# The muon g-2: a new data-based analysis

### D. Nomura (KEK $\rightarrow$ IUHW)

### Online Seminar hosted by Osaka U. May 19, 2020

Partially based on A. Keshavarzi, DN and T. Teubner (KNT) arXiv:1802.02995 (Phys. Rev. D97 (2018) 114025) (KNT18) arXiv:1911.00367 (Phys. Rev. D101 (2020) 014029) (KNT19)

# Muon g-2: introduction

Lepton magnetic moment  $\vec{\mu}$ :  $\mathcal{H} = -\vec{\mu} \cdot \vec{R}$ 

$$\vec{\mu} = -g \frac{e}{2m} \vec{s}$$
,  $(\vec{s} = \frac{1}{2} \vec{\sigma} \text{ (spin)}, \quad g = 2 + 2F_2(0))$ 

where

$$\overline{u}(p+q)\Gamma^{\mu}u(p) = \overline{u}(p+q)\left(\gamma^{\mu}F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}F_2(q^2)\right)u(p)$$

Anomalous magnetic moment:  $a \equiv (g-2)/2 \ (=F_2(0))$ 

Historically,

 $\star q = 2$  (tree level, Dirac)  $\star a = \alpha/(2\pi)$  (1-loop QED, Schwinger)

Today, still important, since...

One of the most precisely measured quantities:

 $a_{\mu}^{\text{exp}} = 11\ 659\ 208.9(6.3) \times 10^{-10}$  [0.5ppm]

(Bennett et al)

#### **★** Extremely useful in probing/constraining physics beyond the SM



# Why Muon g-2?

 ≥ 3.5 σ Anomaly Observed Long standing anomaly (~ 20 yrs), in spite of careful studies on every aspect.
 (→ Major theoretical blunder unlikely.) Hint of New Physics beyond the Standard Model?

- No new physics at the LHC so far Intensity frontier: more and more important
- Long history of research
   1st (g 2)<sub>μ</sub> exp.: Garwin, Lederman & Weinrich (1957)
   Well-established place to search for new physics
- Leptonic observable
   Experimentally and theoretically clean

# Muon g-2: previous exp. (after 1960)

| Experiment | Years     | Polarity  | $a_{\mu} \times 10^{10}$ | Precision [ | ppm] | Sensitivity                   |
|------------|-----------|-----------|--------------------------|-------------|------|-------------------------------|
| CERN I     | 1961      | $\mu^+$   | 11450000(220000)         | 4300        | 2-lo | op QED contrib. (3600 ppm)    |
| CERN II    | 1962-1968 | $\mu^+$   | 11661600(3100)           | 270         | 3-lo | op QED contrib. (260 ppm)     |
| CERN III   | 1974-1976 | $\mu^+$   | 11659100(110)            | 10          | had  | ronic vacuum polarization     |
| CERN III   | 1975-1976 | $\mu^{-}$ | 11659360(120)            | 10          | com  | (ou ppm)                      |
| BNL        | 1997      | $\mu^+$   | 11659251(150)            | 13          |      |                               |
| BNL        | 1998      | $\mu^+$   | 11659191(59)             | 5           | 4-lo | op QED contrib. (3.3 ppm)     |
| BNL        | 1999      | $\mu^+$   | 11659202(15)             | 1.3         | elec | troweak contrib. (1.3 ppm)    |
| BNL        | 2000      | $\mu^+$   | 11659204(9)              | 0.73        | had  | ronic light-by-light contrib. |
| BNL        | 2001      | $\mu^-$   | 11659214(9)              | 0.72        | had  | ronic NLO vacuum pol.         |
| Average    |           |           | 11659208.0(6.3)          | 0.54        | con  | un: (-0.05 hhu)               |

Table from BNL-E821 final report, Phys. Rev. D 73 (2006) 072003

History of muon g-2 exp. is a history of SM tests. This is not the whole story: the history still goes on.

D. Nomura (IUHW)

muon g-2

# **Muon g-2 vs New Physics**

Basically, any new particle which couples to the muon gives a non-zero contribution to the muon g-2:

- SUSY particles ( $\widetilde{\mu}, \widetilde{W}^{\pm}, \widetilde{Z}^0, \widetilde{B}^0, \ldots$ )
- extra Higgses ( $H^{\pm}, A^0, H^{\pm\pm}, \ldots$ )
- Kaluza-Klein excitations of  $\mu$  and  $\gamma$
- extra Z-like particle (Z', "dark Z'', ...)
- extra  $\gamma$ -/axion- like light particle ("dark photon", ...)
- leptoquarks

• :

In many cases, the mass and couplings of these new particles are free parameters. By tuning them, one can explain the muon g-2 anomaly. But it is often non-trivial to explain why Nature chooses such a parameter set.

#### E.g., Family universal type-I 2HDM: Allowed region



D. Nomura (IUHW)

muon g-2

## Breakdown of SM prediction for muon g-2

|                                             | <u>2011</u>                      |                   | <u>2018</u>                                      | <u>2019</u>                      |
|---------------------------------------------|----------------------------------|-------------------|--------------------------------------------------|----------------------------------|
| QED                                         | 11658471.81 <mark>(0.02)</mark>  | $\longrightarrow$ | $11658471.90 \ (0.01) \ {}_{[arXiv:1712.06060]}$ |                                  |
| EW                                          | 15.40 (0.20)                     | $\longrightarrow$ | 15.36 (0.10) [Phys. Rev. D 88 (2                 | 2013) 053005]                    |
| LO HLbL                                     | 10.50 (2.60)                     | $\longrightarrow$ | 9.80 (2.60) [EPJ Web Conf. 13                    | <sup>8 (2016)</sup> (9.34 (2.92) |
| NLO HLbL                                    |                                  |                   | 0.30 (0.20) [Phys. Lett. B 735                   | (2014) 90]                       |
|                                             | HLMNT11                          |                   | <u>KNT18</u>                                     | KNT19                            |
| LO HVP                                      | 694.91 <b>(</b> 4.27 <b>)</b>    | $\longrightarrow$ | 693.27 (2.46) this work                          | 692.78 (2.42)                    |
| NLO HVP                                     | -9.84 (0.07)                     | $\longrightarrow$ | -9.82 (0.04) this work                           | -9.83 (0.04)                     |
| NNLO HVP                                    |                                  |                   | 1.24 (0.01) [Phys. Lett. B 734                   | (2014) 144]                      |
| Theory total                                | 11659182.80 (4.94)               | $\longrightarrow$ | 11659182.05 (3.56) this work                     | 181.08 (3.78)                    |
| Experiment                                  |                                  |                   | 11659209.10 (6.33) world avg                     |                                  |
| Exp - Theory                                | 26.1 (8.0)                       | $\longrightarrow$ | 27.1 (7.3) this work                             | 28.0 (7.4)                       |
| $\Delta a_{\mu}$                            | $3.3\sigma$                      | $\rightarrow$     | $3.7\sigma$ this work                            | $3.8\sigma$                      |
| (HVP: Hadronic Vacu<br>(HLbL: Hadronic Ligh | um Polarization)<br>nt-by-Light) |                   | (Numbers taken from KN<br>and from KNT19)        | T18                              |

## **QED** contribution

# QED contribution: $a_{\mu}(\text{QED}) = \frac{\alpha}{2\pi} + 0.765857425(17) \left(\frac{\alpha}{\pi}\right)^2 + 24.05050996(32) \left(\frac{\alpha}{\pi}\right)^3$ $+ 130.8796(63) \left(\frac{\alpha}{\pi}\right)^4 + 753.3(1.0) \left(\frac{\alpha}{\pi}\right)^5 + \cdots$

 $= 11658471.895(0.008) \times 10^{-10}$ , (numbers from PDG 2018)

where the uncertainty is dominated by that of  $\alpha$ .

- 5-loop calculation! (Aoyama, Hayakawa, Kinoshita & Nio)
- The 4-loop corrections  $\simeq 38 \times 10^{-10} \simeq \mathcal{O}(a_{\mu}(\exp) a_{\mu}(\text{SM})).$
- The 4-loop contribution now fully cross-checked by another group. Mass-independent part by S. Laporta (Phys.Lett. B772 (2017) 232), and mass-dependent part by A. Kurz et al (Nucl. Phys. B879 (2014) 1; Phys. Rev. D92 (2015) 073019; ibid. D93 (2016) 053017)
- The 5-loop contribution very small  $(\simeq 0.5 \times 10^{-10} \ll a_{\mu}(\exp) a_{\mu}(SM))$

## **Electroweak Contribution**

Electroweak (EW) contribution:

$$\begin{split} a_{\mu}(\mathsf{EW}) &= \underbrace{19.48 \times 10^{-10}}_{\mbox{$1$-loop$}} + \underbrace{(-4.12(10) \times 10^{-10})}_{\mbox{$2$-loop$}} + \underbrace{\mathcal{O}(10^{-12})}_{\mbox{$1$-loop$}} \\ &= 15.36(10) \times 10^{-10} , \qquad (\mbox{Number taken from PDG 2018}) \end{split}$$

where the uncertainty mainly comes from quark loops.

- 1-loop result published by many groups (Bardeen-Gastmans-Lautrup, Altarelli-Cabibbo-Maiani, Jackiw-Weinberg, Bars-Yoshimura, Fujikawa-Lee-Sanda) in 1972, and now a textbook exercise (Peskin & Schroeder's textbook, Problems 6.3 (Higgs) and 21.1 (W, Z))
- 2-loop contribution ( $\sim$  1700 diagrams in the 't Hooft-Feynman gauge) enhanced by  $\ln(m_Z/m_\mu)$  and also by a factor of  $\mathcal{O}(10)$ ,

$$a_\mu({\sf EW}, \operatorname{2-loop}) \simeq -10 \left(rac{lpha}{\pi}
ight) a_\mu({\sf EW}, \operatorname{1-loop}) \left(\lnrac{m_Z}{m_\mu}+1
ight) \, ,$$

where the factor of 10 appears since many "order one" diagrams accidentally add up coherently.

## **Hadronic Contributions**

There are several hadronic contributions:



LO: Leading Order (or Vacuum Polarization) Hadronic Contribution NLO: Next-to-Leading Order Hadronic Contribution I-by-I: Hadronic light-by-light Contribution



#### Modern evaluation of I-by-I contribution

(Melnikov & Vainshtein) 1. First, use the large  $N_C$  expansion to find that the leading contribution is the pion pole contribution.



- 2. Choose the momentum-dependence of the  $\pi\gamma\gamma$  coupling (form factor) in such a way that it is consistent with a constraint from QCD (OPE) at the momentum region  $q_1^2 \sim q_2^2 \gg q_3^2$ . Integrate over the loop momenta.
- 3. Repeat the above for  $\eta, \eta', a_1, \ldots$  Basically that's all for the LO in  $1/N_C$ .
- 4. As for NLO in  $1/N_C$ , it depends on authors which diagram is numerically important.

For example,

$$a_{\mu}^{\text{lbyl}} = \begin{cases} (10.5 \pm 2.6) \times 10^{-10} & \text{'Glasgow consensus', arXiv:0901.0306} \\ (9.8 \pm 2.6) \times 10^{-10} & \text{'G.c.' w/ correction by Nyffeler, PRD94(2016)053006} \\ (10.2 \pm 3.9) \times 10^{-10} & \text{Nyffeler, arXiv:1710.09742} \end{cases}$$

HLbL in muon g - 2: summary of selected results (model calculations)

| μ <sup>-</sup> (p') + μ <sup>-</sup> (p) |                          | $+ \cdots + \underbrace{\overset{\bigstar}_{z}}_{z} \underbrace{\overset{\pi^{0},\eta,\eta^{\cdot}}_{z}}_{z} \underbrace{\overset{\pi^{0},\eta,\eta^{\cdot}}_{z}}_{z}$ | Exchange of<br>other reso-<br>+ $\cdots$ + nances<br>$(f_0, a_1, f_2 \dots)$ | +                     |
|------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------|
| de Rafael '94:                           |                          |                                                                                                                                                                        |                                                                              |                       |
| Chiral countir                           | ng: p <sup>4</sup>       | $p^6$                                                                                                                                                                  | <i>р</i> <sup>8</sup>                                                        | <b>р</b> <sup>8</sup> |
| N <sub>C</sub> -counting:                | 1                        | N <sub>C</sub>                                                                                                                                                         | N <sub>C</sub>                                                               | N <sub>C</sub>        |
| Contribution                             | to $a_{\mu}	imes 10^{1}$ | <sup>11</sup> :                                                                                                                                                        |                                                                              |                       |
| BPP: +83 (32)                            | -19 (13)                 | +85 (13)                                                                                                                                                               | $-4$ (3) $[f_0, a_1]$                                                        | +21 (3)               |
| HKS: +90 (15)                            | -5 (8)                   | +83 (6)                                                                                                                                                                | $+1.7(1.7)[a_1]$                                                             | +10(11)               |
| KN: +80 (40)                             |                          | +83 (12)                                                                                                                                                               |                                                                              |                       |
| MV: +136 (25)                            | 0 (10)                   | +114 (10)                                                                                                                                                              | $+22$ (5) $[a_1]$                                                            | 0                     |
| 2007: +110 (40)                          |                          |                                                                                                                                                                        |                                                                              |                       |
| PdRV:+105 (26)                           | -19 (19)                 | +114 (13)                                                                                                                                                              | $+8$ (12) $[f_0, a_1]$                                                       | +2.3 [c-quark]        |
| N, JN: +116 (39)                         | -19 (13)                 | +99 (16)                                                                                                                                                               | $+15(7)[f_0,a_1]$                                                            | +21 (3)               |
| uc                                       | 1.: -45                  | $ud.: +\infty$                                                                                                                                                         |                                                                              | ud.: +60              |

ud. = undressed, i.e. point vertices without form factors

Pseudoscalars: numerically dominant contribution (according to most models !).

Recall (in units of  $10^{-11}$ ):  $\delta a_{\mu}$  (HVP)  $\approx 40$ ;  $\delta a_{\mu}$  (exp [BNL]) = 63;  $\delta a_{\mu}$  (future exp) = 16 BPP = Bijnens, Pallante, Prades '96, '02; HKS = Hayakawa, Kinoshita, Sanda '96, '98, '02; KN = Knecht, AN '02; MV = Melnikov,

Vainshtein '04; 2007 = Bijnens, Prades; Miller, de Rafael, Roberts; PdRV = Prades, de Rafael, Vainshtein '09 (compilation; "Glasgow consensus"); N,JN = AN '09; Jegerlehner, AN '09 (compilation)

Recent reevaluations of axial vector contribution lead to much smaller estimates than in MV '04:  $a_{\mu}^{\text{HLbL},\text{axial}} = (8 \pm 3) \times 10^{-11}$  (Pauk, Vanderhaeghen '14; Jegerlehner '14, '15). Would shift central values of compilations downwards:

 $a_{\mu}^{\mathrm{HLbL}} = (98 \pm 26) \times 10^{-11} \ (PdRV)$  and  $a_{\mu}^{\mathrm{HLbL}} = (102 \pm 39) \times 10^{-11} \ (N, \ JN).$ 

Slide by A. Nyffeler (Mainz) at 'Muon g-2 Ibyl Workshop' at Connecticut, March 12-14, 2018

The diagram to be evaluated:



pQCD not useful. Use the dispersion relation and the optical theorem.



$$a_{\mu}^{\rm had,LO} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\rm th}}^{\infty} ds \ \frac{1}{s} \hat{K}(s) \sigma_{\rm had}(s)$$



• Weight function  $\hat{K}(s)/s = \mathcal{O}(1)/s$   $\implies$  Lower energies more important  $\implies \pi^{+}\pi^{-}$  channel: 73% of total  $a_{\mu}^{\text{had,LO}}$ 

- Lots of new input  $\sigma(e^+e^- 
  ightarrow$  hadrons) data
- Improvements in the estimates of uncertainties due to radiative corrections (Vacuum Polarization Radiative Corrections & Final State Radiations)
- Improvements in data-combination method

## • Lots of new input $\sigma(e^+e^- ightarrow$ hadrons) data

- Improvements in the estimates of uncertainties due to radiative corrections (Vacuum Polarization Radiative Corrections & Final State Radiations)
- Improvements in data-combination method

| Channel                                                           | Energy range [GeV]                | $a_{\mu}^{\rm had,LOVP} \times 10^{10}$      | $\Delta \alpha^{(5)}_{\rm had}(M_Z^2) \times 10^4$ | New data   |                                         |
|-------------------------------------------------------------------|-----------------------------------|----------------------------------------------|----------------------------------------------------|------------|-----------------------------------------|
|                                                                   | Chiral perturbation the           | eory (ChPT) threshold contr                  | ibutions                                           |            | Breakdown of contributions              |
| $\pi^0 \gamma$                                                    | $m_x \le \sqrt{s} \le 0.600$      | $0.12 \pm 0.01$                              | $0.00 \pm 0.00$                                    |            | (had IO)(D) from                        |
| $\pi^{+}\pi^{-}$                                                  | $2m_{\pi} \le \sqrt{s} \le 0.305$ | $0.87 \pm 0.02$                              | $0.01 \pm 0.00$                                    |            | to $a_{\mu}$ (nad, LO VP) from          |
| $\pi^{+}\pi^{-}\pi^{0}$                                           | $3m_{\pi} \le \sqrt{s} \le 0.660$ | $0.01 \pm 0.00$                              | $0.00 \pm 0.00$                                    |            | wanter hadrenta fratatas                |
| 117                                                               | $m_{\eta} \le \sqrt{s} \le 0.660$ | $0.00 \pm 0.00$                              | $0.00 \pm 0.00$                                    |            | various hadronic final states           |
|                                                                   | Data based c                      | hannels ( $\sqrt{s} \le 1.937 \text{ GeV}$ ) |                                                    |            |                                         |
| $\pi^{0}\gamma$                                                   | $0.600 \le \sqrt{s} \le 1.350$    | $4.46 \pm 0.10$                              | $0.36 \pm 0.01$                                    | [65]       |                                         |
| <i>π</i> <sup>-</sup> <i>π</i> <sup>-</sup>                       | $0.305 \le \sqrt{s} \le 1.937$    | $502.97 \pm 1.97$                            | $34.26 \pm 0.12$                                   | [34,35]    |                                         |
| <i>π</i> <sup>-</sup> <i>π</i> <sup>-</sup> <i>π</i> <sup>0</sup> | $0.660 \le \sqrt{s} \le 1.937$    | $47.79 \pm 0.89$                             | $4.77 \pm 0.08$                                    | [36]       |                                         |
| $\pi^{-}\pi^{-}\pi^{-}\pi^{-}$                                    | $0.613 \le \sqrt{s} \le 1.937$    | $14.87 \pm 0.20$                             | $4.02 \pm 0.05$                                    | [40,42]    |                                         |
| π'π'π''π''                                                        | $0.850 \le \sqrt{s} \le 1.937$    | $19.39 \pm 0.78$                             | $5.00 \pm 0.20$                                    | [44]       |                                         |
| $(2\pi^+ 2\pi^- \pi^0)_{nog}$                                     | $1.013 \le \sqrt{s} \le 1.937$    | $0.99 \pm 0.09$                              | $0.33 \pm 0.03$                                    |            | We have included new data sets          |
| $3\pi^{+}3\pi^{-}$                                                | $1.313 \le \sqrt{s} \le 1.937$    | $0.23 \pm 0.01$                              | $0.09 \pm 0.01$                                    | [66]       | We have mended new data sets            |
| $(2\pi^+ 2\pi^- 2\pi^0)_{naqoo}$                                  | $1.322 \le \sqrt{s} \le 1.937$    | $1.35 \pm 0.17$                              | $0.51 \pm 0.06$                                    |            | from $\sim 30$ papers.                  |
| $K^{+}K^{-}$                                                      | $0.988 \le \sqrt{s} \le 1.937$    | $23.03 \pm 0.22$                             | $3.37 \pm 0.03$                                    | [45,46,49] | nom v so papers,                        |
| $K_{S}^{0}K_{L}^{0}$                                              | $1.004 \le \sqrt{s} \le 1.937$    | $13.04 \pm 0.19$                             | $1.77 \pm 0.03$                                    | [50,51]    | in addition to those included           |
| ККл                                                               | $1.260 \le \sqrt{s} \le 1.937$    | $2.71 \pm 0.12$                              | $0.89 \pm 0.04$                                    | [53,54]    | in addition to those included           |
| КК2π                                                              | $1.350 \le \sqrt{s} \le 1.937$    | $1.93 \pm 0.08$                              | $0.75 \pm 0.03$                                    | [50,53,55] | in the HI MNT11 analysis                |
| 117                                                               | $0.660 \le \sqrt{s} \le 1.760$    | $0.70 \pm 0.02$                              | $0.09 \pm 0.00$                                    | [67]       | In the nemining in analysis             |
| $\eta \pi^{+} \pi^{-}$                                            | $1.091 \le \sqrt{s} \le 1.937$    | $1.29 \pm 0.06$                              | $0.39 \pm 0.02$                                    | [68,69]    |                                         |
| $(\eta \pi^{+} \pi^{-} \pi^{0})_{now}$                            | $1.333 \le \sqrt{s} \le 1.937$    | $0.60 \pm 0.15$                              | $0.21 \pm 0.05$                                    | [70]       |                                         |
| $\eta 2\pi^{+} 2\pi^{-}$                                          | $1.338 \le \sqrt{s} \le 1.937$    | $0.08 \pm 0.01$                              | $0.03 \pm 0.00$                                    |            | We have included a 30 hadronic          |
| ηω                                                                | $1.333 \le \sqrt{s} \le 1.937$    | $0.31 \pm 0.03$                              | $0.10 \pm 0.01$                                    | [70,71]    | We have included $\sim$ 50 hadronic     |
| $\omega(\rightarrow \pi^0 \gamma) \pi^0$                          | $0.920 \le \sqrt{s} \le 1.937$    | $0.88 \pm 0.02$                              | $0.19 \pm 0.00$                                    | [72,73]    | final states                            |
| $\eta \phi$                                                       | $1.569 \le \sqrt{s} \le 1.937$    | $0.42 \pm 0.03$                              | $0.15 \pm 0.01$                                    |            | inial states                            |
| $\phi \rightarrow$ unaccounted                                    | $0.988 \le \sqrt{s} \le 1.029$    | $0.04 \pm 0.04$                              | $0.01 \pm 0.01$                                    |            |                                         |
| $\eta \omega \pi^0$                                               | $1.550 \le \sqrt{s} \le 1.937$    | $0.35 \pm 0.09$                              | $0.14 \pm 0.04$                                    | [74]       |                                         |
| $\eta \rightarrow npp K\bar{K}_{no\phi \rightarrow K\bar{K}}$     | $1.569 \le \sqrt{s} \le 1.937$    | $0.01 \pm 0.02$                              | $0.00 \pm 0.01$                                    | [53,75]    | $A + 2 < \sqrt{2} < 11 \text{ GeV}$     |
| pp                                                                | $1.890 \le \sqrt{s} \le 1.937$    | $0.03 \pm 0.00$                              | $0.01 \pm 0.00$                                    | [76]       | At $Z \gtrsim \sqrt{s} \gtrsim 11$ GeV, |
| nā                                                                | $1.912 \le \sqrt{s} \le 1.937$    | $0.03 \pm 0.01$                              | $0.01 \pm 0.00$                                    | [77]       | we use inclusively measured data        |
|                                                                   | Estimated cont                    | ributions ( $\sqrt{s} \le 1.937$ GeV)        |                                                    |            | we use inclusively measured data        |
| $(\pi^{+}\pi^{-}3\pi^{0})_{nor}$                                  | $1.013 \le \sqrt{s} \le 1.937$    | $0.50 \pm 0.04$                              | $0.16 \pm 0.01$                                    |            |                                         |
| $(\pi^{+}\pi^{-}4\pi^{0})_{ma}$                                   | $1.313 \le \sqrt{s} \le 1.937$    | $0.21 \pm 0.21$                              | $0.08 \pm 0.08$                                    |            |                                         |
| ККЗл                                                              | $1.569 \le \sqrt{s} \le 1.937$    | $0.03 \pm 0.02$                              | $0.02 \pm 0.01$                                    |            | $\Delta t$ higher energies > 11 GeV     |
| $\omega(\rightarrow npp)2\pi$                                     | $1.285 \le \sqrt{s} \le 1.937$    | $0.10 \pm 0.02$                              | $0.03 \pm 0.01$                                    |            | The higher energies $\gtrsim$ 11 GeV,   |
| $\omega(\rightarrow npp)3\pi$                                     | $1.322 \le \sqrt{s} \le 1.937$    | $0.17 \pm 0.03$                              | $0.06 \pm 0.01$                                    |            |                                         |
| $\omega(\rightarrow npp)KK$                                       | $1.569 \le \sqrt{s} \le 1.937$    | $0.00 \pm 0.00$                              | $0.00 \pm 0.00$                                    |            | we use poeb                             |
| $\eta \pi^{+} \pi^{-} 2 \pi^{0}$                                  | $1.338 \le \sqrt{s} \le 1.937$    | $0.08 \pm 0.04$                              | $0.03 \pm 0.02$                                    |            |                                         |
|                                                                   | Other contril                     | putions ( $\sqrt{s} > 1.937$ GeV)            |                                                    |            |                                         |
| Inclusive channel                                                 | $1.937 \le \sqrt{s} \le 11.199$   | $43.67 \pm 0.67$                             | $82.82 \pm 1.05$                                   | [56,62,63] |                                         |
| $J/\psi$                                                          |                                   | $6.26 \pm 0.19$                              | $7.07 \pm 0.22$                                    |            |                                         |
| $\psi'$                                                           |                                   | $1.58 \pm 0.04$                              | $2.51 \pm 0.06$                                    |            |                                         |
| $\Upsilon(1S - 4S)$                                               |                                   | $0.09 \pm 0.00$                              | $1.06 \pm 0.02$                                    |            |                                         |
| pQCD                                                              | $11.199 \le \sqrt{s} \le \infty$  | $2.07 \pm 0.00$                              | $124.79 \pm 0.10$                                  |            |                                         |
| Total                                                             | $m_x \le \sqrt{s} \le \infty$     | $693.26 \pm 2.46$                            | $276.11 \pm 1.11$                                  |            |                                         |

#### Table from KNT18, Phys. Rev. D97 (2018) 114025

## • Lots of new input $\sigma(e^+e^- ightarrow$ hadrons) data

- Improvements in the estimates of uncertainties due to radiative corrections (Vacuum Polarization Radiative Corrections & Final State Radiations)
- Improvements in data-combination method

### **Optical Theorem:**



To evaluate  $a_{\mu}^{\rm LO, had}$ , we need to subtract the vacuum polarization (VP) contribution.

It is straightforward to subtract the leptonic part of the VP, but the hadronic part is non-trivial: we need to do this recursively by using hadronic data. (We did this in the KNT18 paper.)

#### Final State Radiation Corrections to $\sigma(e^+e^- ightarrow$ hadrons)

#### **Optical Theorem:**



To evaluate  $a_{\mu}^{\text{LO, had}}$ , by definition, we use the hadronic cross sections which include all the Final State Radiations (FSR).



In real experiments, people often impose cuts on the final state photons and/or miss photons in the final states. So we have to add back those missed photons, which introduces uncertainties.

In KNT18, we revisited the FSR corrections in the  $K^+K^-$  and  $K^0_SK^0_L$ final states, and found smaller FSR uncertainties than our previous

papers.

- Lots of new input  $\sigma(e^+e^- 
  ightarrow$  hadrons) data
- Improvements in the estimates of uncertainties due to radiative corrections (Vacuum Polarization Radiative Corrections & Final State Radiations)
- Improvements in data-combination method

## **Data Combination**

To evaluate the vacuum polarization contribution, we have to combine lots of experimental data.

To do so, we usually construct a  $\chi^2$  function and find the value of R(s) at each bin which minimizes  $\chi^2$ .

Naively, the  $\chi^2$  function defined as

$$\chi^2(\{\overline{R}_i\}) \equiv \sum_{n=1}^{N_{ ext{exp}}} \sum_{i=1}^{N_{ ext{bin}}} \sum_{j=1}^{N_{ ext{bin}}} (R_i^{(n)} - \overline{R}_i) (V_n^{-1})_{ij} (R_j^{(n)} - \overline{R}_j) \;,$$

where  $V_n$  is the cov. matrix of the *n*-th exp.,

$$V_{n,ij} = \begin{cases} (\delta R_{i,\text{stat}}^{(n)})^2 + (\delta R_{i,\text{sys}}^{(n)})^2 & (\text{for } i = j) \\ (\delta R_{i,\text{sys}}^{(n)})(\delta R_{j,\text{sys}}^{(n)}) & (\text{for } i \neq j) \end{cases}$$

may seem OK, but when there are non-negligible normalization uncertainties in the data, we have to be more careful.

#### $\chi^2$ vs normalization error: d'Agostini bias

G. D'Agostini, Nucl. Instrum. Meth. A346 (1994) 306 We first consider an observable x whose true value is 1. Suppose that there is an experiment which measures xand whose normalization uncertainty is 10%. Now, assume that this experiment measured x twice:

$$\begin{array}{ll} \mbox{1st result:} & 0.9 \pm 0.1_{\rm stat} \pm 10\%_{\rm syst} \;, \\ \mbox{2nd result:} & 1.1 \pm 0.1_{\rm stat} \pm 10\%_{\rm syst} \;. \end{array}$$

Taking the systematic errors 0.09 and 0.11, respectively, the covariance matrix and the  $\chi^2$  function are

$$egin{aligned} (\mathsf{cov.}) &= egin{pmatrix} 0.1^2 + 0.09^2 & 0.09 \cdot 0.11 \ 0.09 \cdot 0.11 & 0.1^2 + 0.11^2 \end{pmatrix} \ \chi^2 &= egin{pmatrix} x - 0.9 & x - 1.1 \end{pmatrix} (\mathsf{cov.})^{-1} egin{pmatrix} x - 0.9 \ x - 1.1 \end{pmatrix} \ . \end{aligned}$$

 $\chi^2$  takes its minimum at x=0.98: Biased downwards!

#### d'Agostini bias (2): improvement by iterations

What was wrong? In the previous page,

$$\begin{array}{ll} \mbox{1st result:} & 0.9\pm 0.1_{\rm stat}\pm 10\%_{\rm syst} \ , \\ \mbox{2nd result:} & 1.1\pm 0.1_{\rm stat}\pm 10\%_{\rm syst} \ . \end{array}$$

we took the syst. errors 0.09 and 0.11, respectively, which made the downward bias. Instead, we should take 10% of some estimator  $\bar{x}$  as the syst. errors. Then,

$$( ext{cov.}) = egin{pmatrix} 0.1^2 + (0.1ar{x})^2 & (0.1ar{x})^2 \ (0.1ar{x})^2 & 0.1^2 + (0.1ar{x})^2 \end{pmatrix} \,, \ \chi^2 = egin{pmatrix} x - 0.9 & x - 1.1 \end{pmatrix} ( ext{cov.})^{-1} egin{pmatrix} x - 0.9 \ x - 1.1 \end{pmatrix} \,.$$

 $\chi^2$  takes its minimum at x = 1.00: Unbiased! In more general cases, we use iterations: we find an estimator for the next round of iteration by  $\chi^2$ -minimization. R.D.Ball et al, JHEP 1005 (2010) 075.

D. Nomura (IUHW)

May 19, 2020 23 / 40

### $\sigma(e^+e^- ightarrow \pi^+\pi^-)$ data



## $\sigma(e^+e^- ightarrow \pi^+\pi^-)$ : ho- $\omega$ interference region



## $\sigma(e^+e^- ightarrow \pi^+\pi^-)$ : relative differences



## Contribution to $(g-2)_{\mu}$ from $\pi^+\pi^-$ channel



Fig. from KNT19, arXiv:1911.00367

#### Other notable exclusive channels [KNT18: arXiv:1802.02995, PRD (in press)]



Slide by A. Keshavarzi (Liverpool) at 'Muon g = 2 Workshop' at Mainz, June 18-22, 2018

## Hadronic VP Contributions: comparison

#### Adding up all the channels, pQCD & narrow resonances contributions, we get

 $a_{\mu}^{\text{had, LO VP}}(\text{KNT19}) = (692.8 \pm 2.4) \times 10^{-10} \qquad (\text{KNT18:} (693.3 \pm 2.5) \times 10^{-10}) \\ a_{\mu}^{\text{had, NLO VP}}(\text{KNT19}) = (-9.83 \pm 0.04) \times 10^{-10} \qquad (\text{KNT18:} (-9.82 \pm 0.04) \times 10^{-10})$ 



## Breakdown of SM prediction for muon g-2

|                                      | <u>2011</u>                          |                   | <u>2018</u>                                      | <u>2019</u>          |
|--------------------------------------|--------------------------------------|-------------------|--------------------------------------------------|----------------------|
| QED                                  | 11658471.81 <mark>(0.02)</mark>      | $\longrightarrow$ | $11658471.90 \ (0.01) \ {}_{[arXiv:1712.06060]}$ |                      |
| EW                                   | 15.40 (0.20)                         | $\longrightarrow$ | 15.36 (0.10) [Phys. Rev. D 88 (20)               | 13) 053005]          |
| LO HLbL                              | 10.50 (2.60)                         | $\longrightarrow$ | 9.80 (2.60) [EPJ Web Conf. 118                   | (2016) ( 9.34 (2.92) |
| NLO HLbL                             |                                      |                   | 0.30 (0.20) [Phys. Lett. B 735 (2                | 014) 90]             |
|                                      | HLMNT11                              |                   | <u>KNT18</u>                                     | KNT19                |
| LO HVP                               | 694.91 (4.27)                        | $\longrightarrow$ | 693.27 <b>(2.46)</b> this work                   | 692.78 (2.42)        |
| NLO HVP                              | -9.84 (0.07)                         | $\longrightarrow$ | -9.82 (0.04) this work                           | -9.83 (0.04)         |
| NNLO HVP                             |                                      |                   | 1.24 (0.01) [Phys. Lett. B 734 (2                | 2014) 144]           |
| Theory total                         | 11659182.80 (4.94)                   | $\longrightarrow$ | 11659182.05 (3.56) this work.                    | ••181.08 (3.78)      |
| Experiment                           |                                      |                   | 11659209.10 (6.33) world avg                     |                      |
| Exp - Theory                         | 26.1 (8.0)                           | $\longrightarrow$ | 27.1 (7.3) this work                             | 28.0 (7.4)           |
| $\Delta a_{\mu}$                     | 3.3σ                                 | $\longrightarrow$ | $3.7\sigma$ this work                            | $3.8\sigma$          |
| HVP: Hadronic Va<br>HLbL: Hadronic L | cuum Polarization)<br>ight-by-Light) |                   | (Numbers taken from KNT<br>and from KNT19)       | 18                   |
|                                      |                                      |                   |                                                  |                      |

### Exp. value of muon g-2 vs SM prediction



# **Comparison with Other Work**

#### Contributions from major channels to $a_{\mu}(\text{LO},\text{had})$ for $\sqrt{s} < 1.8 \text{GeV}$ :

| channel            | KNT18             | DHMZ19            | diff  |
|--------------------|-------------------|-------------------|-------|
| $\pi^+\pi^-$       | $503.74 \pm 1.96$ | $507.80 \pm 3.35$ | -4.06 |
| $\pi^+\pi^-\pi^0$  | $47.70\pm0.89$    | $46.20 \pm 1.45$  | 1.50  |
| $K^+K^-$           | $23.00\pm0.22$    | $23.08 \pm 0.44$  | -0.08 |
| $\pi^+\pi^-2\pi^0$ | $18.15\pm0.74$    | $18.01\pm0.55$    | 0.14  |
| $2\pi^+2\pi^-$     | $13.99\pm0.19$    | $13.68\pm0.31$    | 0.31  |
| $K^0_S K^0_L$      | $13.04\pm0.19$    | $12.82\pm0.24$    | 0.22  |
| $\pi^0\gamma$      | $4.58\pm0.10$     | $4.29\pm0.10$     | 0.29  |
|                    |                   | •                 |       |

"DHMZ19" = M. Davier et al, arXiv:1908.00921

Difference in the  $\pi^+\pi^-$  channel is mainly from the way to combine the data sets.

- KNT18: Global  $\chi^2$  minimization
- DHMZ19: Takes the average of "all but KLOE" and "all but BaBar" as the mean value, and counts the half of the diff of the two as an additional systematic uncertainty.

## **Comparison with Lattice Results**



D. Nomura (IUHW)

muon g-2

May 19, 2020 33 / 40

## **Muon g-2 Theory Initiative**

Steering Committee:

| (Hadron Theory)                      | HVP and HLbL                                                                                                                                                                                              |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(e^+e^-$ exp. (BaBar))              | HVP                                                                                                                                                                                                       |
| $(e^+e^-$ exp. (CMD-2, CMD-3 & SND)) | HVP                                                                                                                                                                                                       |
| (Lattice QCD)                        | HVP                                                                                                                                                                                                       |
| (Lattice QCD)                        | HVP and HLbL                                                                                                                                                                                              |
| (J-PARC g-2 exp.)                    |                                                                                                                                                                                                           |
| (Hadron Theory)                      | HLbL                                                                                                                                                                                                      |
| (Fermilab g-2 exp.)                  |                                                                                                                                                                                                           |
| (Hadron Theory)                      | HVP                                                                                                                                                                                                       |
|                                      | (Hadron Theory)<br>$(e^+e^- \exp. (BaBar))$<br>$(e^+e^- \exp. (CMD-2, CMD-3 \& SND))$<br>(Lattice QCD)<br>(Lattice QCD)<br>(J-PARC g-2 exp.)<br>(Hadron Theory)<br>(Fermilab g-2 exp.)<br>(Hadron Theory) |

HVP: Hadronic Vacuum Polarization HLbL: Hadronic Light-by-Light

# Muon g-2 Theory Initiative: Goals

- theory support to the Fermilab and J-PARC experiments to maximize their impact
  - → need theoretical predictions of the hadronic corrections with reduced and reliably estimated uncertainties
- summarize the theoretical calculations of the hadronic corrections to the muon g-2
  - → comparisons of intermediate quantities between the different approaches. For example, lattice vs experiment
  - assess reliability of uncertainty estimates
- $\Theta$  combine to provide theory predictions for  $a_{\mu}^{\rm HVP}$  and  $a_{\mu}^{\rm HLbL}$  and write a report **before** the Fermilab and J-PARC experiments announce their first results.

slide by A. El-Khadra at Phipsi17, June 26-29, 2017 (Underlines by DN)

#### Muon g-2 Theory Initiative: Workshops

- 1st plenary workshop: near Fermilab, June 2017
- Hadronic Vacuum Polarization workshop: KEK, February 2018
- Hadronic Light-by-Light workshop: Connecticut, March 2018
- 2nd plenary workshop: Mainz, June 2018
- 3rd plenary workshop: Seattle, September 2019
- 4th plenary workshop: KEK, June 2020  $\rightarrow$  postponed for fall 2020

We have discussed a lot about the White Paper: In particular, how to come up with a single theory prediction to be compared with the exp. result.

## Timeline for the White Paper

- Earliest possible release date for Fermilab g-2 measurement:
   15-20 December 2019
- Post the WP on arXiv by:
   1 Dec. 2019
   Submission to arXiv: Very soon (probably by the end of May)
- **Q** Deadline for finalizing individual WP chapters:

#### 1 Nov 2019

At this date the Overleaf chapters will be frozen.

Editorial board will release complete WP to authors for feedback on:
 15 Nov. 2019

will need to receive feedback from authors within a week

Experimental and theoretical inputs used in WP must be published by:
 15 Oct 2019

To make sure to be included in WP discussion, a paper to be posted in arXiv by same date.

#### Note: The WP will be posted on arXiv in December, even if the Fermilab experiment's release date is delayed. slide by A. El-Khadra at the Seattle muon g-2 workshop, September 9-13, 2019

# White Paper Outline

- Secutive Summary
- Introduction
- Ghapter 1: data-driven HVP
- Chapter 2: lattice HVP
- Chapter 3: data-driven HLbL
- Chapter 4: lattice HLbL
- - T. Aoyama, T. Kinoshita, M. Nio
  - D. Stöckinger, H. Stöckinger-Kim
- Summary, Conclusions, and Outlook

slide by A. El-Khadra at the Seattle muon g-2 workshop, September 9-13, 2019

# https://www-conf.kek.jp/muong-2theory/ Muon g-2 theory initiative workshop



#### About

The muon g-2 is arguably one of the most important observables in contemporary particle physics. The long-standing anomaly at the level of more than 3 standard deviations between the experimental value

## June 1 5, 2020 at KEK postponed for fall 2020 an activity of the Muon g-2 Theory Initiative

D. Nomura (IUHW)

May 19, 2020 39/40

Contacts

## Summary

- Standard Model prediction for  $(g-2)_{\mu}$ :  $\gtrsim 3.5\sigma$ deviation from measured value  $\implies$  New Physics?
- Recent data-driven evaluations of hadronic vacuum polarization contributions seem convergent
- To better establish the g-2 anomaly, better data for  $e^+e^- \rightarrow \pi^+\pi^-$  welcome (from CMD-3, SND, Belle II, ...)
- Lattice calculations still suffer from large uncertainties (but a hybrid approach is useful)
- New exp. at Fermilab and J-PARC expected to reduce the uncertainty of  $(g-2)_{\mu}$  by a factor of 4