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Introduction



Standard Model (SM)

Standard Model has been established.

https://www.theguardian.com/science/blog/2012/jul/04/higgs-boson-discovered-live-coverage-cern



' But there are still many mysteries
unanswered by the SM. |

Baryon asymmetry Dark matter

Neutrino mass Gauge hierarchy

etc.
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Baryon Asymmetry in the Universe

Our universe is (slightly) baryon asymmetric:

Np — Np
B B _
— ~ 10 10

\)

Yp

§ : entropy density

ng (ng) : (anti-)baryon # density

/

Pr(')l\:"()l"l9 AmI-Proton

[From www.youtube.com/watch?v=CtR5EkvLNfg ] S



http://www.youtube.com/watch?v=CtR5EkvLNfg

Baryon # and Chern-Simons #

* Baryon asymmetry can be produced by a topology change of

the gauge fields.
2 2
e W, Wt +

Chiral anomaly: g j# =
B 16m2

Integrating over
spacetime B(t) = d3xjg

where N ¢ is a topological quantity called as the Chern-Simons #:

N ~(f) ~ ! de* t _WF 2W3_
= x tr - —
© 1672 _ 3
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) (Pontryagin index)
If one takes W= U'dU, —> N o= EJd3x tr (U'dU) € 7

(vacuum configuration)

degenerated vacua are labeled by N =0,1,-- 6



Sphaleron process

e To change N ¢, we need jump an energy barrier between

the vacua. - AR — 3ANCS

-1 0 | NCS

There are two processes to change N



Sphaleron process

e To change N ¢, we need jump an energy barrier between

the vacua. - AR — 3ANCS

10, sphaleron

-1 0 1
[ =0, instanton
There are two processes to change N
_ 8z
* Quantum tunneling (instanton effect) ~ e ¢ :tiny

Esph.

* Sphaleron process (thermal jump) ~e¢ 7

k., is the energy of the sphaleron solution. Z



[Manton ‘83]

Spha|er0n [Klinkhamer-Manton '84]

opalepos (sphaleros) ready to fall”

* saddle point solution of classical EOMs

* maximum point on least-energy path connecting two vacua

13
CS = 55>

Energy

\  vacuum
/

configuration space 8



* For predictions of baryogenesis, it is important to obtain the
sphaleron solution accurately.

* However, the conventional method is technically difficult

(explained later) except for simple models (e.g., gy = 0).

* In usual, people obtain the sphaleron energy for g, = 0 first, and
then treat g, perturbatively (not solve full EOMs).

Our work

* We propose a simple method to obtain the sphaleron
using gradient flow.

* |t can be applied to various models other than SM!



Plan of talk

Introduction (9p.)

Our method (12p.)

Result for SU(2)-Higgs model (9p.)

Summary
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Our method
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Conventional method (Min & Max procedure)

[Manton, 1983]
» Consider a family of paths (red lines) connecting two vacua.

e Each path is parametrized with a parameter u € [0,7] .
* Find the maximum-energy point on each path (blue dots).

* The sphaleron is the minimum point among the maximum points.

E,, = min max E(u)
path O<u<nx

Obviously, it is not an easy task!

(In the SM, this works only when g, — 0.)




(ctf.):
[Luscher ‘14 ]

Gradient flow (relaxation method) Luscher-Weisz 1]

» Useful method to find a (locally) minimum-energy configuration

e |Introduce a fictitious time s in addition to D-dim. coordinates x.

* Evolve afield configuration following the flow equation:

5E[(I)] (I)Az {¢, Wa,...}

0.D,(x,s5) = -
s A( ) 5(I)A(X,S) Higgs gauge

0.E[®] <0

\

o |If the flow converges, the configuration is
a solution of EOM: 0E/0®, = 0.

(locally minimum-energy configuration)

* Note: In quantum field theory, gradient flow provides an interesting
property (finiteness of correlation functions). But we do not consider
such a quantum aspect but classical field theories. 13



Gradient flow for sphaleron

» Although the sphaleron is a solution of EOM,
the gradient flow does not converge to it
because it is an unstable solution.

* In other words, the sphaleron is a fixed point
with a single relevant direction.

......... P - neenn.
‘j = Irrelevant
. s
configuration vacuum sphaleron
space

(or stable solution) 14



Mathematical reason (skippable)

* Introduce the quadratic curvature . 5z of the sphaleron

~ SE[D]
AP 50,60,

(I)Zq)sph

AN

Sphaleron config.

e Let |¥"™) be eigenfunctions of / :
M) = 17P)  n=0i
For the sphaleron, the lowest eigenvalue is negative: 45 < 0
— A perturbation & ¥?(x) is an unstable direction.

(the others 4,51 > 0, and )((”Zl) are stable directions)
15



Mathematical reason (skippable) (con’t)

* Expand a configuration around the sphaleron as

D,(x,s) = (I)th'(x) + a,(s) )(f(‘”)(x)

» Substituting into the flow eq: 0. ®,(x, s) = — 6E/0D, ,

— a,() M gy + O(ay)

—_— an(S) =~ — /lnan(s) (not sum for n)

* a,-1 exponentially decay, but g, exponentially growths.

—
16



MOdify the fIOW [Chigusa-Moroi-Shoji "19]

* By adding a "lifting” term to the flow eq, we can lift up
the unstable direction!

OL[D]
0D ,(x,s) = 5 (. 5) FC(s) G 4(x, )

Cis)=p nd3x Z oLLP] G A(x, s)T

p > 1 (const.)

where & 4(x, §) is proportional to the unstable direction
0
Ga x 1\ (x)

and normalized as | d°x| & \2 = 1.

J

17



MOdify the fIOW [Chigusa-Moroi-Shoji "19]

* By adding a "lifting” term to the flow eq, we can lift up
the unstable direction!

5| @(s)) = [ F(5)) +C(s)]E(s))

Cls) = - (G() | F(5)) f > 1 (const.)

OE[D]
oD, (x, s)

where & 4(x, §) is proportional to the unstable direction

| F(s5)) =

Gpx) f(lo)(x)

and normalized as (& | &) = 1.
18



Picture of the modified flow

relevant

/\ irrelevant

sphaleron

' Lifting term

irrelevant

configuration

space vacuum

irrelevant

sphaleron

vacuum
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™ PFOOf” for Convergence (Skipp&b'e) [Chigusa-Moroi-Shoji ‘19]

* Again, expand a configuration around the sphaleron as

D, (x, 5) = PP"(x) + a,(s) 1" (x)

* Substituting into the modified flow eq:

én(s ) |)( (n)> = .:"‘?:" / o an(s )% |)( (n)>

—fa(s) (5(s) | M| ™) | Z(s))

20
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Our claim

* Modified flow eq. :
;| @(s)) = | F(5)) +C(s)]F(s))

where & 4(x, s) should be proportional to the unstable
direction )((O)(x) .

W

Problem: What is a concrete expression of ¥\ ?

Naive guess:

The unstable direction is the
steepest direction changing N

5D,

7))

sph. 21



Our flow eq.

* Therefore, our modified flow eq. is
05| ®(s)) = [F(s)) +C(s)]|Z(s))

C(s) = — p(G(s)| F(5)) B > 1 (const.)
OE| D]
oD, (x, s)

| F(s5)) =

| Z(s)) = oNes — 8%2 eV" & (for@, = Af)
0D 4(x, 5) 0 (for ®, = others)

* Inthe following, we show this flow eq. works well.
22
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Result for SU(2)-Higgs model

24



SU(2)-Higgs model in (3+1) dim.

« SU(2) gauge field A, and SU(2) doublet @

S—1 d* —lt F_F" +Dc1>*(1)ﬂc1>)—i c1>?“c1>—l 22 2
_? X 2r W (D, D) 22 2gv

where we have divided ® by g comparing to the usual convention.

* This model is equivalent to the Electroweak sector of the SM

with the limit gy — O.

* [tis known that a spherically symmetric sphaleron solution

. [Dashen-Hasslacher-Neveu '74]
exists for 1/g* < 18.1. |
[Yaffe '89] [Manton '83] [Klinkhamer-Manton ‘84]

. ForA/g? > 18.1, another type of the sphaleron appears

(deformed sphaleron), but we do not consider that.
[Kunz-Brihaye '89] [Yaffe '89] 25



[Ratra-Yaffe ‘87]

Spherically symmetric anzats affe 891

1 .
Apx) = > {aO(r, Nxo’ }

1 2

1 ei el.
Ax) == [{fr,n) = 1} — + h(r, D— + a,(r, De;
2l r 14

D(x) = { u(r,t) + iv(r, t))%jaj } E

ay, Ay, f, h, 4, v are real functions

I ok
e; = €;x 0’
1 )2 )3 : 2 _ — 22 \A/
(e, e’, e’) are defined as ej = (0; — X;x;)o
3 - A A /
e; = X X0’

26



[Ratra-Yaffe ‘87]

Reduce (3+1)-dim into (1+1)-dim affe ‘891

* Substituting the ansatz into the action, we can reduce the

model into (1+1) dim. Abelian-Higgs model. with two scalars.

4r 1, 1 ) 2 5
§ == | didry 2, + 1D, P +5= (1217 = 1)+
8~ 2r2
I i | 7
“Re (12?) 5 (1P +1) 19 P =5 <|¢| ——gv) }
)(Ef+lh ¢E//t+ll/ ];yEaﬂay—ayaﬂ (’u,y:Oorl)
= (0, —ia)y D¢ = (6ﬂ —1a,/2)¢
two complex scalars  U(1) Charge VEV
| X +1 1



Gauge fixing

* We concentrate on static configurations:
y(r,2) d(r.7) a;(r,1) ay(r,1) =0

* Furthermore, without loss of generality, we can “gauge out” the

gauge field a(r) using a gauge function w(r) as
a,(r) = a(r)—0d,w(r) =0

* Thus we have only two complex functions in 1 dim.

x(r) )

28



« We give an initial configuration at s = 0, and then evolve it by

the flow equation numerically.

oy OFE
L= - 4 C(s)
0s oy
0 oF
_¢ — C(s)
ds O™

]
Imo, y + {5)(*(0,&()+h.c. }

1
N~ = — | dr
CS 27:J

Oy
= l— —
5S¢ *

oy or

 |f the configuration converges to a fixed point, it should be

the sphaleron solution!

29



2.0
) I
I £
47TV
15H
1.0 -

AMg?=0.5, B=1.3, N=300

2.5

flow time s

| NGP=05,p=13,N=300

0.6
0.5
0.4
0.3
02

0.1}

10 20 30 40
flow time s

» The converged energy value is £, ~ 1.976 X 4rnv/g?, which

agrees with the known value of the sphaleron energy!

* N g converges to 1/2.

30



Result (con't)

0.8

_Mg®=0.5, B=1.3,N=300

_Ng’=05, p=13,N=300

1.0

0.5

Mg?=0.5, B=1.3, N=300

(length unit : v_l)

"""" 10k ]
5=45 ] 0.8 L ———— s=45
s=0 i s=0
Im y os: ]
041 7
] 02 ]
] 0.0 — ;
| | | | | | | | | | | | | | | | | ]
12 14 0 6 8 10 12 14
r
AMg“=0.5, B=1.3, N=300
0.5+ ———
| 0.4 ]
s=45 | i s=45
s=0 1 0_3; s=0 i
Im ¢
. 02+ 1
01} ]
0.0+
| | | | | | | _01 | | | | | |
12 14 0 6 8 10 12 14

31



Remarks

* We did not impose any ansatz other than spherical symmetry and
did not fine tune the initial configuration. The configuration

automatically converged to the sphaleron along the flow.

Mg?=0.5, B=1.3, N=300

Im y os -

* Especially, in the previous works, |
Imy =Im¢ = Oisimposed by — o
hand since they are unstable
direction. But we did not do so. o MEOSBAND

i

32



Applications

e The most straightforward application is the SM with gy # 0.

Especially, it is theoretically interesting to consider the case of

sin @y, = gY/\/g2 + g7 ~ 1,in which the sphaleron has a long

magnetic dipole structure.

* Applicable to BSMs with the same electroweak structure as the

SM, e.g., two Higgs doublet models.

* Also applicable to BSMs in which the electroweak symmetry is
extended. There are no systematic methods to obtain the
sphaleron for such models.

e.g.) WIMP DM model with SU(2), X SU(2), x SU(2), x U(1)y
[Abe-Fujiwara-Hisano-Matsushita, 2004.00884] 33



Summary

* We proposed a simple method to obtain the sphaleron solution

* We showed the modified gradient flow converges to the sphaleron

solution in the SU(2)-Higgs model.

Mg?=0.5, B=1.3, N=300

. Ng°=05,8=13,N=300 e y
’ ’ 06" /f\\\ 1
2.5 E : ]
: : 05:’ \/‘_'_'"* --------------------- -E
* j 04: :
2 o
g
E ] Nes |
47TV . ] 03l
1.5 1 i [
: 02+
1.0; [
i 0.1+
L L L L L L L L L L L L L L L L L L L L L —t 5
0 10 20 30 40 0 10 2 30 20

flow time s flow time s

* A main advantage of our method is that it does not need any

special ansatz and fine-tuning.

|t has potentials for applications to various models.

We can write many papers!!
34



Backup
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Min & Max procedure in SU(2)-Higgs model

E_, = min max E(u) [Manton, 1983]

P path O0<u<n

e The existence of the minimum is ensured by a topological argument.

Py :vacuum, P, :sphaleron

* If there is a non-contractible loop starting and ending at P,
the minimum point P, exists.

* In SU(2)-Higgs model, indeed 7;( config. space ) # 0, and

hence such a loop exists. 36



Min & Max procedure in SU(2)-Higgs model

[Manton, 1983]

2
1 1 A 1
_ 4. | _ v T _ TP — —o2y?
§=- Jd x |- <FWF/" ) +(D,9) (D'®) - — <c1> D~ g >

 Consider a path connecting two vacua N-¢ = 0,1

® = (1 — h(r)) <e ) + h(r)®*

~H cos p
A = —f(NOURWUS" (i=6,9) | pel0al

”‘f;‘ Ar =0

sin y sin Ge'?’ OL" O
O = , . U> = .
e "#(cos p + isin p cos 0) -0 O

37



[Manton, 1983]

Min & Max procedure in SU(2)-Higgs model

® = (1 — h(r))< ) + h(r)®*

e ""cosu

A== f(No,USU®)™ (i=06,¢)

'\:;. Ar = O

* Independently of h(r), f(r), the energy is maximized when
u = r/2 due to the spherical symmetry.

e |In other words, the maximization and the minimization

decouple.

e Firstly set u = n/2, and then minimize with respect to

h(r), f(r).

38



Sphaleron in SM with 60, # 0

* In [Brihaye-Kleihaus-Kunz '92], the sphaleron solution with 8, # 0
is obtained, but an ansatz is imposed (parity sym.). It is unknown
whether the solution is a saddle point with one unstable direction.

 Further, the sphaleron with large Weinberg angle 0y, ~ 7/2 is still
unknown.

* In[Klinkhamer-Laterveer '?1], a non-contractible loop is
constructed, but the solution is no exact. It provides an upper
bound of the sphaleron energy.

* In[Hindmarsh-James ‘93], it is shown that the magnetic dipole
moment of the sphaleron originated from a pair of magnetic
monopole and antimagnetic monopole connected by a Z flux
tube (Nambu monopole) based on perturbation.

 Butthe large 0y, case is still unknown.
39



Results for other parameter choises

e SM value ~ 0.2

Alg* 10001 001 | 05 1 5 10 13

Eon8” | 1563 1.644 1976 2.066 2.280 2.364 2.395

Ay

~ 7.5TeV {V ~ 246 GeV ~ 12 TeV

My, = %gv ~ 80 GeV 10



Cls) = - G| F)

e ONes\ OE _ (0Nes\ OF
(f(s)|f(s)>—JdV{< 5)(> 5)(_'_(5)(*) 5)(*}

2 2

_|_
oy ox*

(9(5)| E(s)) = jd[

ok _ 1 1 _ 1
o= _ —62+—< 2_1>_|__ 2| _ L2
= | (1 AN
ok _ 1 A —
= 0720, + (L + 1) =52 (219 P = g3?) | § — 29"
op* | 2 g* : 41




Numerical setup

« We take a length unit such thatv = 1

* The spatial lattice:

r=1XAr Ar=5.0x%x 1072

(l= 1929°"9N) L=NX Ar

e The flow time lattice: As = 1.5 X 107>

42



Boundary conditions

regularity

/

d.x(0)=0, $0)=0 (at the origin)
y(L)y=1, ¢(L) = gv/\/§ (at large distances)

@ finite energy

(0)=h0)=0, u(0) =v(0)=0 (at the origin)
f(L)y=1, u(L) = gv/\/z, h(L) =v(L) =0 (atlarge distances)

L: size of the system
43



