DM heating vs. rotochemical heating in old neutron stars

Keisuke Yanagi

University of Tokyo

Based on KY, Nagata Hamaguchi, accepted by MNRAS [arXiv:1905.02991] Hamaguchi, Nagata, KY, Phys.Lett. B795 (2019) 484-489

> Seminar @ Osaka University Jan. 14, 2020

DM heating vs. rotochemical heating in old neutron stars

Keisuke Yanagi

University of Tokyo This is astrophysics journal!

monthly notices of the royal astronomical society

Based on KY, Nagata Hamaguchi, accepted by MNRAS [arXiv:1905.02991] Hamaguchi, Nagata, KY, Phys.Lett. B795 (2019) 484-489

> Seminar @ Osaka University Jan. 14, 2020

• DM heating

- DM accretion heats up old NS
- NS surface temperature measurement can probe DM

Rotochemical heating

- it occurs w/o any new or exotic physics (induced by NS rotation)
- it explains observed warm NSs
- (DM heating) > (rotochemical heating)?
 - $P_0 \leq 10 100 \,\mathrm{ms:}$ (DM heating) < (rotochemical heating)
 - $P_0 \gtrsim 10 100 \,\mathrm{ms:}$ (DM heating) > (rotochemical heating)
 - old ordinary pulsar is suitable target

Outline

- I. DM heating of NS
- 2. Standard cooling of NS
- 3. Rotochemical heating
- 4. DM heating vs. Rotochemical heating

Outline

I. DM heating of NS

- 2. Standard cooling of NS
- 3. Rotochemical heating
- 4. DM heating vs. Rotochemical heating

Dark matter

- Dark matter: 25 % of the energy density of the universe
- Particle DM candidate
 - WIMP (weakly interacting massive particle) 10⁻³⁹
 - SIMP
 - FIMP
 - Axion
 - ...
- Direct detection experiment
 - No signal
 - Stringent limit on DM-nucleon cross section
 - Recent trend: DM model which is difficult to probe in direct detection
 - How can we probe such DM models?

Dark matters accrete in neutron stars

We can probe the DM signature in Neutron stars [Kouvaris (2007)]

- DMs accrete in NS by gravity
- If $\sigma_n \gtrsim 10^{-45} \,\mathrm{cm}^2$, (DM mean free path) < (NS radius)

→ DM loses initial kinetic energy, trapped in NS gravitational potential

Prediction of dark matter heating

 $T_s^{\infty} \sim 3000 \,\mathrm{K}$ at $t \gtrsim 10 \,\mathrm{Myr}$ is a signal of DM!

[Kouvaris (2007); Baryakhtar et al. (2017)]

Surface temperature of old NSs can probe/constrain DM models!

Prospects

Constraints on DM-neutron cross section

Particularly sensitive to m = I GeV - I PeV

Advantages over the terrestrial experiments

• Large DM velocity on NS surface

$$v_{\rm esc} = \sqrt{\frac{2GM}{R}} \sim 0.6c$$
 (*M* = 1.4 *M*_o and *R* = 10 km)

- Inelastic scattering of electroweak DM $(\tilde{H}, \tilde{W}, ...)$ [Baryakhtar et al. (2017); Bell et al. (2018)]

$$\Delta E = \frac{m_n m_\chi^2 \gamma^2}{m_n^2 + m_\chi^2 + 2\gamma m_n m_\chi} v_{\rm esc}^2 (1 - \cos \theta_{\rm CM}) \sim \mathcal{O}(1) \,\text{GeV}$$

c.f. $\Delta E \sim 100 \,\mathrm{keV}$ on the earth

- Velocity suppressed scattering [Raj et al. (2018)]
- Spin-dependent scattering
- No detector threshold for light DM
- No limitation from neutrino floor

Electroweak DM

- DM originally in electroweak multiplet (e.g., Wino, Higgsino, minimal DM...)
- Mass splitting after EW symmetry breaking

$$\Delta M = m_{\chi^+} - m_{\chi^0} = \mathcal{O}(100) \,\mathrm{MeV}$$

• Elastic scattering is generally loop-suppressed

- Inelastic scattering cross section is tree-level
 - $\sigma \sim 10^{-39} \,\mathrm{cm}^2$
 - Highly suppressed on earth by kinematics

- Inelastic scattering cross section is tree-level
 - $\sigma \sim 10^{-39} \,\mathrm{cm}^2$
 - Highly suppressed on earth by kinematics

Can we really see DM heating?

The observation suggests presence of other heating mechanisms

Question: (DM heating) > (other heating) really occurs?

Outline

- I. DM heating of NS
- 2. Standard cooling of NS
- 3. Rotochemical heating
- 4. DM heating vs. Rotochemical heating

Heat capacity (n, p, e, µ)
$$C\frac{dT}{dt} = -L_{\nu} - L_{\gamma}$$
 Surface photon luminosity:
$$L_{\gamma} = 4\pi R^2 \sigma_B T_s^4$$

- L_{ν} : Neutrino emission luminosity
 - (Direct Urca process)
 - Modified Urca process
 - Cooper pair breaking and formation
 - + minor processes

1

Heat capacity (n, p, e,
$$\mu$$
)

$$C\frac{dT}{dt} = -L_{\nu} - L_{\gamma}$$
Surface photon luminosity:

$$L_{\gamma} = 4\pi R^2 \sigma_B T_s^4$$

• L_{ν} : Neutrino emission luminosity

- (Direct Urca process)
- Modified Urca process
- Cooper pair breaking and formation
- + minor processes

Heat capacity (n, p, e,
$$\mu$$
)

$$C \frac{dT}{dt} = -L_{\nu} - L_{\gamma}$$
Surface photon luminosity:

$$L = 4\pi R^2 \sigma T^4$$

 $L_{\gamma} = 4\pi R^2 \sigma_B T_s^4$

- Cooper pair breaking and formation
- + minor processes

Suppresses heat capacity and Urca process

dt

Heat capacity (n, p, e, μ)

- L_{ν} : Neutrino emission luminosity
 - (Direct Urca process)
 - Modified Urca process
 - Cooper pair breaking and formation
 - + minor processes

Cooper pairing triggers pair-breking and formation (PBF) process Pair-breaking: $[\tilde{N}\tilde{N}] \rightarrow \tilde{N} + \tilde{N}$ Pair-formation: $\tilde{N} + \tilde{N} \rightarrow [\tilde{N}\tilde{N}] + \nu + \bar{\nu}$ [Flowers et al. (1976)] Superfluid Fermions ε $\epsilon_{\rm F}$ ſÑÑ 8 k_F k Efficiently occurs for $T \leq T_c$ Dominant neutrino emission process after pairing

<u>иші</u> 10²

1

Heat capacity (n, p, e, µ)
$$C\frac{dI}{dt} = -L_{\nu} - L_{\gamma}$$
 Surface photon luminosity:
$$L_{\gamma} = 4\pi R^2 \sigma_B T_s^4$$

- L_{ν} : Neutrino emission luminosity
 - (Direct Urca process)
 - Modified Urca process
 - Cooper pair breaking and formation
 - + minor processes
- Standard cooling explains young/middleaged NSs

Hotter than standard cooling: CCDK

1

Heat capacity (n, p, e, µ)
$$C\frac{dT}{dt} = -L_{\nu} - L_{\gamma}$$
 Surface photon luminosity:
$$L_{\gamma} = 4\pi R^2 \sigma_B T_s^4$$

Outline

- I. DM heating of NS
- 2. Standard cooling of NS
- 3. Rotochemical heating
- 4. DM heating vs. Rotochemical heating

Assumption of *β*-equilibrium

Conventional assumption: matters are in β -equilibrium by Urca processes

$$\Gamma_{n \to p+e} = \Gamma_{p+e \to n} \quad \mu_n = \mu_p + \mu_e$$

Assumption of *β*-equilibrium

Conventional assumption: matters are in β -equilibrium by Urca processes

$$\Gamma_{n \to p+e} = \Gamma_{p+e \to n} \quad \mu_n = \mu_p + \mu_e$$

Spin-down of NS violates β-equilibrium [Reisenegger (1994)]

• NS rotation is slowing down by magnetic dipole radiation

Continuous change of equilibrium condition (local pressure)
 → Urca processes is not fast enough to catch up this change

Evolution of chemical imbalance

Evolution of imbalance $\eta_e = \mu_n - \mu_p - \mu_e$

[Fernández and Reisenegger (2005)]

Rotochemical heating

In non-equilibrium modified Urca process, imbalance between chemical potentials is converted to heat [Reisenegger (1994)]

Heating occurs w/o any exotic physics

Details: Effect of Cooper pairing

- Nucleon superfluidity generates threshold $\Delta_{th} = \min\{3\Delta_n + \Delta_p, \Delta_n + 3\Delta_p\}$
- Once η_{ℓ} exceeds Δ_{th} , rotochemical heating begins
- Larger gap \rightarrow larger $\eta_{\ell} \rightarrow$ hotter NS

[Petrovich & Reisenegger (2009)]

We improve previous works (e.g. González-Jiménez et al. (2014)) by including both neutron and proton pairing in numerical calculation [KY, Nagata, Hamaguchi (2019)]

Result: Millisecond pulsars

- Millisecond pulsars (MSPs): short period (P~Ims) and small magnetic field (B~10⁸ G)
- Two very old MSPs (PSR J2124-3358 & PSR J0437-4715) are much hotter than standard cooling prediction
- These are explained by rotochemical heating
- Including both neutron and proton pairing is advantageous for the explanation

[KY, Nagata, Hamaguchi (2019)]

Result: Ordinary pulsars and XDINSs

- Ordinary pulsars : P~Is and B~10¹² G; XDINSs: larger magnetic field
- Old hot NSs (PSR J0108-1431& PSR B0950+08): $P_0 = Ims$ is necessary
- Old cold NS (PSR J2144-3933): $P_0 > 10$ ms is necessary
- Some XDINSs are even hotter. Maybe due to the magnetic field decay

[KY, Nagata, Hamaguchi (2019)]

Outline

- I. DM heating of NS
- 2. Standard cooling of NS
- 3. Rotochemical heating
- 4. DM heating vs. Rotochemical heating

DM heating vs. rotochemical heating

- DM heating
 - $T_s \sim 3000 \, {\rm K}$
 - For nearby NSs, this prediction cannot change by order
- Rotochemical heating
 - If it operates, typically $T_s \sim 10^{5-6} \,\mathrm{K}$
 - Heating rate is strongly dependent on the initial rotation period P_0
 - Heating is more efficient for smaller P_0

$$\eta_{\ell} = \mu_n - \mu_p - \mu_{\ell}$$

DM heating vs. rotochemical heating

[Hamaguchi, Nagata, KY (2019)]

DM heating effect is visible if the initial period is sufficiently large!

Uncertainty from pairing gap

- So far we have fixed Cooper pairing gap model
- But the gap amplitude has uncertainties due to nuclear force modeling

- Proton singlet gap is rather well constrained
- Neutron triplet gap is highly uncertain. It is often taken as a free parameter

Uncertainty from pairing gap

- Strength of rotochemical heating depends on gap amplitude
- Critical P₀ depends on the choice of gap models
- If $P_0 \gtrsim 100 \,\mathrm{ms}$, (DM heating) >> (rotochemical heating)

Initial period

Several studies suggest the typical initial period of $P_0 \sim \mathcal{O}(100) \,\mathrm{ms}$

- Observed kinematic age [Popov & Turolla, 1204.0632; Noutsos et.al., 1301.1265; Igoshev & Popov, 1303.5258]
- Population synthesis

[Faucher-Giguere & Kaspi, astro-ph/0512585; Popov et al., 0910.2190, Gullo'n et al., 1406.6794, 1507.05452]

• Supernova simulation for proto-NSs [Mu'ller et al., 1811.05483]

Thus we expect

- For many NSs, DM heating > Rotochemical heating
- Some NSs accidentally have $P_0 \sim 1 \text{ms} \rightarrow \text{observed}$ high $T_s \sim 10^{5-6} \text{K}$

Summary

• DM heating

- DM accretion heats up old NS
- NS surface temperature measurement can probe DM

Rotochemical heating

- it occurs w/o any new or exotic physics (induced by NS rotation)
- it explains observed warm NSs
- (DM heating) > (rotochemical heating)?
 - $P_0 \leq 10 100 \,\mathrm{ms:}$ (DM heating) < (rotochemical heating)
 - $P_0 \gtrsim 10 100 \,\mathrm{ms:}$ (DM heating) > (rotochemical heating)
 - old ordinary pulsar is suitable target

Uncertainty from pairing gap

- Strength of rotochemical heating depends on gap amplitude
- Critical P₀ depends on the choice of gap models
- $P_0 \gtrsim 100 \,\mathrm{ms}$ is enough

Imbalance evolution

Superfluid suppression

[Page et al. (2013)]

Details 2: Envelope

- Envelope shields atmosphere from core and crust
- Surface T and internal T are different
- $T T_s$ relation depends on amount of light element in envelope [Potekhin et al. (1997)]

7

Nucleon Cooper pairing

- Attractive nuclear force induces the Cooper pairing of n-n and/or p-p
- In the core
 - n: spin-triplet $({}^{3}P_{2})$ pairing
 - p: spin-singlet $({}^{1}S_{0})$ pairing

this difference is due to the difference of Fermi energy

- In the crust:
 - n: spin-singlet $({}^{1}S_{0})$ pairing

[Calculation by Tamagaki (1970), figure from Page et al. (2013)]

Direct Urca process

$$n \to p + \ell + \bar{\nu}_{\ell} \qquad p + \ell \to n + \nu_{\ell}$$

- Beta decay and its inverse
- Occurs around Fermi surface

• Direct Urca process does not operate unless NS is very heavy

[e.g., Lattimer et al. (1991)]

- due to the energy and momentum conservations around Fermi surface
- E.g., for APR EOS, $M\gtrsim 1.97\,M_\odot$ is required
- We can neglect direct Urca in Cas A NS ($M \simeq 1.4 M_{\odot}$)

Threshold of direct Urca

• Energy conservation $\varepsilon_n = \varepsilon_p + \varepsilon_\ell \pm \varepsilon_\nu$ and beta equilibrium $\mu_{F,n} = \mu_{F,p} + \mu_{F,\ell}$

 \rightarrow Emitted neutrino momentum: $p_{\nu} \sim T \ll p_F$

• Momentum conservation: $\overrightarrow{p}_n \simeq \overrightarrow{p}_p + \overrightarrow{p}_\ell$

→ $p_{F,n} < p_{F,p} + p_{F,\ell}$, hence large proton fraction, is necessary

Modified Urca process

 $n + N \to p + N + \ell + \bar{\nu}_{\ell} \qquad p + N + \ell \to n + N + \nu_{\ell}$ N = n or p

- Threshold is relaxed
- Emissivity $Q_{M,N\ell} = \int \left[\prod_{j=1}^{4} \frac{d^3 p_j}{(2\pi)^3} \right] \frac{d^3 p_\ell}{(2\pi)^3} \frac{d^3 p_\nu}{(2\pi)^3} (2\pi)^4 \delta^4 (P_f - P_i) \cdot \epsilon_\nu \cdot \frac{1}{2} \sum_{\text{spin}} |\mathcal{M}_{M,N\ell}|^2 \times [f_1 f_2 (1 - f_3)(1 - f_4)(1 - f_\ell) + (1 - f_1)(1 - f_2) f_3 f_4 f_\ell],$
- Before pairing: $L_{\nu} \propto T^8$
- After pairing: exponentially suppressed by the gap: $f \sim \exp(-\Delta/T) \ll 1$

Cooper pair breaking and formation (PBF)

- Cooper pairing triggers another neutrino emission [Flowers et al. (1976)]
 - Pair-breaking: $[\tilde{N}\tilde{N}] \rightarrow \tilde{N} + \tilde{N}$ (thermal disturbance)

Cooper pair Single (quasi-)nucleon

- Pair-formation: $\tilde{N} + \tilde{N} \rightarrow [\tilde{N}\tilde{N}] + \nu + \bar{\nu}$
- Does not occur for $T > T_c$
- Efficiently occurs for $T \lesssim T_c$
- Suppressed for $T \ll T_c$ because excitation of quasi-nucleon is suppressed

Thermal relaxation

• Relaxation time scale is $t \sim 10 - 100 \,\mathrm{yr}$

Neutron singlet gap

- $T_c \sim (0.5 2) \times 10^{10} \,\mathrm{K}$
- Singlet pairing occurs only in the crust

Mass for thermal evolution

- Difference is due to the density dependence of pairing gap
- Heat capacity and neutrino luminosity slightly change

EOS for thermal evolution

• Difference is also due to the density dependence of pairing gap

Pulsar spin-down violates *β*-equilibrium

- Each particle goes to new equilibrium $n_i^{eq}(t)$ by modified Urca process
- If (modified) Urca is too slow, it cannot catch up with change of $n_i^{eq}(t)$

Gap dependence of cooling

 $1.4\,M_{\odot}$, $\eta = 5 \times 10^{-13}$

Neutron star age

- Spin-down age
 - Assume rotational energy loss purely from magnetic dipole radiation

$$\dot{\Omega} = -k\Omega^3 \quad k = \frac{2B_s^2 R^6 \sin^2 \alpha}{3I}$$

$$P(t) = \frac{2\pi}{\sqrt{P_0^2 + 2P_{\text{now}}\dot{P}_{\text{now}}t}}$$
if $P_{\text{now}} \gg P_0$

$$t_{\text{sd}} = \frac{P}{2\dot{P}}$$

• Kinematic age

- Estimate age from associated supernova remnant velocity