Signatures of additional top and bottom Yukawa couplings at the LHC

Tanmoy Modak

National Taiwan University

 Phys.Lett.B 776 379-384;
 Phys.Lett.B 786 212-216;

 Phys.Rev.D98, 075007;
 Phys.Rev.D99, 055046;

 Phys.Rev.D99, 115022;
 Phys.Rev.D100, 035018;

 Phys.Lett.B798 134953;
 Phys.Lett.B800 135105;

 Phys.Rev.D101, 035007;
 1912.10613;

 2005.09928 (Osaka U.)
 100

@ Osaka U. Seminar

Outline

- Overview
- Formalism
- Signatures for extra top Yukawa couplings
- Signatures for extra bottom Yukawa couplings
- Summary

Standard Model

Standard Model (SM) of elementary particles:

(CERN website)

Discovery of Higgs Boson in 2012 at the Large Hadron Collider: SM became complete in terms of particle content.

Higgs Mechanism

Brout-Englert-Higgs mechanism

The Higgs Potential in the SM: $V(\Phi) = \lambda (\Phi^{\dagger} \Phi)^2 + \mu^2 (\Phi^{\dagger} \Phi)$

 $\lambda > 0$: avoid potential unbounded from below

Higgs field: SU(2)_L doublet $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$ For: $\mu^2 < 0$: potential has a minimum at:

 $\left\langle \Phi^{\dagger}\Phi\right\rangle = \frac{-\mu^2}{2\lambda} = \frac{v^2}{2}$

v: vacuum expection value

Spontaneous symmetry breaking

 $\Phi(x) = \begin{pmatrix} 0\\ \frac{v+h^0(x)}{\sqrt{2}} \end{pmatrix}$

 $h^0(x)$: physical Higgs boson

 \blacktriangleright $SU(2)_L \times U(1)_Y$ broken to $U(1)_{EM}$

g' and g'': gauge couplings of $U(1)_Y$ and $SU(2)_L$

 $m_{h^0} = \sqrt{2\lambda v^2}$ $m_f = \lambda_f v / \sqrt{2}$

 λ_f s: Yukawa couplings

Discovery of 125 GeV Higgs boson

Discovered at the LHC by ATLAS and CMS collaborations.

(ATLAS, PLB'12; CMS, PLB'12)

proton-proton (pp) collision with data from 7+8 TeV CM energy

Primary search modes:

 $pp \to h^0 \to \gamma\gamma$ $pp \to h^0 \to ZZ^* \to 4 \text{ leptons}$ $pp \to h^0 \to WW^* \to \ell\nu\ell\nu$

Subsequently:

 h^0 couplings to: τ lepton and, t and b quarks are discovered

Within error-bar all couplings found to be consistent with SM

- Acter Anti-matter asymmetry of the Universe. We see mostly matter.
 - Neutrinos are massive (neutrino oscillations).
 - Existence of Dark matter and its nature.
 - Hierarchy Problem in SM. Needs fine tuning to get 125 GeV Higgs mass.
 - No concrete evidence of New Physics so far from LHC, LHCb or Belle etc.
 - Couplings of 125 GeV boson is SM like.
 - Flavor anomalies: R(K), R(K*), R(D*); Tension with SM is softening. Needs independent measurements from Belle-II.

- Current data: 125 GeV scalar is SM-Higgs like. Indication of Alignment (approximate).
- Second doublet could be rather heavy. Alignment from Decoupling.
- Alignment without Decoupling: if happens, sub-TeV second doublet. (Carena et al. JHEP '14, PRD '15; Bechtle et al. EPJC '17; See also Gunion et al. PRD '03.)
- Approximate Alignment without Decoupling: Can be realized in 2HDM.
 (see e.g. Hou & Kikuchi, EPL'18)
- 2HDM without $Z_2 \longrightarrow Extra Yukawas : \rho_{tc}, \rho_{tt}, \rho_{bb}$.
- *Sub-TeV Second Doublet* + *Extra Yukawas*: Novel Signatures at LHC:
- Motivation: Discovery may shed light on *Baryon Asymmetry of the Universe*.

(Fuyuto, Hou, Senaha PLB '18, TM, Senaha PRD'19)

Formalism

Higgs Sector

general Two Higgs doublet model (*g2HDM*)

CP conserving Higgs sector without Z_2 :

$$V(\Phi, \Phi') = \mu_{11}^2 |\Phi|^2 + \mu_{22}^2 |\Phi'|^2 - \left(\mu_{12}^2 \Phi^{\dagger} \Phi' + \text{h.c.}\right) + \frac{\eta_1}{2} |\Phi|^4 + \frac{\eta_2}{2} |\Phi'|^4 + \eta_3 |\Phi|^2 |\Phi'|^2 + \eta_4 |\Phi^{\dagger} \Phi'|^2 + \left\{\frac{\eta_5}{2} (\Phi^{\dagger} \Phi')^2 + \left[\eta_6 |\Phi|^2 + \eta_7 |\Phi'|^2\right] \Phi^{\dagger} \Phi' + \text{h.c.}\right\}$$

(e.g. Davidson and Haber PRD'05, Hou and Kikuchi, EPL' 18)

In Higgs Basis:

$$\begin{split} \langle \Phi \rangle &= (0, v/\sqrt{2})^T \longrightarrow h^0, \ H^0, \ A^0, \ H^{\pm} \\ \langle \Phi' \rangle &= (0, 0)^T \\ \text{mixing angle between } h^0 \text{ and } H^0 \colon \cos \gamma = c_\gamma \\ c_\gamma &\simeq \frac{-\eta_6 v^2}{m_{H^0}^2 - m_{h^0}^2}; \qquad c_\gamma \sim 0.2 - 0.1 \end{split}$$

 \star $m_{A^0}, m_{H^{\pm}}, m_{H^0} \sim 200-600 \text{ GeV}$

Excellent scope for LHC

Yukawa Sector

2HDM without Z_2 : Both doublets couple with up- and down-type fermions.

◆ After diagonalization of fermion mass matrices: Two different Yukawas. λ^F and ρ^F with λ_f = ^{√2m_f}/_v.
 ◆ λ^F diagonal and real; ρ^F non-diagonal and in general complex.

$$\lambda^{u} \equiv \begin{pmatrix} \lambda_{u} & \\ \lambda_{c} & \\ \lambda_{t} \end{pmatrix}, \quad \lambda^{d} \equiv \begin{pmatrix} \lambda_{d} & \\ \lambda_{s} & \\ \lambda_{b} \end{pmatrix}, \quad \lambda^{\ell} \equiv \begin{pmatrix} \lambda_{c} & \\ \lambda_{\mu} & \\ \lambda_{\tau} \end{pmatrix}$$
(Davidson, Haber PRD '05)

$$\rho^{u} \equiv \begin{pmatrix} \rho_{uu} & \rho_{uc} & \rho_{ut} \\ \rho_{cu} & \rho_{cc} & \rho_{ct} \\ \rho_{tu} & \rho_{tc} & \rho_{tt} \end{pmatrix}, \quad \rho^{d} \equiv \begin{pmatrix} \rho_{dd} & \rho_{ds} & \rho_{db} \\ \rho_{sd} & \rho_{ss} & \rho_{sb} \\ \rho_{bd} & \rho_{bs} & \rho_{bb} \end{pmatrix}, \\ \rho^{\ell} \equiv \begin{pmatrix} \rho_{ee} & \rho_{e\mu} & \rho_{e\tau} \\ \rho_{\mu e} & \rho_{\mu\mu} & \rho_{\mu\tau} \\ \rho_{\tau e} & \rho_{\tau\mu} & \rho_{\tau\tau} \end{pmatrix}$$

It is likely: $\rho_{ii} \sim \lambda_{i}$

$$\star \quad \text{complex } \rho_{tt}, \quad \rho_{tc} :$$
(K. Fuyuto,W-S Hou, E. Senaha; PLB '18)
complex $\rho_{bb} :$
(TM, E. Senaha; PRD '19)

$$\star \quad h^{0}f_{i}\bar{f}_{j} : -\lambda_{ij}s_{\gamma} + \rho_{ij}c_{\gamma}$$

$$H^{0}f_{i}\bar{f}_{j} : \lambda_{ij}c_{\gamma} + \rho_{ij}s_{\gamma}$$

$$A^{0}f_{i}\bar{f}_{j} : -i \operatorname{sgn}(Q_{f})\rho_{ij}$$
Recipe for discovery

Signatures for extra top Yukawa couplings

Signatures at LHC

• $gg \to A^0/H^0 \to t\bar{t}$: interference with $gg \to t\bar{t}$.

 \implies study above $t\bar{t}$ threshold

(ATLAS PRL'18, CMS 1908.01115)

(See e.g. Carena and Liu JHEP '16)

• $gg \to t\bar{t}A^0/H^0 \to t\bar{t}t\bar{t}, tt\bar{t}c$

(Craig, et al., JHEP '15, '17; Kanemura et al. NPB '15; Gori et al. PRD '16)

• $gg \to A^0/H^0 \to t\bar{c}$: Could be discovered. (Altunkaynak PLB '15) suffers from t + j mass resolution. (CMS-PAS-B2G-16-025) Triple-top:

 $cg \to t S^0 \to t t \bar{t}$

where, $S^0 \equiv A^0 or H^0$

SM 3*t* at fb level (Barger, Keung, Yencho, PLB '10); Clean 3*b* jets-3lepton signature

Same-sign top:

 $cg \to tS^0 \to t t \bar{c}$

(See also Hou, Lin, Ma, Yuan, PLB '97, S. Iguro, K. Tobe NPB'17)

May emerge earlier than triple-top

(W.-S. Hou, M. Kohda, TM, PLB'19)

Some other modes

$$cg \rightarrow tH^0 \rightarrow th^0 h^0$$
 —

Top-assisted di-Higgs, Probe for Higgs potential

(W.-S. Hou, M. Kohda, TM, PRD'19)

 $cg \to tA^0 \to tZH^0$

(W.-S. Hou, TM, PRD'20)

Favored by strongly First order EWPT (Dorsch et al.PRL'14)

 $cg \rightarrow bH^+ \rightarrow bt\overline{b}$ (D.K. Ghosh,W.-S. Hou, TM, 1912.10613)

Parton level cross sections

(W.-S Hou, M. Kohda, TM PLB '18)

Parton level cross sections at LO:

fixed
$$\rho_{tt} = 1$$

 $\sigma(pp \to tS^0)$ $\sigma(pp \to t\bar{t}A^0)$ $\sigma(pp \to t\bar{t}H^0)$ PDF set : NN23LO1 $\sqrt{s} = 14 \text{ TeV}$

MadGraph5_aMC@NLO

Same-sign top

MadGraph5_aMC + Pythia + Delphes

Event selection:2 same-sign leptons (e, μ) $+ \ge 3$ jets with 2b-tagged

Signal at LO. Backgrounds with QCD corrections included.

16

(W.-S Hou, M. Kohda, TM PLB '18)

Triple-top discovery

(W.-S Hou, M. Kohda, TM PLB '18)

@14 TeV with $3b3\ell$ signature $pp \rightarrow tS^0 + X \rightarrow tt\bar{t} + X$

The top assisted di-Higgs

(W.-S Hou, M. Kohda, TM, PRD '19)

The *Hhh* coupling

• Hhh coupling: coefficient of $\lambda_{Hhh}Hh^2$

$$\lambda_{Hhh} = \frac{v}{2} \left[3c_{\gamma}s_{\gamma}^2\eta_1 + c_{\gamma}(3c_{\gamma}^2 - 2)\eta_{345} + 3s_{\gamma}(1 - 3c_{\gamma}^2)\eta_6 + 3s_{\gamma}c_{\gamma}^2\eta_7 \right]$$

• For small
$$c_{\gamma}$$
:
 $\lambda_{Hhh} \simeq \frac{c_{\gamma}}{2} v \left[3 \frac{m_H^2}{v^2} - 2\eta_{345} + 3 \operatorname{sgn}(s_{\gamma}) c_{\gamma} \eta_7 + \mathcal{O}(c_{\gamma}^2) \right]$

Unitarity, Perturbativity: 2HDMC: Higgs basis + T-parameter

Additionally all $|\eta_i| < 3$

$$\begin{split} c_{\gamma}^{2} &= \frac{\eta_{1}v^{2} - m_{h}^{2}}{m_{H}^{2} - m_{h}^{2}}, \qquad \sin 2\gamma = \frac{2\eta_{6}v^{2}}{m_{H}^{2} - m_{h}^{2}}\\ \eta_{1} &= \frac{m_{h}^{2}s_{\gamma}^{2} + m_{H}^{2}c_{\gamma}^{2}}{v^{2}},\\ \eta_{3} &= \frac{2(m_{H^{\pm}}^{2} - \mu_{22}^{2})}{v^{2}},\\ \eta_{4} &= \frac{m_{h}^{2}c_{\gamma}^{2} + m_{H}^{2}s_{\gamma}^{2} - 2m_{H^{\pm}}^{2} + m_{A}^{2}}{v^{2}},\\ \eta_{5} &= \frac{m_{H}^{2}s_{\gamma}^{2} + m_{h}^{2}c_{\gamma}^{2} - m_{A}^{2}}{v^{2}},\\ \eta_{6} &= \frac{(m_{h}^{2} - m_{H}^{2})(-s_{\gamma})c_{\gamma}}{v^{2}}, \end{split}$$

Here we dropped the "0" from h^0 , H^0 , A^0

BP	$ ho_{tc}$	tc	hh	WW	ZZ
1	0.54	0.698	0.232	0.049	0.021
2	0.54	0.688	0.238	0.051	0.023
3	0.54	0.677	0.235	0.06	0.027
a	0.54	0.700	0.229	0.049	0.021
b	0.54	0.686	0.240	0.051	0.023
c	0.54	0.674	0.238	0.059	0.027

- $\bullet \ cg \to tH^0 \to th^0 h^0$
- $5b + 1\ell + E_T^{\text{miss}}$
- Finite *b*-tagging efficiency
 Signature:

 $5j(4b) + 1\ell + E_T^{\text{miss}}$

BP	Signal (fb)	Total Bkg. (fb)	$\begin{array}{c} \text{Significance} \\ 600 \ (3000) \ \text{fb}^{-1} \end{array}$
1	0.396	9.002	3.2(7.2)
2	0.38	9.86	2.9(6.6)
3	0.288	10.915	2.1(4.8)
a	0.39	8.906	3.2(7.1)
b	0.368	9.948	2.8(6.4)
c	0.295	10.898	2.2 (4.9)

 $m_H \sim 300 \text{ GeV}$

tZH production

 $A \to ZH$ decay

Favored by Strongly 1st order EWPT

(Dorsch et. al, PRL'14)

 $cg \rightarrow tA \rightarrow tZH$ (W.-S. Hou, TM, PRD'20)

BP	η_1	η_2	η_3	η_4	η_5	η_{345}	η_6	η_7	$m_{H^{\pm}}$ (GeV)	$\begin{array}{c} m_A \\ ({ m GeV}) \end{array}$	m_H (GeV)	$\frac{\mu_{22}^2}{v^2}$
$a\\b\\c$	$0.258 \\ 0.258 \\ 0.258$	$2.133 \\ 1.366 \\ 2.432$	2.87 2.718 2.67	-0.569 -0.733 -0.652	-1.194 -1.97 -2.21	1.107 0.015 -0.192	$\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$	-0.791 -0.252 0.091	$310 \\ 354 \\ 393$	$339 \\ 404 \\ 449$	$207 \\ 208 \\ 260$	$0.15 \\ 0.71 \\ 1.21$

BP	Signal (fb)	Significance (\mathcal{Z}) 600 (3000) fb ⁻¹
a	0.055	1.5 (3.4)
b	0.115	2.7 (6.0)
С	0.092	2.1 (4.8)

 $cg \to tA \to tZh$: Not promising

bH⁺ production

(D.K. Ghosh, W.-S. Hou, TM, 1912.10613)

 $|\rho_{tc}| = 0.4$, and $\rho_{tt}| = 0.6$

	η_2	η_3	η_4	η_5	η_7	$\frac{\mu_{22}^2}{v^2}$	m_{H^+}	m_A	m_H
BP1	1.40	0.62	0.53	1.06	-0.79	1.18	300	272	372
BP2	0.71	0.69	1.52	-0.93	0.24	3.78	500	569	517

	$tar{t}j\mathrm{s}$	tj	Wtjs	$t\bar{t}h$	$t\bar{t}Z$	other	$\mathrm{B}_{\mathrm{tot}}$	Sig
BP1	1546	42	27	4.2	1.5	3.1	1627	11.4
BP2	1000	27	16	2.9	1.2	1.9	1049	9.3

The discovery potential with ~ 137, 300 and 600 fb⁻¹ datasets ~ 3.3σ , 4.9σ , 6.9σ for BP1, and ~ 3.4σ , 5.0σ , 7.1σ for BP2.

Excess from CMS

(Fig. from CMS PAS HIG-17-027)

• Can be accommodated in G2HDM $ho_{tt}\sim 1.1,\
ho_{tc}\sim 0.9$ (W.-S.Hou, M. Kohda, TM, PLB'19)

• $gg \rightarrow A \rightarrow t\bar{t}$ (CMS PAS HIG-17 027, arXiv:1908.01115)

$$\mathcal{L}_{\text{Yukawa,H}} = -g_{\text{Ht}\bar{\text{t}}} \frac{m_{\text{t}}}{v} \bar{\text{t}} \text{tH}, \qquad \mathcal{L}_{\text{Yukawa,A}} = ig_{\text{At}\bar{\text{t}}} \frac{m_{\text{t}}}{v} \bar{\text{t}} \gamma_{5} \text{tA}$$
$$g_{At\bar{t}}/g_{Ht\bar{t}} \equiv \text{Coupling modifier}$$

- 3.5 σ excess around $m_A = 400$ GeV $\Gamma_A/m_A \sim 4\%$
 - 1. $|m_H m_A|$ should not be large. 2. $gg \to t\bar{t}A \to t\bar{t}t\bar{t}$ limit should be respected
 - 3. $g_{At\bar{t}}/g_{Ht\bar{t}}$ in general complex

Signatures for extra bottom Yukawa couplings

Extra bottom Yukawa

EWBG via extra bottom Yukawa: $\text{Im}(\rho_{bb}) \gtrsim 0.058$. (TM, E. Senaha PRD '19)

Alleviated if: $0.06 \lesssim \text{Im}\rho_{ee}/(\lambda_e\lambda_b) \lesssim 0.3$

In Future

 $bg \rightarrow bA \rightarrow bZH$ (TM, PRD '19)

Discovery (300 fb⁻¹): $m_A \sim 300 - 400 \text{ GeV}$ HL-LHC: up to 600-700 GeV

 $bg
ightarrow bA
ightarrow bar{t}t$ (TM, E. Senaha, 2005.09928)

ILC-250: *hbb* Belle-II: $\mathcal{B}(B \to X_s \gamma), \ \Delta \mathcal{A}_{CP}$

Summary

- 2HDM without Z_2 : Extra Yukawas.
- NFC may be overkill.
- Extra Yukawas: Electroweak Baryogenesis. ρ_{tt} , ρ_{bb} and FCNH: ρ_{tc} .
- Extra Yukawas: leading to novel signatures at LHC.
- ILC, LHC, Belle-II offer exquisite probes as well.
- Discovery may help understand the Matter-Antimatter asymmetry of the Universe.

Thank You

Back ups

Baryon Asymmetry of the Universe

Universe is matter dominated: Baryon Asymmetry or Matter-anti Matter Asymmetry

 $Y_B^{obs} = \frac{n_B - n_{\bar{B}}}{s} \approx 8.6 \times 10^{-11}$ (Planck, Astron. Astrophys. 571, A16 (2014))

no. density of Baryon: n_B

Entropy density: $s = g^* T^3 (2\pi^2/45)$

Conditions for Baryogenesis: (Sakharov' Zh. Eksp. Teor. Fiz. Pis'ma 5 (1967) 32)

1. Baryon number violations:

Start with Baryon symmetric Universe: $\Delta B = 0$; Evolve to Baryon Asymmetric Universe: $\Delta B \neq 0$

2. C and CP violation:

If C and CP are conserved: Rate of processes involving Baryons = Rate of C and CP conjugate process No Baryon Asymmetry

3. Departure from thermal equilibrium:

In chemical equilibrium: no asymmetries in quantum numbers that are not conserved such as B

CPT invariance: Prevents of Baryon excess

All three Sakharov's conditions can be met at the Electroweak Phase Transition

Electroweak Baryogenesis

(V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, PLB'85, PLB'87; A.G. Cohen, D.B. Kaplan and A.E. Nelson, Annu. Rev. Nucl. Part. Sci.'93)

Electroweak Baryogenesis

How about SM?

- 1. Baryon number is violation is due to the triangle anomaly (chiral anomaly). The rate at zero temperature: $e^{-4\pi/\alpha_W}$ Too tiny (Gerard't Hooft, PRL'76) unsuppressed at finite temp. (V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, PLB'85, PLB'87;)
- 2. Weak interaction violates C maximally and violates CP by CKM

CP violation parametrized by Jarlskog invariant: in SM: $\sim 10^{-20}$ and, no kinematic enhancement factors in the thermal bath

3. Departure from thermal equilibrium: by the electroweak phase transition but strongly first order

B-violating interactions are out of equilibrium in the bubble wall \longrightarrow A net Baryon Asymmetry inside the bubble wall

g2HDM

 $\begin{array}{c} \text{complex } \rho_{tt}, \, \rho_{tc}: \\ \text{complex } \rho_{bb}: \end{array} \xrightarrow{\text{Additional source of } \\ \text{CP violation} \end{array}$

e.g.
$$S_{\text{CPV}} = C_{\text{BAU}} \text{Im}[(Y_1)_{bs}(Y_2)_{bs}^*]$$
 (TM, E. Senaha; PRD '19)
 $\text{Im}\rho_{\text{bb}} = -\frac{1}{\lambda_{\text{b}}} \text{Im}[(Y_1)_{\text{bs}}(Y_2)_{\text{bs}}^*]$

Additional-bosonic degrees of freedom: m_H , m_A , $m_{H^{\pm}}$

Strongly first order

EWPT

Too small for observed BAU

$$\operatorname{Im}(\rho_{bb}) = -\frac{1}{\lambda_b} \operatorname{Im}[(Y_1)_{bs}(Y_2)_{bs}^*]$$
$$S_{\text{CPV}} = C_{\text{BAU}} \operatorname{Im}[(Y_1)_{bs}(Y_2)_{bs}^*]$$

total left-handed number density (in wall rest frame)

$$n_L(\bar{z}) \simeq \frac{r_2 v_w^2}{\Gamma_{ss} \bar{D}} \left(1 - \frac{D_q}{\bar{D}}\right) H(\bar{z}) + \mathcal{O}(1/\Gamma_Y)$$
$$H(\bar{z}) \simeq e^{v_w \bar{z}/\bar{D}} k_H L_w S_{b_L} \sqrt{a} / \sqrt{(\Gamma_{M_t}^- + \Gamma_H) \left(k_H(a+b)\bar{D}\right)}$$

 $\Gamma_{Y_t}, \Gamma_{M_t}^-, \Gamma_H \text{ and } \Gamma_{ss}$: rates by top-Higgs interactions, top-bubble wall interactions, Higgs number-violating interactions and strong sphaleron

Solving a diffusion equation for the baryon number density

$$n_B = \frac{-3\Gamma_B^{(\text{sym})}}{2D_q \lambda_+} \int_{-\infty}^0 dz' \ n_L(z') e^{-\lambda_- z'}$$

with
$$\lambda_{\pm} = [v_w \pm \sqrt{v_w^2 + 4RD_q}]/2D_q$$
 and $\mathcal{R} = 15\Gamma_B^{(\text{sym})}/4$

B changing rate in symm. phase via sphaleron: $\Gamma_B^{(\text{sym})} = 5.4 \times 10^{-6} T$ Bubble Wall velocity: $v_w = 0.4$ Strong sphaleron rate: $\Gamma_{ss} = 3.2 \times 10^{-3} T$ Diffusion const.: $D_a = 8.9/T$