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Introduction
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Standard Model (SM)
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After the Higgs boson’s discovery, the 
Standard Model has been established.

https://www.theguardian.com/science/blog/2012/jul/04/higgs-boson-discovered-live-coverage-cern



Mysteries
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Gauge hierarchy

Dark matter

Neutrino mass

Baryon asymmetry

But there are still many mysteries 
unanswered by the SM.

etc.
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Baryon Asymmetry in the Universe
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Our universe is (slightly) baryon asymmetric:

YB ≡ nB − nB̄

s
∼ 10−10

 : entropy densitys
 ( ) : (anti-)baryon # densitynB nB̄

[From www.youtube.com/watch?v=CtR5EkvLNfg ]

http://www.youtube.com/watch?v=CtR5EkvLNfg


Baryon # and Chern-Simons #
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∂μ jμ
B = g2

16π2 tr WμνWμν + g′ 2

32π2 YμνYμν

ΔB = 3ΔNCS
B(t) ≡ ∫ d3x j0

B

NCS(t) = −1
16π2 ∫ d3x tr [WF − 2

3 W3]

• Baryon asymmetry can be produced by a topology change of 
the gauge fields.

integrating over 
spacetime

where  is a topological quantity called as the Chern-Simons #:NCS

Chiral anomaly:
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∂μ jμ
B = g2

16π2 tr WμνWμν + g′ 2

32π2 YμνYμν

ΔB = 3ΔNCS
B(t) ≡ ∫ d3x j0

B

NCS(t) = −1
16π2 ∫ d3x tr [WF − 2

3 W3]

• Baryon asymmetry can be produced by a topology change of 
the gauge fields.

integrating over 
spacetime

where  is a topological quantity called as the Chern-Simons #:NCS

degenerated vacua are labeled by NCS = 0,1,⋯

(Pontryagin index)

Chiral anomaly:

(vacuum configuration)
NCS = 2

3 ∫ d3x tr (U†dU)3 ∈ ℤIf one takes , W = U†dU
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Sphaleron process
4 – Baryon number violation in the SM

4 – Baryon number violation in the SM

The vacuum structure of a non-abelian (SU(2)) gauge theory:

Each minimum is labelled by the topological charge:

NCS = g3

96π2

∫
d3εijkεIJKW IiW JjWKk = 0, 1, 2...

[’t Hooft ’76; Klinkhammer, Manton ’84]

NCS

ΔB = 3ΔNCS

• To change  , we need jump an energy barrier between 
the vacua.

NCS

There are two processes to change NCS



• Quantum tunneling (instanton effect)  : tiny 

• Sphaleron process (thermal jump)   

          is the energy of the sphaleron solution.

∼ e− 8π2
g2

∼ e− Esph.
T

Esph. 7
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Sphaleron

σφαλεροs (sphaleros)  ``ready to fall’’

[Klinkhamer-Manton ’84] 

• maximum point on least-energy path connecting two vacua

• saddle point  solution of classical EOMs

NCS

Energy
sphaleron

vacuum

configuration space

[Manton ’83] 

NCS = 1
2 , 3

2 , ⋯



9

Motivation

• For predictions of baryogenesis, it is important to obtain the 
sphaleron solution accurately. 

• However, the conventional method is technically difficult 
(explained later)  except for simple models (e.g., ). 

• In usual, people obtain the sphaleron energy for  first, and 
then treat  perturbatively (not solve full EOMs).

gY = 0

gY = 0
gY

• We propose a simple method to obtain the sphaleron 
using gradient flow. 

• It can be applied to various models other than SM!

Our work



• Introduction (9p.) 

• Our method (12p.) 

• Result for -Higgs model (9p.) 

• Summary

SU(2)
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Plan of talk



Our method
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Conventional method (Min & Max procedure)
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Esph. = min
path

max
0≤μ≤π

E(μ)

[Manton, 1983] 

Obviously, it is not an easy task!
μ = 0

μ = π

• Consider a family of paths (red lines) connecting two vacua. 

• Each path is parametrized with a parameter  . 

• Find the maximum-energy point on each path (blue dots). 

• The sphaleron is the minimum point among the maximum points.

μ ∈ [0,π]

(In the SM, this works only when .)gY → 0
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Gradient flow (relaxation method)

∂sΦA(x, s) = − δE[Φ]
δΦA(x, s)

• Useful method to find a (locally) minimum-energy configuration

∂sE[Φ] ≤ 0

• Introduce a fictitious time  in addition to -dim. coordinates .s D x

• Evolve a field configuration following the flow equation:

ΦA = {ϕ, Wa
μ, ⋯}

Higgs gauge

• If the flow converges, the configuration is 
a solution of EOM: .  

   (locally minimum-energy configuration)
δE/δΦA = 0

(cf.): 
[Luscher ’14 ] 
[Luscher-Weisz ’11]

• Note: In quantum field theory, gradient flow provides an interesting 
property (finiteness of correlation functions). But we do not consider 
such a quantum aspect but classical field theories. 
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Gradient flow for sphaleron

• In other words, the sphaleron is a fixed point 
with a single relevant direction.

configuration  
space

• Although the sphaleron is a solution of EOM, 
the gradient flow does not converge to it 
because it is an unstable solution.

sphaleronvacuum 
(or stable solution)

relevant

irrelevant
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Mathematical reason (skippable)
• Introduce the quadratic curvature  of the sphaleronℳAB

ℳAB ≡ δ2E[Φ]
δΦAδΦB Φ=Φsph

• Let   be eigenfunctions of  :|χ(n)⟩ ℳ

ℳ |χ(n)⟩ = λn |χ(n)⟩ n = 0,1,⋯

Sphaleron config.

A perturbation   is an unstable direction.∝ χ(0)(x)

For the sphaleron, the lowest eigenvalue is negative:  λ0 < 0

(the others  , and   are stable directions )λn≥1 > 0 χ(n≥1)
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Mathematical reason (skippable) (con’t)

• Expand a configuration around the sphaleron as

• Substituting into the flow eq:  ,∂sΦA(x, s) = − δE/δΦA

ΦA(x, s) = Φsph.
A (x) + an(s) χ(n)

A (x)

·an(s)χ(n)
A (x) = − δE[Φ]

δΦA(x, s)
Φsph.

− an(s)ℳAB χ(n)
B + 1(a2

n)

≃ − λnan(s)χ(n)
A

·an(s) ≃ − λnan(s)

•  exponentially decay, but  exponentially growths.an≥1 a0

(not sum for )n

Cannot converge to the sphaleron!
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Modify the flow
• By adding a ``lifting” term to the flow eq, we can lift up 

the unstable direction!

∂sΦA(x, s) = − δE[Φ]
δΦA(x, s) +C(s) 3A(x, s)

C(s) ≡ β∫ d3x ∑
A

δE[Φ]
δΦA(x, s) 3A(x, s)†

 (const.)β > 1

where  is proportional to the unstable direction3A(x, s)

3A ∝ χ(0)
A (x)

[Chigusa-Moroi-Shoji ’19] 

and normalized as .∫ d3x |3 |2 = 1
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Modify the flow
• By adding a ``lifting” term to the flow eq, we can lift up 

the unstable direction!

∂s |Φ(s)⟩ = |ℱ(s)⟩ +C(s) |3(s)⟩

C(s) ≡ − β⟨3(s) |ℱ(s)⟩  (const.)β > 1

where  is proportional to the unstable direction3A(x, s)

3A ∝ χ(0)
A (x)

[Chigusa-Moroi-Shoji ’19] 

and normalized as .⟨3 |3⟩ = 1

|ℱ(s)⟩ ≡ − δE[Φ]
δΦA(x, s)



Picture of the modified flow
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configuration  
space sphaleronvacuum

relevant

irrelevant

sphaleronvacuum

irrelevant

irrelevant

Lifting term
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• Again, expand a configuration around the sphaleron as

• Substituting into the modified flow eq:

ΦA(x, s) = Φsph.
A (x) + an(s) χ(n)

A (x)

·cn(s) |χ(n)⟩ ≃ |ℱ⟩Φsph.
− an(s)ℳ |χ(n)⟩

``Proof’’ for convergence (skippable) [Chigusa-Moroi-Shoji ’19] 

−βan(s) ⟨3(s) |ℳ |χ(n)⟩ |3(s)⟩



20

• Again, expand a configuration around the sphaleron as

• Substituting into the modified flow eq:
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• Again, expand a configuration around the sphaleron as

• Substituting into the modified flow eq:

ΦA(x, s) = Φsph.
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·an(s) ≃ − λnan(s)
·a0(s) ≃ − λ0(1 − β)a0(s)

(n > 0)

(β > 1)> 0
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• Again, expand a configuration around the sphaleron as

• Substituting into the modified flow eq:

ΦA(x, s) = Φsph.
A (x) + an(s) χ(n)

A (x)

·cn(s) |χ(n)⟩ ≃ |ℱ⟩Φsph.
− an(s)ℳ |χ(n)⟩

= − λnan(s)(1 − β |3(s)⟩⟨3(s) |) |χ(n)⟩

``Proof’’ for convergence (skippable) [Chigusa-Moroi-Shoji ’19] 

−βan(s) ⟨3(s) |ℳ |χ(n)⟩ |3(s)⟩

Projection to χ(0)

Converge to the sphaleron!

{
·an(s) ≃ − λnan(s)
·a0(s) ≃ − λ0(1 − β)a0(s)

(n > 0)

(β > 1)> 0



Our claim
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∂s |Φ(s)⟩ = |ℱ(s)⟩ +C(s) |3(s)⟩
where  should be proportional to the unstable 
direction  .

3A(x, s)
χ(0)

A (x)

• Modified flow eq. :

Problem: What is a concrete expression of  ?χ(0)

Naive guess: 

The unstable direction is the 
steepest direction changing NCS

χ(0)
A (x) ∝ δNCS

δΦA Φsph.



Our flow eq.
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∂s |Φ(s)⟩ = |ℱ(s)⟩ +C(s) |3(s)⟩

• Therefore, our modified flow eq. is

C(s) ≡ − β⟨3(s) |ℱ(s)⟩  (const.)β > 1

|ℱ(s)⟩ ≡ − δE[Φ]
δΦA(x, s)

• In the following, we show this flow eq. works well.

|3(s)⟩ ≡ δNCS

δΦA(x, s) = {
1

8π2 ϵijkFa
jk

0
(for )ΦA = Aa

i

(for  others)ΦA =



• Introduction (9p.) 

• Our method (12p.) 

• Result for -Higgs model (9p.) 

• Summary

SU(2)
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Plan of talk



Result for -Higgs modelSU(2)
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• This model is equivalent to the Electroweak sector of the SM 

with the limit . 
• It is known that a spherically symmetric sphaleron solution 

exists for . 

• For , another type of the sphaleron appears 
(deformed sphaleron), but we do not consider that.

gY → 0

λ/g2 ≲ 18.1
λ/g2 > 18.1

-Higgs model in (3+1) dim.SU(2)

25

S = 1
g2 ∫ d4x [− 1

2 tr (FμνFμν) + (DμΦ)†(DμΦ) − λ
g2 (Φ†Φ − 1

2 g2v2)
2

]

•  gauge field  and  doublet  :SU(2) Aμ SU(2) Φ

where we have divided  by  comparing to the usual convention.Φ g

[Yaffe ’89] [Klinkhamer-Manton ’84] [Manton ’83] 

[Dashen-Hasslacher-Neveu ’74] 

[Yaffe ’89] [Kunz-Brihaye ’89] 



Spherically symmetric anzats
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A0(x) = 1
2i {a0(r, t) ̂xjσ j}

Ai(x) = 1
2i [{f(r, t) − 1} e1

i

r
+ h(r, t) e2

i

r
+ a1(r, t)e3

i ]
Φ(x) = {μ(r, t) + iν(r, t) ̂xjσ j} ξ

[Yaffe ’89] 

[Ratra-Yaffe ’87] 

e1
i = ϵijk ̂xkσ j

e2
i = (δij − ̂xi ̂xj)σ j

e3
i = ̂xi ̂xjσ j

  are real functionsa0, a1, f, h, μ, ν

 are defined as(e1
i , e2

i , e3
i )



Reduce (3+1)-dim into (1+1)-dim 
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• Substituting the ansatz into the action, we can reduce the 
model into (1+1)  dim. Abelian-Higgs model. with two scalars.

S = 4π
g2 ∫ dtdr{ 1

4 r2fμν fμν + |Dμ χ |2 + 1
2r2 ( | χ |2 − 1)

2
+ r2 |Dμϕ |2

[Yaffe ’89] 

[Ratra-Yaffe ’87] 

−Re (χ*ϕ2) + 1
2 ( | χ |2 + 1) |ϕ |2 − λ

g2 r2 ( |ϕ |2 − 1
2 g2v2)

2

}

two complex scalars  chargeU(1)
χ

ϕ

+1

+1/2

VEV

1

gv/ 2

ϕ ≡ μ + iνχ ≡ f + ih fμν ≡ ∂μaν − ∂νaμ

Dμ χ = (∂μ − iaμ)χ Dμϕ = (∂μ − iaμ/2)ϕ

(  or )μ, ν = 0 1



Gauge fixing
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• We concentrate on static configurations:

a1(r) → a1(r) − ∂rω(r) = 0

χ(r, t)

• Furthermore, without loss of generality, we can ``gauge out’’ the 

gauge field  using a gauge function  asa1(r) ω(r)

ϕ(r, t) a0(r, t) = 0a1(r, t)

χ(r) ϕ(r)

• Thus we have only two complex functions in 1 dim.



Flow eq.

29

NCS = 1
2π ∫ dr [Im∂1χ + { i

2 χ*(∂r χ) + h . c . }]

∂χ
∂s

= − δE
δχ* + C(s) δNCS

δχ*

∂ϕ
∂s

= − δE
δϕ* + C(s) δNCS

δϕ*

δNCS
δχ* = 2i

∂χ
∂r

δNCS
δϕ * = 0

• We give an initial configuration at , and then evolve it by 
the flow equation numerically.

s = 0

• If the configuration converges to a fixed point, it should be 
the sphaleron solution!



Result
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• The converged energy value is , which 
agrees with the known value of the sphaleron energy! 

•  converges to 1/2.

Esph. ≃ 1.976 × 4πv/g2

NCS
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Result (con’t)
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Remarks

• We did not impose any ansatz other than spherical symmetry and 
did not fine tune the initial configuration. The configuration 
automatically converged to the sphaleron along the flow.

32
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• Especially, in the previous works, 
 is imposed by 

hand since they are unstable 
direction. But we did not do so.

Im χ = Im ϕ = 0



Applications

• The most straightforward application is the SM with . 
Especially, it is theoretically interesting to consider the case of

, in which the sphaleron has a long 

magnetic dipole structure.

gY ≠ 0

sin θW ≡ gY / g2 + g2
Y ∼ 1

33
e.g.) WIMP DM model with SU(2)0 × SU(2)1 × SU(2)2 × U(1)Y

[Abe-Fujiwara-Hisano-Matsushita, 2004.00884]

• Also applicable to BSMs in which the electroweak symmetry is 
extended. There are no systematic methods to obtain the 
sphaleron for such models.

• Applicable to BSMs with the same electroweak structure as the 
SM, e.g., two Higgs doublet models.



Summary
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• We proposed a simple method to obtain the sphaleron solution

• A main advantage of our method is that it does not need any 
special ansatz and fine-tuning.

• We showed the modified gradient flow converges to the sphaleron 
solution in the -Higgs model.SU(2)

• It has potentials for applications to various models. 
We can write many papers!!
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Backup
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Min & Max procedure in -Higgs modelSU(2)

36

[Manton, 1983] 

μ = 0
μ = π

• The existence of the minimum is ensured by a topological argument.

PHYSICAL REVIEW D VOLUME 28, NUMBER 8

Topology in the Weinberg-Salam theory

15 OCTOBER 1983

N. S. Manton
Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, California 93106

(Received 20 May 1983)

We show that the configuration space of the classical, bosonic Weinberg-Salam theory has a non-
contractible loop. This probably implies that there is an unstable, static, finite-energy solution of
the field equations. Its energy is the height of the barrier for tunneling between "topologically dis-
tinct" vacuums. We establish an upper bound on this energy of order 10 TeV.

I. INTRODUCTION

All experiments to date indicate that the weak and elec-
tromagnetic interactions are mediated by the bosonic
fields of the gauge theory proposed by Weinberg and
Salam. ' The gauge group is U(2) and it is spontaneously
broken to U(1), by a complex Higgs doublet. Further-
more, all known weak processes, including the recently
discovered 8'-boson production, are well described by a
perturbative treatment of the quantized theory. The main
purpose of this paper is to argue that nonperturbative phe-
nomena exist in the %'einberg-Salam theory, even though
the theory admits neither monopoles nor instantons, and
they become important at energies of order 1—10 TeV.
Our arguments are primarily topological in nature, so we
start with some mathematics.
It has been known for some time that there is a connec-

tion between the topology of a smooth manifold and the
stationary points of an arbitrary smooth function defined
on it. This is the subject of Morse theory. A standard ex-
ample is a two-torus standing on end, with the height
above some reference plane the function defined on it (see
Fig. 1). The existence of points where the height is
minimal (Po) and maximal (P3) is a consequence simply of
the compactness of the torus, and such points must also
occur on a two-sphere, for example. What is surprising is
that the topology of the torus requires that there must be
at least two saddle points (P& and Pz). On a two-sphere
there need be no further stationary points.

Ljusternik and Snirelman use the following minimax
idea to prove the existence of these saddle points. Sup-
pose that the minimal height occurs at a single point Po.
Consider all loops on the torus which pass through Po and
are homotopic to the loop shown in Fig. 1. On each of
these loops there is a point where the height is maximal.
Now consider the infimum over all loops of these maxi-
mal heights. It can be shown that there is a loop whose
maximal height is precisely this minimal possible value,
and Pl, the point on it where this height is attained, is dis-
tinct from Po and is a saddle point. The maximal height
on any other loop provides an upper bound to the height
at P).
On a noncompact manifold, this reasoning can break

down. For example, consider the two-dimensional mani-
fold shown in Fig. 2, and the loops homotopic to the one
indicated. The infimum of the maximal heights on these
loops exists, but there is no saddle point because it "es-
capes to infinity. "
By a bold extension of these ideas, one can study the

static classical solutions in field theories. The manifold
here, which we shall refer to as the configuration space, is
the function space which consists of all finite energy, stat-
ic field configurations, and the function(al) defined on it is
the energy. Suppose that there is a unique vacuum config-
uration of minimal energy Eo and that there are noncon-
tractible loops in the configuration space beginning and
ending at the vacuum. Let us restrict attention just to the
loops in a particular homotopy class. Each of these loops
has a configuration on it of maximal energy, and let E~ be
the infimum of these energies. By analogy with the situa-
tion on the torus, it is a reasonable hypothesis that there is

HEIGHT

FIG. 1. Stationary points of the height on a torus.
FICi. 2. A manifold with noncontractible loops but no saddle

points.

28 2019 1983 The American Physical Society

Energy
identify μ = 0,π

Esph. = min
path

max
0≤μ≤π

E(μ)

 : vacuum,   : sphaleronP0 P1

• If there is a non-contractible loop starting and ending at , 
the minimum point  exists.

P0
P1

• In -Higgs model, indeed  config. space , and 
hence such a loop exists.

SU(2) π1( ) ≠ 0
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[Manton, 1983] 

S = 1
g2 ∫ d4x [− 1

2 tr (FμνFμν) + (DμΦ)†(DμΦ) − λ
g2 (Φ†Φ − 1

2 g2v2)
2

]
• Consider a path connecting two vacua NCS = 0,1

Φ∞ = ( sin μ sin θeiφ

e−iμ(cos μ + i sin μ cos θ)) U∞ = ( Φ∞*
2 Φ∞

1
−Φ∞*

1 Φ∞
2 )

Min & Max procedure in -Higgs modelSU(2)

Φ = (1 − h(r))( 0
e−iμ cos μ) + h(r)Φ∞

Ai = − f(r)∂iU∞(U∞)−1 (i = θ, φ)

Ar = 0

μ ∈ [0,π]
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[Manton, 1983] 

Min & Max procedure in -Higgs modelSU(2)

Φ = (1 − h(r))( 0
e−iμ cos μ) + h(r)Φ∞

Ai = − f(r)∂iU∞(U∞)−1 (i = θ, φ)

Ar = 0

• Independently of , the energy is maximized when 
  due to the spherical symmetry.

h(r), f(r)
μ = π/2

• In other words,  the maximization and the minimization 
decouple.

• Firstly set , and then minimize with respect to 
.
μ = π/2

h(r), f(r)
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Sphaleron in SM with θW ≠ 0
• In [Brihaye-Kleihaus-Kunz ’92], the sphaleron solution with  

is obtained, but an ansatz is imposed (parity sym.). It is unknown 
whether the solution is a saddle point with one unstable direction. 

• Further, the sphaleron with large Weinberg angle  is still 
unknown. 

• In [Klinkhamer-Laterveer ’91], a non-contractible loop is 
constructed, but the solution is no exact. It provides an upper 
bound of the sphaleron energy. 

• In [Hindmarsh-James ’93], it is shown that the magnetic dipole 
moment of the sphaleron originated from a pair of magnetic 
monopole and antimagnetic monopole connected by a Z flux 
tube (Nambu monopole) based on perturbation.  

• But the large  case is still unknown.

θW ≠ 0

θW ∼ π/2

θW



Results for other parameter choises
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0.001 0.01 0.5 1 5 10 13

1.563 1.644 1.976 2.066 2.280 2.364 2.395

λ/g2

Esph.g2

4πv

SM value ∼ 0.2

 TeV∼ 7.5  TeV∼ 12
{

v ∼ 246 GeV
MW = 1

2 gv ∼ 80 GeV



Flow eq.
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⟨3(s) |ℱ(s)⟩ = ∫ dr {( δNCS
δχ )

* δE
δχ

+ ( δNCS
δχ* )

* δE
δχ* }

⟨3(s) |3(s)⟩ = ∫ dr
δNCS

δχ

2

+ δNCS
δχ*

2

C(s) ≡ − β⟨3 |ℱ⟩

δE
δχ* = [−∂2

1 + 1
r2 ( | χ |2 − 1) + 1

2 |ϕ |2 ] χ − 1
2 ϕ2

δE
δϕ* = [∂1r2∂1 + 1

2 ( | χ |2 + 1) − λ
g2 r2 (2 |ϕ |2 − g2v2)] ϕ − χϕ*



Numerical setup
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• We take a length unit such that v = 1

• The flow time lattice: Δs = 1.5 × 10−3

r = i × Δr Δr = 5.0 × 10−2

L ≡ N × Δr

• The spatial lattice:

(i = 1,2,⋯, N)



Boundary conditions
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{
∂r χ(0) = 0, ϕ(0) = 0 (at the origin)
χ(L) = 1, ϕ(L) = gv/ 2 (at large distances)

{
f′ (0) = h′ (0) = 0, μ(0) = ν(0) = 0 (at the origin)
f(L) = 1, μ(L) = gv/ 2, h(L) = ν(L) = 0 (at large distances)

⇔

regularity

finite energy

: size of the systemL


