 \mathrm{~d} \mathrm{~N}=4 \mathrm{SU}(N) \mathrm{SYM}$

Strongly coupled 4d SYM / dual string theory (E: fix)

String gas

Black hole in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}<=>4 \mathrm{~d} \mathrm{~N}=4 \mathrm{SU}(\mathrm{N}) \mathrm{SYM}$

Strongly coupled 4d SYM / dual string theory

Large BH (AdS BH)

(T: fix)
String gas
$E \sim N^{0}$
Gauge theory side;
Deconfined phase

phase transition

Confined phase

[Witten, (1998)]

D-branes with open strings \& BH

$D p$-brane : the objects that open strings can put their endpoints.

$$
\begin{aligned}
& S_{\mathrm{DBI}}=-T_{D_{p}} \operatorname{Tr} \int \mathrm{~d}^{p+1} \sigma \sqrt{-\operatorname{det}\left(G_{a b}+2 \pi l_{s}^{2} \mathscr{F}_{a b}+\cdots\right)} \\
& S_{\text {eff }}=\frac{1}{g_{\mathrm{YM}}^{2}} \int d^{p+1} x \operatorname{Tr}\left\{\frac{1}{4} F_{\mu \nu}^{2}+\frac{1}{2}\left(D_{\mu} X_{M}\right)^{2}+\frac{1}{4}\left[X_{M}, X_{M}^{\prime}\right]^{2}+\cdots\right\}
\end{aligned}
$$

$$
D_{\mu}=\partial_{\mu}-i\left[A_{\mu}, \cdot\right] \quad \begin{cases}A_{\mu}\left(x^{\mu}\right) & (\mu=0,1, \cdots, p) \\ X_{M}\left(x^{\mu}\right) & (M=p+1, \cdots, 9)\end{cases}
$$

Classical vacua (:minima of potential)

$$
X_{M}=\operatorname{diag}\left(x_{M}^{1}, x_{M}^{2}, \cdots, x_{M}^{N}\right)
$$

$$
\left(X_{M}\right)_{i i}=x_{M}^{i} \quad: \text { Position of } i \text { th } D p \text {-brane }
$$

$$
\left(X_{M}\right)_{i j} \text { 's fluctuation }
$$

: Open strings between i th and j th $D p$-brane

D-branes with open strings \& BH

Classical vacua (:minima of potential)

$$
X_{M}=\operatorname{diag}\left(x_{M}^{1}, x_{M}^{2}, \cdots, x_{M}^{N}\right)
$$

$\left(X_{M}\right)_{i i}=x_{M}^{i} \quad$: Position of i th Dp-brane $\left(X_{M}\right)_{i j}$'s fluctuation
: Open strings between i th and j th $D p$-brane

High energy region,

When E is not so large/small,
[Hanada \& Maltz, (2016)/Berkowitz, Hanada \& Maltz, (2016)]

gauge theory counterpart of small black hole

Negative specific heat can appear

Roughly, temperature ~ energy per d.o.f.

$$
\begin{gathered}
T \sim E / N^{2} \\
T^{\prime} \sim E^{\prime} / N^{2} \\
N^{2}: \text { fixed, } \rightarrow T^{\prime}>T, \text { if } E^{\prime}>E
\end{gathered}
$$

$$
T \sim \frac{E}{M^{2}(E)}
$$

It's possible that T decreases when E increases.

Contents

1, Introduction
2, Explicit demonstrations of partial deconfinement

- Weakly-coupled 4D Yang-Mills theories
- Lower dimensional theories

3, Some applications

- partial deconfinement and gauge fixing

4, Summary \& Discussion
(For all)

Explicit demonstrations of partial deconfinement

Hanada, Ishiki \& HW, (2018)
Hanada, Jevicki, Peng \& Wintergerst, (2019) Hanada \& Robinson, (2019)

Weakly-coupled 4D Yang-Mills theories

- 4d SU(N) Yang-Mills theory with adjoint matters on S^{3};
[Sundborg, (2000)/Aharony, Marsano, Minwalla, Papadodimas \& Raamsdonk, (2003)]
At zero 't Hooft coupling;

$$
\begin{aligned}
& Z(x)=\int[\mathrm{d} U] \exp \left\{\sum_{m=1}^{\infty} \frac{1}{m}\left(z_{\mathrm{B}}\left(x^{m}\right)+(-1)^{m+1} z_{\mathrm{F}}\left(x^{m}\right)\right) \operatorname{tr}\left(U^{m}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{m}\right)\right\} \\
& x \equiv e^{-\beta}, \quad z(x)=\sum_{i} x^{E_{i}} \\
& \int[\mathrm{~d} U] \rightarrow \prod_{i} \int_{-\pi}^{\pi}\left[\mathrm{d} \theta_{i}\right] \prod_{i<j} \sin ^{2}\left(\frac{\theta_{i}-\theta_{j}}{2}\right), \quad \operatorname{tr}\left(U^{n}\right) \rightarrow \sum_{j} e^{i n \theta_{j}} \\
& Z(x)=\int\left[\mathrm{d} \theta_{i}\right] \exp \left(-\sum_{i \neq j} V\left(\theta_{i}-\theta_{j}\right)\right) \\
& V(\theta)=\ln (2)+\sum_{n=1}^{\infty} \frac{1}{n}\left(1-z_{\mathrm{B}}\left(x^{n}\right)-(-1)^{n+1} z_{\mathrm{F}}\left(x^{n}\right)\right) \cos (n \theta)
\end{aligned}
$$

$$
x \equiv e^{-\beta}, \quad z(x)=\sum_{i} x^{E_{i}}: \text { Single particle partition function }
$$

At small nonzero 't Hooft coupling;

At ; GWW transition

$$
Z(\beta)=\int[\mathrm{d} U] \exp \left[-\left(|\operatorname{tr}(U)|^{2}\left(m_{1}^{2}-1\right)+b|\operatorname{tr}(U)|^{4} / N^{2}\right)\right]
$$

[Aharony, Marsano, Minwalla, Papadodimas \& Raamsdonk, (2005)]
Depending on sign of b, phase structure changes.

Weakly-coupled 4D Yang-Mills theories

- 4d SU(N) Yang-Mills theory with adjoint matters on S3;
[Sundborg, (2000)/Aharony, Marsano, Minwalla, Papadodimas \& Raamsdonk, (2003)]

$$
\rho(\theta)= \begin{cases}\frac{1}{2 \pi} & \left(T \leq T_{1}=T_{2}\right) \\ \frac{1}{2 \pi}(1+A \cos \theta) & \left(T=T_{1}=T_{2}\right) \\ \frac{A}{\pi} \cos \frac{\theta}{2} \sqrt{\frac{1}{A}-\sin ^{2} \frac{\theta}{2}} & \left(T \geq T_{1}=T_{2},|\theta|<2 \arcsin \sqrt{A^{-1}}\right)\end{cases}
$$

At $T=T_{1}=T_{2}$,

$$
\begin{aligned}
\rho(\theta) & =\frac{1}{2 \pi}(1+A \cos \theta) \\
& =(1-A) \cdot \frac{1}{2 \pi}+A \cdot \frac{1}{2 \pi}(1+\cos \theta) \\
& =(1-A) \rho_{\mathrm{conf}}+A \cdot \rho_{\mathrm{GWW}}(\theta)
\end{aligned}
$$

$\rho(\theta)=\frac{N-M}{N} \cdot \rho_{\mathrm{conf}}+\frac{M}{N} \rho_{\mathrm{GWW}, M}(\theta) \quad$ with $\frac{M}{N}=A$
At ; GWW transition

Phase structures revisited

Weakly-coupled 4D Yang-Mills theories

- 4d $\mathrm{SU}\left(N_{c}\right)$ Yang-Mills theory with N_{f} fundamental matters on S^{3};
[Schnitzer, (2004) / Hollowood \& Myers, (2012)]
$N_{f}=0$ [Hanada, Jevicki, Peng \& Wintergerst, (2019) / Hanada \& Robinson, (2019)]

$$
\beta F=N_{c}^{2} \sum_{n} a_{n}(T) u_{n}^{2} \quad a_{n}(T)=\frac{1}{n}\left(1-2 \sum_{l=1}^{\infty} l(l+2) \mathrm{e}^{-n \beta \frac{(l+1)}{R}}\right), \quad u_{n}=\frac{1}{N_{c}} \operatorname{tr}\left(U^{n}\right)
$$

Searching the minimum of effective action;

- At low temperature,

$$
a_{n}>0, \quad \therefore u_{n}=0
$$

- Phase transition happens at

$$
\begin{gathered}
a_{1}\left(T_{c}=T_{1}=T_{2}\right)=0 \\
u_{1}=P=\frac{1}{N_{c}} \operatorname{tr} U, \quad 0 \leq P \leq \frac{1}{2} \\
E=-\left.\frac{\partial(\beta F)}{\partial \beta}\right|_{T=T_{c}}=N_{c}^{2} P^{2} \times\left.\frac{\partial a_{n}}{\partial \beta}\right|_{T=T_{c}}=E_{\mathrm{GWW}}\left(M_{c}\right), \quad S=\beta(E-F)=S_{\mathrm{GWW}}\left(M_{c}\right)
\end{gathered}
$$

Weakly-coupled 4D Yang-Mills theories

- 4d SU($\left.N_{c}\right)$ Yang-Mills theory with N_{f} fundamental matters on S3;
[Schnitzer, (2004) / Hollowood \& Myers, (2012)]
$N_{f}>0$ [Hanada, Jevicki, Peng \& Wintergerst, (2019) / Hanada \& Robinson, (2019)]

$$
\begin{array}{r}
\beta F=\sum_{n}\left(N_{c}^{2} a_{n}(T) u_{n}^{2}+N_{c} N_{f} b_{n}(T) u_{n}\right) \\
b_{n}(T)=\frac{(-1)^{n}}{n} \cdot 4 \sum_{l=1}^{\infty} l(l+1) \mathrm{e}^{-n \frac{\beta}{R}} \sqrt{\left(l+\frac{1}{2}\right)^{2}+m^{2} R^{2}}
\end{array}
$$

At $T=T_{c}=T_{\mathrm{GWW}}\left(M_{c}, N_{f}\right)$,

$$
\begin{aligned}
E & =\sum_{n}\left(N_{c}^{2} u_{n}^{2} \frac{\partial a_{n}}{\partial \beta}+N_{c} N_{f} u_{n} \frac{\partial b_{n}}{\partial \beta}\right) \\
& =\sum_{n}\left(M_{c}^{2} \tilde{u}_{n}^{2} \frac{\partial a_{n}}{\partial \beta}+M_{c} N_{f} \tilde{u}_{n} \frac{\partial b_{n}}{\partial \beta}\right)=E_{\mathrm{GWW}}\left(M_{c}, N_{f}\right)
\end{aligned}
$$

M_{c}

$$
S=S_{\mathrm{GWW}}\left(M_{c}, N_{f}\right) \quad \text { with } \quad \tilde{u}_{n}=\frac{N_{c}}{M_{c}} u_{n}
$$

3d free $\mathrm{O}(\mathrm{N})$ vector model ($\mathrm{Nf}=1$ for simplicity)

Holographic dual to Vasiliev higher spin gravity

$$
\begin{aligned}
& \rho(\theta)=\frac{1}{2 \pi}-\frac{\pi b^{2}}{6}+\frac{b^{2}(|\theta|-\pi)^{2}}{2 \pi} \\
& \left.\begin{array}{rl}
\text { [Shenker \& Yin, (2011)]] } \\
= & =\rho\left(\theta ; b_{\mathrm{GWW}}\right)=\rho_{\mathrm{GWW}, M}(\theta) \\
& \quad b=\frac{T}{\sqrt{N}} \leq b_{\mathrm{GWW}}=\frac{\sqrt{3}}{\pi} \\
b_{\mathrm{GWW}}^{2}
\end{array}\right)+\frac{b^{2}}{b_{\mathrm{GWW}}^{2}} \cdot \frac{b_{\mathrm{GWW}}^{2}(|\theta|-\pi)^{2}}{2 \pi} \\
& \text { with } \frac{M}{N}=\frac{b^{2}}{b_{\mathrm{GWW}}^{2}}, T=b \sqrt{N}=b_{\mathrm{GWW}} \sqrt{M} \\
& \rho(\theta)=\frac{N-M}{N} \cdot \frac{1}{2 \pi}+\frac{M}{N} \rho_{\mathrm{GWW}, M}(\theta) \quad N-M
\end{aligned}
$$

At $\quad 1 \ll T \leq T_{\text {GWW }}$,

$$
E \approx 16 \zeta(5) T^{5} \sim M^{5 / 2}, \quad S \approx 20 \zeta(5) T^{4} \sim M^{2}
$$

[Hanada, Jevicki, Peng \& Wintergerst, (2019)]

Numerical check of partial deconfinement

- The bosonic part of plane wave matrix model (PWMM or BMN matrix model) $=$ the mass deform. of $(0+1) \mathrm{d}$ SYM / Matrix quantum mechanics.

$$
L=N \operatorname{Tr}\left(\frac{1}{2} \sum_{I=1}^{9}\left(D_{t} X_{I}\right)^{2}+\frac{1}{4} \sum_{I, J=1}^{9}\left[X_{I}, X_{J}\right]^{2}-\frac{\mu^{2}}{2} \sum_{i=1}^{3} X_{i}^{2}-\frac{\mu^{2}}{8} \sum_{a=4}^{9} X_{a}^{2}-\mathrm{i} \sum_{i, j, k=1}^{3} \mu \epsilon^{i j k} X_{i} X_{j} X_{k}\right)
$$

Check by Monte Carlo simulation;

- Hysteresis ($T_{2} \leq T_{1}$)
- Phase distribution

- The bosonic part of BFSS matrix model ($\mu=0$) had been studied recently by [Bergner, Bodendorfer, Hanada, Rinaldi, Schafer \& Vranas, (2019)]

gauged Gaussian matrix model

[Hanada, Jevicki, Peng \& Wintergerst, (2019)]
[Bergner, Bodendorfer, Hanada, Rinaldi \& HW, (in progress)]

$$
S=N \sum_{I=1}^{D} \int_{0}^{\beta} \mathrm{d} t \operatorname{Tr}\left(\frac{1}{2}\left(D_{t} X_{I}\right)^{2}+\frac{1}{2} X_{I}^{2}\right)
$$

$$
D_{t} X_{I}=\partial_{t} X_{I}-\mathrm{i}\left[A_{t}, X_{I}\right]
$$

Physical quantities are solvable exactly;

$$
E\left(T=T_{c}\right)=\frac{D N^{2}}{2}+N^{2} P^{2}, \quad S\left(T=T_{c}\right)=N^{2} P^{2} \ln D
$$

At $T=T_{c}=1 / \ln D$,

$$
P=\frac{M}{2 N}
$$

$S_{\mathrm{GWW}}(M)=\frac{M^{2}}{4} \ln D$

$$
\rho_{\mathrm{GWW}, N}(\theta)=\frac{1}{2 \pi}(1+\cos \theta)
$$

$$
E_{\mathrm{GWW}}(M)=\frac{M^{2}}{4}
$$

Partial deconfinement and gauge fixing

[Hanada, Jevicki, Peng \& Wintergerst, (2019)]
[Bergner, Bodendorfer, Hanada, Rinaldi \& HW, (in progress)]

$$
L=N \operatorname{Tr}\left(\frac{1}{2} \sum_{I=1}^{9}\left(D_{t} X_{I}\right)^{2}+\frac{1}{4} \sum_{I, J=1}^{9}\left[X_{I}, X_{J}\right]^{2}\right) \quad S=N \sum_{I=1}^{D} \int_{0}^{\beta} \mathrm{d} t \operatorname{Tr}\left(\frac{1}{2}\left(D_{t} X_{I}\right)^{2}+\frac{1}{2} X_{I}^{2}\right)
$$

- Determine M as $M=\lfloor 2 N P\rfloor$ config. by confing.
- Plot and fit $\frac{N}{\beta} \int \mathrm{~d} t \operatorname{Tr} X_{I}^{2}$ as $r_{0} N^{2}+r_{1} M^{2}$, etc. to use as input parameter

Result of gauged Gaussian MM with $N=48, D=2, L=8$ @ $T=T c$

Partial deconfinement and gauge fixing

[Hanada, Jevicki, Peng \& Wintergerst, (2019)]
[Bergner, Bodendorfer, Hanada, Rinaldi \& HW, (in progress)]
$L=N \operatorname{Tr}\left(\frac{1}{2} \sum_{I=1}^{9}\left(D_{t} X_{I}\right)^{2}+\frac{1}{4} \sum_{I, J=1}^{9}\left[X_{I}, X_{J}\right]^{2}\right) \quad S=N \sum_{I=1}^{D} \int_{0}^{\beta} \mathrm{d} t \operatorname{Tr}\left(\frac{1}{2}\left(D_{t} X_{I}\right)^{2}+\frac{1}{2} X_{I}^{2}\right)$

- Determine M as $M=\lfloor 2 N P\rfloor$ config. by confing.
- Plot and fit $\frac{N}{\beta} \int \mathrm{~d} t \operatorname{Tr} X_{I}^{2}$ as $r_{0} N^{2}+r_{1} M^{2}$,etc. to use as input parameter

Result of gauged Gaussian MM with $N=48, D=2, L=8$ @ $T=T c$

Other applications

- Applying the same techniques to Wilson loop of spacial direction
- cf. black hole/black string topology change <=> 2D SYM
- Prospects to Real-world OCD
- Neither center symmetry nor chiral symmetry is exact
- How much contributes finite Nc correction?
- Consequences of partial deconfinement?
- Hadron/QGP phase transition is "crossover".
- SU(4) enhanced symmetry reported by Glozman et al.

Summary \& Discussion

- We proposed the partial deconfinement in which only $\operatorname{SU}(\mathrm{M})$ sector of $\mathrm{SU}(\mathrm{N})$ theory deconfines.
- It's relating to small BH in dual gravity via holography
- Several examples of partial deconfinement are found in large-Nc gauge theories.
- Needs to more analysis to strong-coupling theories.
- Is this applicable to real QCD?

Backup Slides

Yang-Mills and water

[Hanada, Ishiki \& HW, (2018)/Hanada \& Robinson, (2019)]

E

Weakly-coupled 4D Yang-Mills theories

- 4d SU(N) Yang-Mills theory with adjoint matters on S3;
[Sundborg, (2000)/Aharony, Marsano, Minwalla, Papadodimas \& Raamsdonk, (2003)]
At zero 't Hooft coupling;

$$
\begin{aligned}
Z(x)=\int\left[\mathrm{d} \theta_{i}\right] \exp \left(-\sum_{i \neq j} V\left(\theta_{i}-\theta_{j}\right)\right) \quad V(\theta) & =\ln (2)+\sum_{n=1}^{\infty} \frac{1}{n}\left(1-z_{\mathrm{B}}\left(x^{n}\right)-(-1)^{n+1} z_{\mathrm{F}}\left(x^{n}\right)\right) \cos (n \theta) \\
x & \equiv e^{-\beta}
\end{aligned}
$$

At low temperature;

$$
\begin{gathered}
S_{\text {eff }}[\rho(\theta)]=N^{2} \int \mathrm{~d} \theta_{1} \int \mathrm{~d} \theta_{2} \rho\left(\theta_{1}\right) \rho\left(\theta_{2}\right) V\left(\theta_{1}-\theta_{2}\right)=\frac{N^{2}}{2 \pi} \sum_{n=1}\left|\rho_{n}\right|^{2} V_{n}(T) \\
\rho_{n} \equiv \int \mathrm{~d} \theta \rho(\theta) \cos (n \theta) \\
V_{n} \equiv \int \mathrm{~d} \theta V(\theta) \cos (n \theta)=\frac{2 \pi}{n}\left(1-z_{\mathrm{B}}\left(x^{n}\right)-(-1)^{n+1} z_{\mathrm{F}}\left(x^{n}\right)\right)
\end{gathered}
$$

At ; GWW transition
$T<T_{\mathrm{H}}=-1 / \ln x_{\mathrm{H}}, \quad z_{\mathrm{B}}\left(x^{n}\right)+(-1)^{n+1} z_{\mathrm{F}}\left(x^{n}\right)<1, \quad \rightarrow \rho_{n}=0$
$T=T_{\mathrm{H}}=-1 / \ln x_{\mathrm{H}}, \quad z\left(x_{\mathrm{H}}\right) \equiv z_{\mathrm{B}}\left(x_{\mathrm{H}}\right)+z_{\mathrm{F}}\left(x_{\mathrm{H}}\right)=1, \quad \rightarrow \rho_{1} \neq 0$
$\Longleftrightarrow \Omega(E) \propto E^{0} \mathrm{e}^{\beta_{\mathrm{H}} E}$
; Hagedorn growth

gauged Gaussian matrix model

[Hanada, Jevicki, Peng \& Wintergerst, (2019)]
[Bergner, Bodendorfer, Hanada, Rinaldi \& HW, (in progress)]

$$
S=N \sum_{I=1}^{D} \int_{0}^{\beta} \mathrm{d} t \operatorname{Tr}\left(\frac{1}{2}\left(D_{t} X_{I}\right)^{2}+\frac{1}{2} X_{I}^{2}\right)
$$

Physical quantities are solvable exactly;

$$
D_{t} X_{I}=\partial_{t} X_{I}-\mathrm{i}\left[A_{t}, X_{I}\right]
$$

$$
\begin{aligned}
\beta F & =-\ln Z(\beta) \\
& =\frac{N^{2} D}{2} \ln \left(\operatorname{det}\left(-D_{0}^{2}+1\right)\right)-\frac{N^{2}}{2} \ln \left(\operatorname{det}\left(-D_{0}^{2}\right)\right)
\end{aligned}
$$

$$
=\frac{N^{2} D \beta}{2}+N^{2} \sum_{n=1}^{\infty} \frac{1-D x^{n}}{n}\left|u_{n}\right|^{2}
$$

Faddeev-Popov term (static diagonal gauge)

$$
x \equiv e^{-\beta}
$$

$$
\begin{aligned}
& \text { At } T=T_{c}, \quad 0 \leq\left|u_{1}\right| \leq \frac{1}{2}, \quad\left|u_{n}\right|=0(n \geq 2) \\
& \qquad 1-D x_{c}=1-D \mathrm{e}^{-1 / T_{c}}=0, \quad \therefore T_{c}=\frac{1}{\ln D}
\end{aligned}
$$

Relation to gauge symmetry breaking

[Hanada, Jevicki, Peng \& Wintergerst, (2019)]
In Hamiltonian formalism of gaugeed Gaussian matrix model, ($D=2$ for simplicity)

$$
\hat{H}=\frac{1}{2} \operatorname{Tr}\left(\hat{P}_{X}^{2}+\hat{X}^{2}+\hat{P}_{Y}^{2}+\hat{Y}^{2}\right)
$$

(From Hanada-san's talk)

not SU(N)-invariant

$$
|E ; \mathrm{SU}(M)\rangle=\operatorname{Tr}\left(\hat{A}^{\prime \dagger} \hat{A}^{\prime \dagger} \hat{B}^{\prime \dagger} \hat{A}^{\prime \dagger} \ldots\right)|0\rangle
$$

At weak coupling, this is an energy eigenstate.

$$
S=S_{\mathrm{GWW}}(M)
$$

one-to-one correspondence

SU(N)-invariant

$$
|E\rangle_{\mathrm{inv}} \equiv \mathcal{N}^{-1 / 2} \int d U \mathcal{U}(|E ; \mathrm{SU}(M)\rangle)
$$

Ant model and partial deconfinement

Ant trail : ants bound by pheromone p : pheromone from each ant

BH: D-branes bound by open strings T : index for excitation of open string

$$
\frac{\mathrm{d} N_{\text {trail }}}{\mathrm{d} t}=\frac{\left(\alpha+p N_{\text {trail }}\right)\left(N-N_{\text {trail }}\right)}{\text { Inflow effect }}-\frac{s N_{\text {trail }}}{\frac{s+N_{\text {trail }}}{\text { Outflow effect }}}
$$

saddle point

$$
\frac{\mathrm{d} N_{\text {trail }}}{\mathrm{d} t}=0, \quad x \equiv \frac{N_{\text {trail }}}{N}
$$

[Beekman, Sumpter \& Ratnieks, (2001)]

Modified ant model (Ant-Man model)

$$
\frac{d x}{d t}=(\tilde{\alpha}+p x)(1-x)-\frac{\tilde{s} x}{\tilde{s}+x} \cdot\left(1-x^{2}\right) \quad x \equiv \frac{N_{\text {trail }}}{N}, \tilde{s}=\frac{s}{N}, \quad \tilde{\alpha}=\frac{\alpha}{N}
$$

saddle point

N_{BH}

Black hole thermodynamics in AdS space

$$
S_{\mathrm{BH}}=\frac{k_{\mathrm{B}}}{4} \frac{A_{\mathrm{BH}}}{l_{\mathrm{Pl}}^{2}}=\frac{A_{\mathrm{BH}}}{4 G}, \quad d M=\frac{T_{\mathrm{BH}}}{4 G} d A_{\mathrm{BH}}, \quad T_{\mathrm{BH}}=\frac{f^{\prime}\left(r_{0}\right)}{4 \pi} \quad\left(d s^{2}=-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+\cdots\right)
$$

AdS-Schwarzschild BH with horizon at $\left(r=r_{+}\right)$(dual of super Yang-Mills theory)

$$
d s^{2}=-f\left(r, R_{\mathrm{AdS}}\right) d t^{2}+\frac{d r^{2}}{f\left(r, R_{\mathrm{AdS}}\right)}+r^{2} d \Omega_{3}^{2}+R_{\mathrm{AdS}}^{2} d \Omega_{5}^{2} \quad f\left(r, R_{\mathrm{AdS}}\right)=\frac{r^{2}}{R_{\mathrm{AdS}}^{2}}+1-\frac{r_{0}^{4}}{R_{\mathrm{AdS}}^{2} r^{2}}
$$

$S_{\mathrm{AdS}-\mathrm{BH}}=\frac{r_{+}^{3} \pi^{5} R_{\mathrm{AdS}}^{5}}{2 G_{10, \mathrm{~N}}}$
$T_{\mathrm{AdS}-\mathrm{BH}}=\frac{2 r_{+}^{2}+R_{\mathrm{AdS}}^{2}}{2 \pi R_{\mathrm{AdS}}^{2} r_{+}}$
$E_{\mathrm{AdS}-\mathrm{BH}}=\frac{3 \pi^{4} R_{\mathrm{AdS}}^{3}}{8 G_{10, \mathrm{~N}}}\left(r_{+}^{4}+R_{\mathrm{AdS}}^{2} r_{+}^{2}\right)$

