Sphaleron from gradient flow

Yu Hamada (Kyoto Univ.)

Based on arXiv:2003.02070 PRD 101 (2020) 096014 w/ Kengo Kikuchi (RIKEN iTHEMS)

Osaka Univ. seminar (16th, Jun. 2020)

Introduction

Standard Model (SM)

After the Higgs boson's discovery, the Standard Model has been established.

But there are still many mysteries unanswered by the SM.

Baryon asymmetry

Dark matter

Neutrino mass

Gauge hierarchy

etc.

But there are still many mysteries unanswered by the SM.

Baryon asymmetry

Dark matter

Neutrino mass

Gauge hierarchy

etc.

Baryon Asymmetry in the Universe

Our universe is (slightly) baryon asymmetric:

$$Y_B \equiv \frac{n_B - n_{\bar{B}}}{s} \sim 10^{-10}$$

s : entropy density $n_B(n_{\bar{B}})$: (anti-)baryon # density

Baryon # and Chern-Simons

 Baryon asymmetry can be produced by a topology change of the gauge fields.

Chiral anomaly:
$$\partial_{\mu}j^{\mu}_{B} = \frac{g^{2}}{16\pi^{2}} \operatorname{tr} W_{\mu\nu}W^{\mu\nu} + \frac{g^{'2}}{32\pi^{2}}Y_{\mu\nu}Y^{\mu\nu}$$

integrating over
spacetime $\Delta B = 3\Delta N_{CS}$
 $B(t) \equiv \int d^{3}x j^{0}_{B}$

where N_{CS} is a topological quantity called as the Chern-Simons #:

$$N_{CS}(t) = \frac{-1}{16\pi^2} \int d^3x \, \text{tr} \left[WF - \frac{2}{3} W^3 \right]$$

Baryon # and Chern-Simons

 Baryon asymmetry can be produced by a topology change of the gauge fields.

Chiral anomaly:
$$\partial_{\mu} j_{B}^{\mu} = \frac{g^{2}}{16\pi^{2}} \operatorname{tr} W_{\mu\nu} W^{\mu\nu} + \frac{g^{'2}}{32\pi^{2}} Y_{\mu\nu} Y^{\mu\nu}$$

integrating over
spacetime
 $\Delta B = 3\Delta N_{CS}$
 $B(t) \equiv \int d^{3}x j_{B}^{0}$

where N_{CS} is a topological quantity called as the Chern-Simons #:

$$N_{CS}(t) = \frac{-1}{16\pi^2} \int d^3 x \, \text{tr} \left[WF - \frac{2}{3} W^3 \right]$$

(Pontryagin index)

If one takes
$$W = U^{\dagger} dU$$
, $\longrightarrow N_{CS} = \frac{2}{3} \int d^3 x \operatorname{tr} (U^{\dagger} dU)^3 \in \mathbb{Z}$

(vacuum configuration)

degenerated vacua are labeled by $N_{CS} = 0, 1, \cdots$ 6

Sphaleron process

• To change N_{CS} , we need jump an energy barrier between the vacua.

Sphaleron process

• To change N_{CS} , we need jump an energy barrier between the vacua.

σφαλεροs (sphaleros) "ready to fall"

- saddle point solution of classical EOMs
- maximum point on least-energy path connecting two vacua

Motivation

- For predictions of baryogenesis, it is important to obtain the sphaleron solution accurately.
- However, the conventional method is technically difficult (explained later) except for simple models (e.g., $g_Y = 0$).
- In usual, people obtain the sphaleron energy for $g_Y = 0$ first, and then treat g_Y perturbatively (not solve full EOMs).

Our work

- We propose a simple method to obtain the sphaleron using gradient flow.
- It can be applied to various models other than SM!

Plan of talk

Introduction (9p.)

• Our method (12p.)

• Result for SU(2)-Higgs model (9p.)

• Summary

Our method

Conventional method (Min & Max procedure)

[Manton, 1983]

- Consider a family of paths (**red lines**) connecting two vacua.
- Each path is parametrized with a parameter $\mu \in [0,\pi]$.
- Find the maximum-energy point on each path (**blue dots**).
- The sphaleron is the minimum point among the maximum points.

$$E_{sph.} = \min_{\text{path } 0 \le \mu \le \pi} E(\mu)$$

Obviously, it is not an easy task!

(In the SM, this works only when $g_Y \rightarrow 0$.)

Gradient flow (relaxation method)

- Useful method to find a (locally) minimum-energy configuration
- Introduce a fictitious time *s* in addition to *D*-dim. coordinates *x*.
- Evolve a field configuration following the flow equation:

$$\partial_s \Phi_A(x,s) = -\frac{\delta E[\Phi]}{\delta \Phi_A(x,s)}$$

$$\Phi_A = \{\phi, W^a_\mu, \cdots\}$$

(cf.):

[Luscher '14]

Luscher-Weisz '11]

Higgs gauge

- If the flow converges, the configuration is **a solution of EOM**: $\delta E/\delta \Phi_A = 0$. (locally minimum-energy configuration)
- $\partial_s E[\Phi] \leq 0$
- Note: In quantum field theory, gradient flow provides an interesting property (finiteness of correlation functions). But we do not consider such a quantum aspect but classical field theories.

Gradient flow for sphaleron

- Although the sphaleron is a solution of EOM, the gradient flow does not converge to it because it is an unstable solution.
- In other words, the sphaleron is a fixed point with a single relevant direction.

Mathematical reason (skippable)

• Introduce the quadratic curvature \mathcal{M}_{AB} of the sphaleron

$$\mathcal{M}_{AB} \equiv \frac{\delta^2 E[\Phi]}{\delta \Phi_A \delta \Phi_B} \bigg|_{\Phi = \Phi_{sph}}$$

Sphaleron config.

• Let $|\chi^{(n)}\rangle$ be eigenfunctions of \mathcal{M} :

$$\mathcal{M} | \chi^{(n)} \rangle = \lambda_n | \chi^{(n)} \rangle \qquad n = 0, 1, \cdots$$

For the sphaleron, the lowest eigenvalue is negative: $\lambda_0 < 0$

→ A perturbation $\propto \chi^{(0)}(x)$ is an unstable direction.

(the others $\lambda_{n\geq 1}>0$, and $\chi^{(n\geq 1)}$ are stable directions)

Mathematical reason (skippable) (con't)

• Expand a configuration around the sphaleron as

$$\Phi_A(x,s) = \Phi_A^{sph}(x) + a_n(s)\chi_A^{(n)}(x)$$

• Substituting into the flow eq: $\partial_s \Phi_A(x,s) = - \, \delta E / \delta \Phi_A$,

$$\dot{a}_n(s)\chi_A^{(n)}(x) = -\frac{\delta E[\Phi]}{\delta \Phi_A(x,s)} \bigg|_{\Phi_{sph.}} - a_n(s)\mathcal{M}_{AB}\chi_B^{(n)} + \mathcal{O}(a_n^2)$$
$$\simeq -\lambda_n a_n(s)\chi_A^{(n)}$$

$$\rightarrow \dot{a}_n(s) \simeq -\lambda_n a_n(s)$$
 (not sum for *n*)

• $a_{n\geq 1}$ exponentially decay, but a_0 exponentially growths.

Cannot converge to the sphaleron!

Modify the flow

 By adding a ``lifting" term to the flow eq, we can lift up the unstable direction!

 $\partial_{s}\Phi_{A}(x,s) = -\frac{\delta E[\Phi]}{\delta \Phi_{A}(x,s)} + C(s) \mathscr{G}_{A}(x,s)$ $C(s) \equiv \beta \int d^{3}x \sum_{A} \frac{\delta E[\Phi]}{\delta \Phi_{A}(x,s)} \mathscr{G}_{A}(x,s)^{\dagger} \qquad \beta > 1 \text{ (const.)}$

where $\mathscr{G}_A(x, s)$ is proportional to the unstable direction

$$\mathscr{G}_A \propto \chi_A^{(0)}(x)$$

and normalized as $\int d^3x |\mathcal{G}|^2 = 1.$

Modify the flow

 By adding a ``lifting" term to the flow eq, we can lift up the unstable direction!

$$\partial_{s} | \Phi(s) \rangle = | \mathscr{F}(s) \rangle + C(s) | \mathscr{G}(s) \rangle$$

 $C(s) \equiv -\beta \langle \mathscr{G}(s) | \mathscr{F}(s) \rangle \qquad \beta > 1 \text{ (const.)}$

$$|\mathscr{F}(s)\rangle \equiv -\frac{\delta E[\Phi]}{\delta \Phi_A(x,s)}$$

where $\mathscr{G}_A(x, s)$ is proportional to the unstable direction

$$\mathcal{G}_A \propto \chi_A^{(0)}(x)$$

and normalized as $\langle \mathcal{G} | \mathcal{G} \rangle = 1$.

Picture of the modified flow

• Again, expand a configuration around the sphaleron as

$$\Phi_A(x,s) = \Phi_A^{sph}(x) + a_n(s)\chi_A^{(n)}(x)$$

• Substituting into the **modified** flow eq:

$$\dot{c}_{n}(s) |\chi^{(n)}\rangle \simeq |\mathcal{F}\rangle_{\Phi_{sph.}} - a_{n}(s)\mathcal{M} |\chi^{(n)}\rangle$$
$$-\beta a_{n}(s) \langle \mathcal{G}(s) |\mathcal{M} |\chi^{(n)}\rangle |\mathcal{G}(s)\rangle$$

• Again, expand a configuration around the sphaleron as

$$\Phi_A(x,s) = \Phi_A^{sph}(x) + a_n(s)\chi_A^{(n)}(x)$$

• Substituting into the **modified** flow eq:

$$\dot{c}_{n}(s) |\chi^{(n)}\rangle \simeq |\mathcal{F}\rangle_{\Phi_{sph.}} - a_{n}(s)\mathcal{M} |\chi^{(n)}\rangle$$
$$-\beta a_{n}(s) \langle \mathcal{G}(s) |\mathcal{M} |\chi^{(n)}\rangle |\mathcal{G}(s)\rangle$$
$$= -\lambda_{n}a_{n}(s) (1 - \beta |\mathcal{G}(s)\rangle \langle \mathcal{G}(s) |) |\chi^{(n)}\rangle$$
$$Projection to \chi^{(0)}$$

• Again, expand a configuration around the sphaleron as

$$\Phi_A(x,s) = \Phi_A^{sph}(x) + a_n(s)\chi_A^{(n)}(x)$$

• Substituting into the **modified** flow eq:

$$\dot{c}_{n}(s) |\chi^{(n)}\rangle \simeq |\mathcal{F}\rangle_{\Phi_{sph.}} - a_{n}(s)\mathcal{M} |\chi^{(n)}\rangle$$

$$-\beta a_{n}(s) \langle \mathcal{G}(s) | \mathcal{M} |\chi^{(n)}\rangle | \mathcal{G}(s)\rangle$$

$$= -\lambda_{n}a_{n}(s) (1 - \beta | \mathcal{G}(s)\rangle \langle \mathcal{G}(s) |) |\chi^{(n)}\rangle$$
Projection to $\chi^{(0)}$

$$\downarrow \qquad \left\{ \dot{a}_{n}(s) \simeq -\lambda_{n}a_{n}(s) \quad (n > 0) \\ \dot{a}_{0}(s) \simeq -\lambda_{0}(1 - \beta)a_{0}(s) \\ > 0 \qquad (\beta > 1) \right\}$$

• Again, expand a configuration around the sphaleron as

$$\Phi_A(x,s) = \Phi_A^{sph}(x) + a_n(s)\chi_A^{(n)}(x)$$

• Substituting into the **modified** flow eq:

 $\dot{c}_n(s) |\chi^{(n)}\rangle \simeq |\mathcal{F}\rangle_{\Phi_{sph.}} - a_n(s)\mathcal{M} |\chi^{(n)}\rangle$ $-\beta a_n(s) \langle \mathcal{G}(s) | \mathcal{M} | \gamma^{(n)} \rangle | \mathcal{G}(s) \rangle$ $= -\lambda_n a_n(s) (1 - \beta | \mathscr{G}(s)) \langle \mathscr{G}(s) |) | \chi^{(n)} \rangle$ Projection to $\chi^{(0)}$ $\longrightarrow \begin{cases} \dot{a}_n(s) \simeq -\lambda_n a_n(s) & (n > 0) \\ \dot{a}_0(s) \simeq -\lambda_0 (1 - \beta) a_0(s) \\ > 0 & (\beta > 1) \end{cases}$

Our claim

• Modified flow eq. :

 $\partial_{s} | \Phi(s) \rangle = | \mathscr{F}(s) \rangle + C(s) | \mathscr{G}(s) \rangle$

where $\mathscr{G}_A(x,s)$ should be proportional to the unstable direction $\chi^{(0)}_A(x)$.

Problem: What is a concrete expression of $\chi^{(0)}$?

Naive guess:

The unstable direction is the steepest direction changing N_{CS}

 $\chi_A^{(0)}(x) \propto \frac{\delta N_{CS}}{\delta \Phi_A}$ $\Phi_{sph.}$

Our flow eq.

• Therefore, our modified flow eq. is

$$\partial_{s} | \Phi(s) \rangle = | \mathscr{F}(s) \rangle + C(s) | \mathscr{G}(s) \rangle$$

$$C(s) \equiv -\beta \langle \mathscr{G}(s) | \mathscr{F}(s) \rangle \qquad \beta > 1 \text{ (const.)}$$
$$|\mathscr{F}(s)\rangle \equiv -\frac{\delta E[\Phi]}{\delta \Phi_A(x,s)}$$

$$|\mathscr{G}(s)\rangle \equiv \frac{\delta N_{CS}}{\delta \Phi_A(x,s)} = \begin{cases} \frac{1}{8\pi^2} \ \epsilon^{ijk} F_{jk}^a & (\text{for } \Phi_A = A_i^a) \\ 0 & (\text{for } \Phi_A = \text{others}) \end{cases}$$

• In the following, we show this flow eq. works well.

Plan of talk

Introduction (9p.)

• Our method (12p.)

• Result for SU(2)-Higgs model (9p.)

• Summary

Result for SU(2)-Higgs model

SU(2)-Higgs model in (3+1) dim.

• SU(2) gauge field A_{μ} and SU(2) doublet Φ :

$$S = \frac{1}{g^2} \int d^4 x \left[-\frac{1}{2} \text{tr} \left(F_{\mu\nu} F^{\mu\nu} \right) + (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) - \frac{\lambda}{g^2} \left(\Phi^{\dagger} \Phi - \frac{1}{2} g^2 v^2 \right)^2 \right]$$

where we have divided Φ by g comparing to the usual convention.

- This model is equivalent to the Electroweak sector of the SM with the limit $g_Y \rightarrow 0$.
- It is known that a spherically symmetric sphaleron solution exists for $\lambda/g^2 \lesssim 18.1$. [Dashen-Hasslacher-Neveu '74] [Yaffe '89] [Manton '83] [Klinkhamer-Manton '84]
- For $\lambda/g^2 > 18.1$, another type of the sphaleron appears (deformed sphaleron), but we do not consider that.

Spherically symmetric anzats

[Ratra-Yaffe '87]

[Yaffe '89]

$$\begin{aligned} A_0(x) &= \frac{1}{2i} \left\{ a_0(r,t) \hat{x}_j \sigma^j \right\} \\ A_i(x) &= \frac{1}{2i} \left[\left\{ f(r,t) - 1 \right\} \frac{e_i^1}{r} + h(r,t) \frac{e_i^2}{r} + a_1(r,t) e_i^3 \right] \\ \Phi(x) &= \left\{ \mu(r,t) + i\nu(r,t) \hat{x}_j \sigma^j \right\} \xi \end{aligned}$$

 a_0, a_1, f, h, μ, ν are real functions

$$(e_i^1, e_i^2, e_i^3) \text{ are defined as} \begin{cases} e_i^1 = \epsilon_{ijk} \hat{x}^k \sigma^j \\ e_i^2 = (\delta_{ij} - \hat{x}_i \hat{x}_j) \sigma^j \\ e_i^3 = \hat{x}_i \hat{x}_j \sigma^j \end{cases}$$

Reduce (3+1)-dim into (1+1)-dim

[Ratra-Yaffe '87]

[Yaffe '89]

 Substituting the ansatz into the action, we can reduce the model into (1+1) dim. Abelian-Higgs model. with two scalars.

$$S = \frac{4\pi}{g^2} \int dt dr \left\{ \frac{1}{4} r^2 f_{\mu\nu} f^{\mu\nu} + |D_{\mu}\chi|^2 + \frac{1}{2r^2} \left(|\chi|^2 - 1 \right)^2 + r^2 |D_{\mu}\phi|^2 - \frac{1}{2} (|\chi|^2 + 1) |\phi|^2 - \frac{\lambda}{g^2} r^2 \left(|\phi|^2 - \frac{1}{2} g^2 v^2 \right)^2 \right\}$$

$$Re \left(\chi^* \phi^2 \right) + \frac{1}{2} \left(|\chi|^2 + 1 \right) |\phi|^2 - \frac{\lambda}{g^2} r^2 \left(|\phi|^2 - \frac{1}{2} g^2 v^2 \right)^2 \right\}$$

$$\chi \equiv f + ih \qquad \phi \equiv \mu + i\nu \qquad f_{\mu\nu} \equiv \partial_{\mu}a_{\nu} - \partial_{\nu}a_{\mu} \qquad (\mu, \nu = 0 \text{ or } 1)$$

$$D_{\mu}\chi = (\partial_{\mu} - ia_{\mu})\chi \qquad D_{\mu}\phi = (\partial_{\mu} - ia_{\mu}/2)\phi$$

27

Gauge fixing

• We concentrate on static configurations:

$$\chi(r,t) \qquad \phi(r,t) \qquad a_1(r,t) \qquad a_0(r,t) = 0$$

• Furthermore, without loss of generality, we can ``gauge out'' the gauge field $a_1(r)$ using a gauge function $\omega(r)$ as

$$a_1(r) \to a_1(r) - \partial_r \omega(r) = 0$$

• Thus we have only two complex functions in 1 dim.

Flow eq.

• We give an initial configuration at s = 0, and then evolve it by the flow equation numerically.

$$\frac{\partial \chi}{\partial s} = -\frac{\delta E}{\delta \chi^*} + C(s) \frac{\delta N_{\rm CS}}{\delta \chi^*}$$
$$\frac{\partial \phi}{\partial s} = -\frac{\delta E}{\delta \phi^*} + C(s) \frac{\delta N_{\rm CS}}{\delta \phi^*}$$

$$N_{\rm CS} = \frac{1}{2\pi} \int dr \left[{\rm Im}\partial_1 \chi + \left\{ \frac{i}{2} \chi^*(\partial_r \chi) + h \cdot c \cdot \right\} \right] \qquad \frac{\delta N_{\rm CS}}{\delta \chi^*} = 2i \frac{\partial \chi}{\partial r} \qquad \frac{\delta N_{\rm CS}}{\delta \phi^*} = 0$$

 If the configuration converges to a fixed point, it should be the sphaleron solution!

Result

- The converged energy value is $E_{sph.} \simeq 1.976 \times 4\pi v/g^2$, which agrees with the known value of the sphaleron energy!
- N_{CS} converges to 1/2.

Result (con't)

Remarks

 We did not impose any ansatz other than spherical symmetry and did not fine tune the initial configuration. The configuration automatically converged to the sphaleron along the flow.

Applications

- The most straightforward application is **the SM with** $g_Y \neq 0$. Especially, it is theoretically interesting to consider the case of $\sin \theta_W \equiv g_Y / \sqrt{g^2 + g_Y^2} \sim 1$, in which **the sphaleron has a long** magnetic dipole structure.
- Applicable to BSMs with the same electroweak structure as the SM, e.g., two Higgs doublet models.
- Also applicable to BSMs in which the electroweak symmetry is extended. There are no systematic methods to obtain the sphaleron for such models.

e.g.) WIMP DM model with $SU(2)_0 \times SU(2)_1 \times SU(2)_2 \times U(1)_Y$

Summary

- We proposed a simple method to obtain the sphaleron solution
- We showed the modified gradient flow converges to the sphaleron solution in the SU(2)-Higgs model.

- A main advantage of our method is that it does not need any special ansatz and fine-tuning.
 - It has potentials for applications to various models.
 We can write many papers!!

Backup

Min & Max procedure in SU(2)-Higgs model

$$E_{sph.} = \min_{\text{path } 0 \le \mu \le \pi} E(\mu)$$

[Manton, 1983]

• The existence of the minimum is ensured by a topological argument.

- If there is a non-contractible loop starting and ending at $P_{0'}$ the minimum point P_1 exists.
- In SU(2)-Higgs model, indeed $\pi_1($ config. space $) \neq 0,$ and hence such a loop exists.

Min & Max procedure in SU(2)-Higgs model

[Manton, 1983]

$$S = \frac{1}{g^2} \int d^4 x \left[-\frac{1}{2} \text{tr} \left(F_{\mu\nu} F^{\mu\nu} \right) + (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) - \frac{\lambda}{g^2} \left(\Phi^{\dagger} \Phi - \frac{1}{2} g^2 v^2 \right)^2 \right]$$

• Consider a path connecting two vacua $N_{CS} = 0,1$

$$\Phi^{\infty} = \begin{pmatrix} \sin\mu\sin\theta e^{i\varphi} \\ e^{-i\mu}\cos\theta \end{pmatrix} + h(r)\Phi^{\infty} \\ A_i = -f(r)\partial_i U^{\infty} (U^{\infty})^{-1} \quad (i = \theta, \varphi) \\ A_r = 0 \end{pmatrix} \qquad \mu \in [0,\pi]$$
$$\Phi^{\infty} = \begin{pmatrix} \sin\mu\sin\theta e^{i\varphi} \\ e^{-i\mu}(\cos\mu + i\sin\mu\cos\theta) \end{pmatrix} \qquad U^{\infty} = \begin{pmatrix} \Phi_2^{\infty^*} & \Phi_1^{\infty} \\ -\Phi_1^{\infty^*} & \Phi_2^{\infty} \end{pmatrix}$$

Min & Max procedure in SU(2)-Higgs model

[Manton, 1983]

$$\Phi = (1 - h(r)) \begin{pmatrix} 0 \\ e^{-i\mu} \cos \mu \end{pmatrix} + h(r) \Phi^{\infty}$$
$$A_i = -f(r)\partial_i U^{\infty} (U^{\infty})^{-1} \quad (i = \theta, \varphi)$$
$$A_r = 0$$

- Independently of h(r), f(r), the energy is maximized when $\mu = \pi/2$ due to the spherical symmetry.
- In other words, the maximization and the minimization decouple.
- Firstly set $\mu = \pi/2$, and then minimize with respect to h(r), f(r).

Sphaleron in SM with $\theta_W \neq 0$

- In [Brihaye-Kleihaus-Kunz '92], the sphaleron solution with $\theta_W \neq 0$ is obtained, but an ansatz is imposed (parity sym.). It is unknown whether the solution is a saddle point with one unstable direction.
- Further, the sphaleron with large Weinberg angle $\theta_W \sim \pi/2$ is still unknown.
- In [Klinkhamer-Laterveer '91], a non-contractible loop is constructed, but the solution is no exact. It provides an upper bound of the sphaleron energy.
- In [Hindmarsh-James '93], it is shown that the magnetic dipole moment of the sphaleron originated from a pair of magnetic monopole and antimagnetic monopole connected by a Z flux tube (Nambu monopole) based on perturbation.
- But the large θ_W case is still unknown.

Results for other parameter choises

SM value ~ 0.2

λ/g^2	0.001	0.01	0.5	1	5	10	13
$\frac{E_{sph.}g^2}{4\pi\nu}$	1.563	1.644	1.976	2.066	2.280	2.364	2.395

~ 7.5 TeV
$$\begin{cases} v \sim 246 \text{ GeV} & \sim 12 \text{ TeV} \\ M_W = \frac{1}{2}gv \sim 80 \text{ GeV} \end{cases}$$

Flow eq.

$$C(s) \equiv -\beta \langle \mathcal{G} \, | \, \mathcal{F} \rangle$$

$$\left\langle \mathscr{G}(s) \left| \mathscr{F}(s) \right\rangle = \int dr \left\{ \left(\frac{\delta N_{\rm CS}}{\delta \chi} \right)^* \frac{\delta E}{\delta \chi} + \left(\frac{\delta N_{\rm CS}}{\delta \chi^*} \right)^* \frac{\delta E}{\delta \chi^*} \right\}$$

$$\left\langle \mathscr{G}(s) \left| \mathscr{G}(s) \right\rangle = \int dr \left(\left| \frac{\delta N_{\rm CS}}{\delta \chi} \right|^2 + \left| \frac{\delta N_{\rm CS}}{\delta \chi^*} \right|^2 \right)$$

$$\frac{\delta E}{\delta \chi^*} = \left[-\partial_1^2 + \frac{1}{r^2} \left(|\chi|^2 - 1 \right) + \frac{1}{2} |\phi|^2 \right] \chi - \frac{1}{2} \phi^2$$

$$\frac{\delta E}{\delta \phi^*} = \left[\partial_1 r^2 \partial_1 + \frac{1}{2} \left(|\chi|^2 + 1\right) - \frac{\lambda}{g^2} r^2 \left(2|\phi|^2 - g^2 v^2\right)\right] \phi - \chi \phi^*$$
⁴¹

Numerical setup

- We take a length unit such that v = 1
- The spatial lattice:

$$r = i \times \Delta r \qquad \Delta r = 5.0 \times 10^{-2}$$
$$(i = 1, 2, \dots, N) \qquad L \equiv N \times \Delta r$$

• The flow time lattice: $\Delta s = 1.5 \times 10^{-3}$

L: size of the system