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Intfroduction



Why quantum gravity (QG) on AdS?

We often consider theory in "“box”

In field theory and quantum mechanics
INn order to avoid IR problem:s.

(e.g. to obtain discrete spectrum)

What is “simplest” QG in “box”?



Quantum gravity (QG) on AdS

What is “simplest” QG in “box”?

A. quantum gravity on
(asymptoftic) AdS




AdS/CFT (conjecture)

quantum gravity on (asymptotic) AdS
= conformal field theory

This conjecture comes from D-branes in string

Highly non-trivial and important!



Gravity Side:

Difficulties for guantization:

e Perturbatively non-renormalizable
 Un-boundedness of action

e Summations over different topologies



Dual CFT
(for QG with asymptotic AdS)

e Renormalizable,
e Positive definite action,

*No geometries (for finite N)

CFT could be a definition of QG.

However, no proof of AdS/CFT



(usual) formulation of AdS/CFT

GKPW relation
(for partition functions)

boundary condifion in AdS

Source terms in CFT

“Yequivalences of correlators*



Another formulation of AdS/CFT

In operator formalism,

equivalence between
Hilbert spaces and Hamiltonians
of gravity on AdS and CFT



Another formulation of AdS/CFT

equivalence between
Hilbert spaces and Hamiltonians

Gravity theory on global AdSg41

CFT; on R x §4-1




What we will determine explicitly:

Low energy spectrum of C'F'I

which 1s realized as

large N strong coupling gauge theory

e |leading orderin large N limit

N
N

N

O
O
O

t assuming SUSY, string, D-brane
t assuming dual gravity, AdS space

t assuming GKPW (nor BDHM)
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We will study the specirum
under only 3 assumptions
(natural for strong coupling large N CFT):

1. low energy spectrum is determined only by
conserved symmetry currents

2. large N factorization, which was shown for
perturbation theory

3. complete independence of spectrum
except symmetry relations
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From these assumptions
we can determine
low energy spectrum of the theory,

together with the conformal symmetry.

Here, low energy means O(N?)(< N?)

To do so, we have NOT used
any information on the possible gravity dual, or AdS.

We just considered the field theory.
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Then, we can show explicitly:
Low energy spectrum of large N C'F1y

equivalent!
Spectrum of free gravity on AdSq11
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The specirum determine the theory itself.

From CFT, we can
construct bulk local fields in AdS

derive the GKPW relation
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How about 1/N corrections?
(i.e. interactions in bulk theory)

We will consider the classical limit
of generic large N gauge theory
with conformal symmeiry.

We find that
the classical limit of it is Einstein gravity!

“a derivation of AdS/CFT”
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Plan

. Introduction

. Low energy spectrum of CFT
. Deriving bulk local field and GKPW (will be skipped)

. Classical limit of large N CFT

. Conclusion
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Low energy spectrum of CFT
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CFT,; on R X Si_l

unit radious

Conformal mapping from the complex plane to the cylinder (for d = 2)
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CFT; on R4 CFT; on R x S41

oS

PM — translations P,="

M, = rotations Muv — rotations in S4~!
Q = dilatation D = translation in R =| H
K,, = special conformal K p ="
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CFT,; on R X Si_l

unit radious

Conformal algebra

Diagonalizing H = D and ”MW”,

P , K are "creation” and ”annihilation” operators
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"Highest weight” represenation
Define primary state, |A), s.t

K,|A) =0, DIA) = AJA)

Then, any state in CF'T can be represented as

pﬂlpﬂz PM|A>
Primary field Oa(x)
Oa(z = 0)[0) = |A) = 040,

where Ox = lim,,_.q ( regular part of Oa(x) )
ex. for T, in CFTy, On =L_sor L_y, =



Let us consider large N CFTy

I:I(pu1°"puz‘A>):(A+Z)(pul"°puz‘A>)

A > O(NY) for a generic state
because of the quatum corrections

Only for symmetry currents,

energy is expected to be O(N°)

ex. for T),,, A=d
analogous to hydrodynamics 22



Large N factorization
vanishing of connected n-pont func. for n > 2

ie. (0105 0n) =) (0102)(0304) -+ (01_10y)
by Wick theorem

Oa, (1), 0a, ()] = f(x —y),

A e

Oa., (Oa,)"] = dap
Polynomial

e
Low energy states: R(P*,Oa )|0)
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Complete independence

Furthermore, we assume

complete independene of states, R(P*, Oa)|0),
up to the relation [@Aa, (@Ab)T] = 0,1

and symmetry relation, (ex. 9,J" = 0)

because there is no specific scale for N — o0

and strong coupling.

Nothing special happens, randomeness or chaos.
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Large N CFT spectrum

For scalar field, we conclude that large N CF'T spectrum
-, YNmm|0) where

n,l,m( nlm

Ale = Onl ﬁmz) M Py Py - Py, (P?)"On
[&nlmy AT/l/ ] — 5n,n’ 5l,ll5m7m/

cn; 1S the normalization constant

is the Fock space spanned by ||

where S'(ull,_fff)” ' is a normalized rank [

symmetric traceless constant tensor

P# act on an operator such that P“cg = [f)“, qg]

Energy is given by [H, 3] |=A+2n+1

nlm

and n=20,1,2,--- and [ =0,1,2,---



Thus,
the low energy limit of the large N CFT is
a free theory.

What is this free theory?
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Thus,
the low energy limit of the large N CFT is
a free theory.

What is this free theory?

A. free theory on AdS space

27



Free scalar field in AdSg11

The metric of global AdSg11 (lags = 1) is

ds?qu = —(1+r%)dt* + [, dr? + ’I“QdQ?Z_l

where 0 <r < oo, —00 <t < o0 and

dQ)%_, is the metric for round unit sphere S%~1

1
= —dt* + dp” + sin®(p)dQ2;
COS2(p) ( + P =+ sin (p> d—l)
where r = tanp, 0 < p < w/2

Boundary of AdS,,1 is located at p = w/2
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Free scalar field in AdSq1

The action is

1 m?
Sscalar — /dd+1x _det(g) (igMNqubngb + 7@32)

The e.o.m. is
0=—-g""VuVnNo+m?e.

We expand ¢ with spherical harmonics Y7, (£2),

Cb(ta Ps Q) — Z (ailmeiwnlt + anlme_iwnlt) 77bfn,lm(p)leTn(Q)

n,l,m

Then, normalized solution for the e.o.m. is given as

1 . d .

Unim (p) = N sin'(p) cos™ (p) o Fy (—n, A+l+nl+ 2 Sln2(p))
" N

Wnl = A+ 2n +1 Gauss’s hyper geometric function

where A = d/2 + \/m? + d? /4

29



Free scalar field in AdSg11

Then, quantized field is

31,0, 2) = 37 (a1, + ™) Wt (0) Vi ()
n,l,m

1 d
Unim (p) = —— sin’(p) cos™(p) o Fy (—n, A+T+n,l+ 3’ sinQ(p))

an
wni = A+ 2n+1
a d
Npp = (—1)“\/n!11:(l ™ 5)22(A +n+1-—2)
(n+1+35)0(A+n+1)
where A = d/2 % /m? + d?/4

The commutation relation and Hamiltonian are

A A

[anlma an’l’m’] — 5n,n’ 5l,l’6m,m’ [H) aﬂnlm] — —Wnl
30



Free scalar field in AdSg11

In summary, quantized field is

Bt 0, 2) = D (@€ + i) i (0) Vi ()

n,l,m

Wh = AN+ 2n + 1
where A = d/2 4+ \/m? + d?/4

The commutation relation and Hamiltonian are

[&nlma &jz’l’m’] — 5n,n’ 5l,l’5m,m’ [Ha &nlm] — —Wnl
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Therefore,

(low energy theory of)
large N CFT is equivalent to
a free theory on AdS

under the 3 assumptions.

(We considered the scalar.
We think that this is protected by the SUSY
or it has just accidentally low energy spectrum.)
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Deriving bulk local field and GKPW
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Local field in bulk

Decompose local operator in bulk
to positive and negative frequency modes as

B(t,p, Q) = T (t,p,Q) + 67 (t,p, Q)
Then using the map,

al “ 12
pim Cnls(l,m) Plil PM2 o PM

z(PZ)n@A7
bulk local operator in CF'T description is
45 t =0 /0, Z wnlm YEm le

n,l,m

— Z wnlm(p)iflm(ﬂ)cnlsﬁlug) MP P ) "PM (P2)n@A
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Local field in bulk

In particular at p = 0, only [ = 0 modes remain:

1
NnO

1

d
Yrim(p) = 77— sin' (p) cos™ (p) o F1 (—n, Atl+nl+s, sing(p)) —
nl

Then, bulk local operator at the origin in CFT description is

gb—'_ t = 0 p7 Z wnlm Yim 2121#2) MP P tr PM (Pz)n@/_\
n,l,m
G 1 2\n
%%NHOCHO(P )" O

_ TATA+T-9) ¢ (—1)n2-2n o
_\/ (d/2) T;)n!F(AJrl—d/ZJrn)(P) Oa

which agrees with the previous results
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Bulk local field near boundary

Below we will show

, t — 0 p, Pat A
1 v 2_1.
p—l>rf?/2 cos® \/7\/ (A+1-— d/2 ['(d/2) ( OA) r2=1

First, for the wave function,
1

d
Unim (p) = . sin'(p) cos™ (p) 2 Fi (—n, A+1l+n,l+ 2’ Sin2(p))
nl

at the boundary is evaluated using

Cnl. d g~ 2n-1 1 ['(d/2)T(A)
F A+l+nl+=,1]= _
N, 2 1( maTiEmity, ) nl F(n+l+d/2)\/F(A+1—d/2)
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Bulk local field near boundary

Expansion formula of plain wave by spherical harmonics:

etkuz! _ 2 HZZ ]l k’l‘ ZYYlm Qk)lflm(Q)

on—t_L(d/2)(ikr)*" )
_lz; \/7 kr) 22 n!T'(n+ 1+ d/2) %:Ylm(ﬂk)Ylm(Q)’
where jl is hyper spherlcal Bessel function,

r=/xFx,, k= /ktk,,
(2 and {2 are the angular variables for x# and k*,
Applying these to (with r =1 and k, = —iP,,)

¢+ t=20 pa Z wnlm }/lm Cnls?lllm) MP P o P (PQ)TL@ A

. d)+ t — O pa P, a*
| v 2_
we find p—1>17?/2 cos® F(A+1— d/2 (d/2) ( OA) z2=1:




Bulk local field near boundary

, T(t=0 p, JPut” &
1 LN,
p—1>I7P/2 CosA \/7\/ I'A+1 —d/2 d/2) A

- \g J T(A+1— d/2)F(d/2) OX(@)]a2=1-

Operator on cylinder R x S471 is given by O%(1,Q) = Oa(x)e”"
where 7 = In(x?%)/2

from the operator Oa () which is radially quantized on RY.

Thus, bulk operator at bounadry is CFT field:

(¢ p
1 ’ cY
pi??/z cos2(p) V2 \/ T(A T+ 1 —d/2 (a2 a4
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Bulk local field near boundary

Thus, bulk operator at bounadry is CFT field:

d(t, p, Q2 |
li 7 OV (t,
a2 cosA \/ (A+1-— d/2 d/2) a (1Y),
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GKPW relation

GKPW relation is essentially obtained from this BDHM

With a background “non-normalizable” mode
6¢p = (cos(p))® ¢+ --- with A= =d — A,

ss=— [t ((osto)' 0 o) ~ [ (502),
boundary ap boundary

This is a GKPW relation

41



We can show that

for conserved current and
energy momenftum tensor,
low energy theory of
large N CFT is equivalent to
free theory limit of gauge field
and graviton on AdS, respectively

under the 3 assumptions.
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Classical limit of large N CFT
(including 1/N corrections)
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Classical limit as large N limit

In gravity side, action would be

1 d(d+1
Sgrav = 57 ~g 1 Ay vV —detg | — ( 2+ ) + R+ o1 D*R + Oﬁzl,%ldsR2 + -,
2(lp) " 20545

Expansion around AdS solution (vacuum),
Juv :gfjs _'_h,u,l/
S:N2/dd+1az\/— det(g495)

x (= fo(h)h? + f1(h)(Dh)? 4 a1 f2(h)(DDh)? + az fs(h)(Dh)* + -+ ),

perturbation use fzw ~ Nh,,
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Algebra of Energy momentum tensor

Virasoro algebra of 2d CFT

conserved charge = modes of EM tensor

P.K.M,D alg. of EMT

for CFT (d>2)
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Mode expansion

For scalar,

o0 Mmax (l)

OA(QU) — Z Z }/lm(Q) Z |x|w_AOAwlma

[=0 m=0 w

In the previous notation,

— gCn) L) shttztup .. p (PH"O
n! T'(n + g + 1) (1,m) H2 i Ay

for w > A+ 1

OAwlm
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(singular part of) OPE —~+ commutator

Equal time commutator is given by
[Ol(x)aOZ(y)]|x|:|y|:1
= lim (O1(2)|ja)=1402(y)jy/=1 = O1(2)]|2|=102(¥) [}y =14<) -

e—0

Important formula:

[5 5]

: )QA — 1)2A Z (%) Z(dA);_Qn ZY(Z—2n)m(Q)Y(s—2n)m(Q,)-

(z—y ot

42y — or: D(A+s-n)T(A+1-$+n)1 T(9)
’ L@d/2)  T(A) PA+1-5) nll(s—n+3)
48




(singular part of) OPE —~+ commutator

Equal time commutator is given by
[Ol(x)aOZ(y)]|x|:|y|:1
= lim (O1(2)|ja)=1402(y)jy/=1 = O1(2)]|2|=102(¥) [}y =14<) -

e—0

We can show
Oawim> Oawirm’]
= / dQY Q) / aQyY;, ()
(P+HSCIA“‘“’IyIA““"Ol(:v)Oz(y)] = P—[IwIA“"!y!A“‘"Ol(w)Oz(y)])
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Algebra of EMT

OPE of energy momentum tensor is

THY (2)TH?2(0) =

C Iula(ﬂf)ﬂé(m) (%(561#2551/2 + 5041/255#2) + %50455“2@)
T 2d

+SNJ1V1M2V2M3V3 (337 8)TM3V3 (O) T

where Cr = O(N?)
and S, vy juovspsvs (T, 0) is uniquely determined

if we require causality

|
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Algebra of EMT

Thus, algebra of energy momentum tensor
s fixed with one parameter N as

2 k
[Li, LJ] — N wijl -+ fszk
where L, is a mode of EMT

This is a Lie algebra

(We neglect the muti-trace operators here, for simplicity.

But, such operatros can be taken into account.)
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Different normalizations of L

1. Creation operators
1
Li = —L;
N

1
L, L] = w1+ Nfz%Lg‘

2. Classical limit

1
cl
Lf = — L,

N?[L$ LS = wij1 + fELY.
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Classical limit of the CFT
N?[LY, L] = wij1 + f5 L.

In a large N limit, this is regarded as
a Poisson bracket

- [ [ k [
where N% ~ 1/h

The classical state is given by deformation
of coherent state of harmonic oscillators
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Classical gravity in Asymptotic AdS

1
Soray = —— f dtxy/—det g (R —2A)
Q(ZP) Ade—l—l
+SaH + Set,

For the free approximation (linearized gravity),
the classical Haomiltfonian and phase space
are shown to be equivalent to
the classical limit of the CFT

Coordinates of the phase space are the creation op. L;
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Boundary siress tensor

(Brown-York tensor)

2 5S
Téinvd (CU) _ grav
T det gl 89k (@)

where g,(g,) () is the boundary metric

This is defined on the boundary and
IS conserved and traceless.

The conformal generators are defined from this,
and then, this is fransformed as the primary field.
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Boundary siress tensor
(Brown-York tensor)

2 05 grav

Téfnydy ('CC) —

Thus, the boundary stress tensor also can be expanded

to the modes: L%,

and the algebra of LV"* defined by the Poisson bracket
is uniquely determined with a constant N2 ~ G .

Here, the coordinates of the phase space are L
Thus, the classical limit of the CFT is

the classical Einstein gravity on asymptotic AdS .14
because Hamiltonian and Poisson bracket are same.



Conclusion

e Spectrum of large N CFT is identical to
specirum of free gravitational theory in
AdS under some assumptions which are
expected to be valid.

 Thus, two theories are equivalent for the
low energy region under the assumptions.

* Using this equivalence, the bulk local field
is constructed and the GKPW relation is
derived.
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Conclusion (continued)

Classical limit of the generic large N
gauge theory with conformal symmetry is
the classical Einstein gravity on
asymptotic AdS because the Hamiltonian
and the Poisson bracket are same.
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Fin.
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