

Sneutrino dark matter in a SUSY inverse seesaw model Hiroyuki Ishida (KEK)

@Osaka University; 2019/04/23

Collaborators: Jung Chang (Chonnam Natl. U) Kingman Cheung (NTHU) Chih-Ting Lu (NCTS→KIAS) Martin Spinrath (NTHU) Yue-Lin Sming Tsai (AS) Refs: 1707.04374, 1806.04468

Why do we need to extend the SM?

- Neutrino masses
- Gauge hierarchy problem
- DM candidate

Seesaw mechanism by adding RHvs

Supersymmetry

Gauge coupling unification

MSSM+type-I seesaw mechanism

Problems above can be solved, but type-I seesaw requires Majorana mass scale as $10^{12\text{--}16}\mathrm{GeV}$

How small Majorana mass is possible?

Linear scaling of neutring Yukawa coupling (type-I)

There are lots of alternative ideas

Inverse seesaw (ISS) mechanism

[Mohapatra (1986); Mohapatra and Valle (1986)]

Amplify the model by using another gauge singlet

$$-\mathcal{L} \supset y_{\nu}\bar{L}H\nu_{R} + M_{N}\overline{\nu_{R}^{C}}\nu_{R} + M_{S}\overline{S^{C}}S + \mu\bar{\nu}_{R}S + \text{h.c}$$

Neutrino mass matrix

$$M_{\nu} = \begin{pmatrix} 0 & y_{\nu} v_{\rm EW} & 0 \\ y_{\nu}^{T} v_{\rm EW} & M_{N} & \mu \\ 0 & \mu^{T} & M_{S} \end{pmatrix} \longrightarrow m_{\nu} = -\frac{y_{\nu} v_{\rm EW} M_{S} y_{\nu}^{T} v_{\rm EW}}{\mu^{2}}$$

Small M_s (Lepton # violation) leads tiny m_v

Assumption in most of works

technically naturalness

$$M_{\nu} = \begin{pmatrix} 0 & y_{\nu} v_{\rm EW} & 0 \\ y_{\nu}^{T} v_{\rm EW} & 0 & \mu \\ 0 & \mu^{T} & M_{S} \end{pmatrix}$$

when $M_S \rightarrow 0$ lepton # sym. is recovered

smallness of M_s is technically natural

extension at TeV scale with O(1) Yukawa is possible Rich phenomenology at collider!

Dynamical origin of lepton number violating scale

Contents

Motivation Model DM estimation DM properties

Conclusions

Model arXiv:1707.04374

Aodel (NCTS model) forbid R-parity violating terms Symmetry : $\mathcal{G}_{SM} \times \mathbb{Z}_{6}$ without imposing R-parity Superfield $\hat{Q}_i \quad \hat{U}_i^c \quad \hat{E}_i^c \quad \hat{L}_i \quad \hat{D}_i^c \quad \hat{H}_u \quad \hat{H}_d \quad \hat{N}_\alpha^c \quad \hat{S}_\alpha \quad \hat{X}$ Z_6 charge 5 5 5 5 3 3 2 4 1 5 2 $(\alpha = 1, 2)$ New super potential in addition to MSSM $\mathcal{W}_{\nu} = Y_{\nu} \,\hat{L}\hat{H}_u \hat{N}^c + \mu_{\rm NS} \,\hat{N}^c \hat{S} + \frac{\lambda}{2} \,\hat{X} \,\hat{S}^2 + \frac{\kappa}{2} \,\hat{X}^3$ Lagrangian related to neutrino $-\mathcal{L}_{\nu} = (Y_{\nu})_{i\alpha} L_i N^c_{\alpha} H_u + (\mu_{\rm NS})_{\alpha\beta} N^c_{\alpha} S_{\beta} + \frac{1}{2} \lambda_{\alpha\beta} S_{\alpha} S_{\beta} X + \text{H.c.}$

Symmetry breaking :

Requirement to scalar fields

No field takes VEV except for Hu, Hd, X
From potential analysis,

$$v_X = -\frac{A_\kappa}{4\kappa^2} \pm \frac{\sqrt{A_\kappa^2 - 8\kappa^2 M_X^2}}{4\kappa^2}$$

Origin of "lepton #" violation

Neutrino mass matrix :

$$M_{\nu} = \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & 0 & \mu_{\rm NS} \\ 0 & \mu_{\rm NS}^T & M_S \end{pmatrix}$$

Smallness of $M_S \equiv \lambda v_X$ is explained by coupling As possibilities,

(i) ISS type I: $\lambda \ll Y_{\nu} \ll 1$ _{NS}, (ii) ISS type II: $\lambda \sim Y_{\nu} \ll 1$ _{'NS}, (iii) ISS type III: $Y_{\nu} \ll \lambda \ll 1 \mu_{NS}$.

Feature of model $\mathcal{G}_{\mathrm{SM}} imes \overline{Z_6}$ $Z_3 imes Z_2$

Superfield	\hat{Q}_i	\hat{U}_i^c	\hat{E}_i^c	\hat{L}_i	\hat{D}_i^c	\hat{H}_u	\hat{H}_d	\hat{N}_{α}^{c}	\hat{S}_{lpha}	\hat{X}
Z_3 charge	1	1	1	0	0	1	2	2	1	1
Z_2 charge	1	1	1	1	1	0	0	1	1	0

Matter parity is defined

LSP can be DM candidate! Neutralino, Sneutring, Gravitino

Non-MSSM candidate!

Phenomenological constraints?

-LFV

1. Non-SUSY contribution: $Br(\mu \rightarrow e + \gamma) \simeq \mathcal{O}(10^{-20})$

2. SUSY contributiondepends on sparticle mixing

-0νββ **decay**

1. Non-SUSY contribution: $m_{\text{eff}} \simeq 8 \times 10^{-9} \text{meV} \left(\frac{\mu_{NS}}{\text{TeV}} \right)$

2. SUSY contribution:no contribution due to "R-parity" conservation

arXiv:1806.04468

WIMP in the model

Definition of WIMP before "Weakly" interacting massive particle

same magnitude as weak interaction

$$\Omega h^2 \approx 0.1 \times \left(\frac{3 \cdot 10^{-26} \text{cm}^2}{\langle \sigma v(\chi \chi \to SM) \rangle}\right) \approx \left(\frac{\alpha^2 / (200 \text{GeV})^2}{\langle \sigma v(\chi \chi \to SM) \rangle}\right)$$

Definition of WIMP now

"Weakly" interacting massive particle

as weak as you want as long as you can explain abundance

Boundary conditions

$$\begin{split} m_0^2 = & \frac{1}{9} m_{\tilde{Q}}^2 = \frac{1}{9} m_{\tilde{D}}^2 = \frac{1}{9} m_{\tilde{U}}^2 = m_{\tilde{L}}^2 = m_{\tilde{E}}^2 = m_{\tilde{N}}^2 = m_{\tilde{S}}^2 = m_{H_u}^2 = m_{H_d}^2 = b_{NS} , \\ M_{1/2} = & \frac{1}{3} M_3 = M_2 = M_1 , \\ A_i = A_0 Y_i, \, A_\lambda = A_0 \lambda, \, A_\kappa = \kappa A_0 , \end{split}$$

-Put arbitrary factor to make colored particles heavy enough

 $-m_0$ and $M_{1/2}$ are fixed at high scale

 $-v_x$, μ_{NS} , λ and κ are fixed at low scale not to worry about running effect

Dominant (co-)annihilation channels

H-funnel

A-funnel

Sneutrino mass matrix

Eigenvalues at tree level

$$m_0^2 + \frac{1}{2}M_Z^2\cos(2\beta), \mu_{\rm NS}^2, 2m_0^2 + \mu_{\rm NS}^2$$

18

Sneutrino mass matrix

$$m_{\tilde{\nu}^R}^2 \approx m_{\tilde{\nu}^I}^2 \approx \begin{pmatrix} m_0^2 + \frac{1}{2}M_Z^2\cos(2\beta) & 0 & 0 \\ 0 & m_0^2 + \mu_{NS}^2 & m_0^2 \\ 0 & m_0^2 & m_0^2 + \mu_{NS}^2 \end{pmatrix}$$

-RG corrections to them are small enough

-Physical states

$$\mu_{\rm NS} \ll m$$

$$\tilde{\nu}_{1,2} \approx \frac{1}{\sqrt{2}} \left(\tilde{N}_1^c \mp \tilde{S}_1 \right) \text{ and } \tilde{\nu}_3 \approx \tilde{L}_1$$

$$m_{\tilde{\nu}_1}^2 \approx \mu_{NS}^2$$

-Mass difference between CP-even & -odd states

$$m_{\tilde{\nu}_{1}^{R}}^{2} - m_{\tilde{\nu}_{1}^{I}}^{2} \approx \frac{1}{2} \lambda v_{X} \left(\sqrt{2} A_{0} - 2\sqrt{2} \mu_{NS} + \kappa v_{X} \right)$$

Higgs masses (H_x and A_x)

-We have two more Higgs compared to MSSM which are composed X-scalar

-Mixing with MSSM scalars is extremely suppresse

 $\smile \mathcal{O}$ (loop factor $\times m_{\nu}^2$)

-Approximate masses

$$m_{H_X}^2 \approx 2\,\kappa_0^2 v_X^2 + \frac{v_X}{\sqrt{2}}\kappa_0 A_0 \left(1 - 2.3\,\kappa_0^2\right) \ , m_{A_X}^2 \approx -\frac{3\,v_X}{\sqrt{2}}\kappa_0 A_0 \left(1 - 2.3\,\kappa_0^2\right)$$

$$-\frac{2\sqrt{2}\,\kappa_0}{1-2.3\,\kappa_0^2}v_X \lesssim A_0 < 0$$

Higgs masses (H_x and A_x)

21

Features of our analysis

-Three exceptions of thermal relic calculation

1. Co-annihilation

2. Annihilation into forbidden channel (near threshold)

3. Annihilation near pole (resonance)

We have to take into account 1 and 3!

How about H_x-funnel?

- -H_x-funnel does NOT work because...
 - 1. H_x -funnel has p-wave suppression
 - 2. To compensate, larger λ is required

$$\mathcal{W}_{\nu} = Y_{\nu} \,\hat{L}\hat{H}_{u} \hat{N}^{c} + \mu_{NS} \,\hat{N}^{c} \hat{S} + \frac{\lambda}{2} \,\hat{X} \,\hat{S}^{2} + \frac{\kappa}{3} \,\hat{X}^{3}$$

3. When λ gets large, it closes the decay char into heavy neutrinos due to mass splitting

DM properties arXiv:1806.04468

DM properties

Indirect detection

 If DM annihilate into two active neutrinos or one active and one heavy neutrino, we could see line signal of active v at IceCube

-Since heavy neutrino can decay into SM leptons, we could see some signal from this cascade deca

DM properties

Indirect detection

-Since annihilation cross section into two active neutrinos is O(10⁻⁴¹)cm³ s⁻¹, this signal seems not to be so promising Current limit by IceCube: 2×10^{-23} cm³ s⁻¹ (m_{DM} ~ 100GeV)

DM properties

Indirect detection

-The most plausible cross section would be channel into two heavy neutrinos: O(10⁻²⁹)cm³ s⁻

-This cross section is a few order of magnitude smaller than current limit, we could see signal in future!

Conclusions

Conclusions

- SUSY inverse seesaw model
 - -Lepton number is dynamically induced
- -Low scale seesaw mechanism can be realized
 - -Thermal relic sneutrino DM is possible thanks to existing the origin of lepton # violation
 - -Our extensions to the MSSM are really hidden,

in other words, our model can be easily excluded by observations draw a line to "signalism"

Future prospects

 At the moment, our model is playing hide & seek but we are trying to think...

-Collider phenomenology

-Aspects for early universe

-Astrophysical observations

Open questions

So far so good as one of the models, but...

-How to find our DM as a signal?

-How to discriminate our model from others?

How to hit the funnel

-First, we define a parameter c $m_{\tilde{\nu}_1^R} + m_{\tilde{\nu}_1^I} = c m_{A_X}$ c is chosen eithe<u>r 0.97 or 0.99</u>

-Second, we fix μ_{NS} by using mass formulae

-Third, we run SPheno to calculate mass spectrum estimate μ_{NS} again and take the ratio

$$\xi_A = \frac{m_{\tilde{\nu}_1^R} + m_{\tilde{\nu}_1^I}}{m_{A_X}}$$

requiring not to deviate more than 2.5×10^{-3}

38