Duality and Weak Gravity

Toshifumi Noumi
(Kobe University)

refs: 2004.13732 w/S. Andriolo, T-C. Huang, H. Ooguri G. Shiu
1909.01352, 2006.06696 w/ G. Loges, G. Shiu
1810.13637 w/Y. Hamada, G. Shiu

July 20th 2020 @ Osaka
Swampland:
apparently consistent, but not UV completeable when coupled to gravity

Weak Gravity Conjecture (WGC):
conjectured condition defining boundary of landscape and swampland

Landscape:
QFT models consistent w/quantum gravity
main results toward a proof of WGC:

1. positivity bounds imply WGC in many theories
2. but it is not the case once dilaton is turned on
 → duality symmetries are useful for WGC
plan

1. Introduction
2. WGC vs. positivity bounds
3. Role of duality symmetries
4. Summary and prospects
plan

1. Introduction

2. WGC vs. positivity bounds

3. Role of duality symmetries

4. Summary and prospects
Swampland Program [Vafa ’05, Ooguri-Vafa ’06]

goal: identify consistency conditions
for a QFT model to be embedded into quantum gravity!

1. better understanding of quantum gravity and string theory
 - which stringy ingredients are crucial for quantum gravity?

2. toward phenomenological tests of quantum gravity
 - test swampland conditions via particle phys. & cosmology

various swampland conditions motivated by string compactification:

no global symmetry, weak gravity conjecture, distance conjecture, …
main question in this talk:

- string theory accommodates a rich structure (perhaps too complete?): consistent amplitudes, ∞ gauge symmetries, dualities, holography, ...

- which ingredients are necessary for each swampland condition (if true)?

- specific to string theory or more robust in quantum gravity?

string theory = insurance w/full options
such a direction is better explored recently in the context of Weak Gravity Conjecture
Weak Gravity Conjecture
[Arkani-Hamed et al ’06]

claim: gravity is the weakest force [see next slide for motivation]

in graviton-photon system,

\[\exists \text{ a charged state } w/ \ g^2 q^2 \geq \frac{m^2}{2M_{Pl}^2} \] (gauge force \(\geq \) gravity)

- never be satisfied if we decouple photon \(g \rightarrow 0 \)

 \rightarrow \text{generalization of “no global symmetry in quantum gravity”}

- trivially be satisfied if we decouple gravity \(M_{Pl} \rightarrow \infty \)

 \rightarrow \text{special in quantum gravity}
Motivation from string compactification

ex. heterotic string compactified on tori w/generic Wilson lines

existence of states w/ $M \leq Q$ is common in string theory

[ArkaniHamed-Motl-Nicolis-Vafa 06’, …]
How generic this picture is?

- this asymptotic behavior (of BHs) follows from positivity bounds in graviton-photon systems [Hamada-TN-Shiu ’18]
 - existence proof of (mild) WGC

- if UV theory has a worldsheet structure, spectral flow may relate the two regions [Heidenreich et al ’16, Alasma et al ’19]

- combination of two observations
 - suggests a stronger condition called sublattice/tower WGC [Heidenreich et al ’16, Andriolo-Junghanns-TN-Shiu ’18]
Positivity bounds are not enough??

Recently, we collected more data on WGC vs. positivity bounds beyond graviton-photon systems

1. positivity bounds imply WGC
 in graviton-photon systems and graviton-axion systems

2. but it is not the case once dilaton is turned on:
 in these theories duality symmetries are useful for WGC

In the rest of my talk, I will explain details for axionic WGC
(which is technically simpler than the Maxwell case)
plan

1. Introduction ✔

2. WGC vs. positivity bounds

3. Role of duality symmetries

4. Summary and prospects
axionic WGC vs. Euclidean wormholes

[Andriolo-Huang-TN-Ooguri-Shiu ’20]
axionic WGC

<table>
<thead>
<tr>
<th>form field</th>
<th>charged state</th>
<th>gravitational objects</th>
<th>coupling</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>photon</td>
<td>particle</td>
<td>charged BH</td>
<td>qg</td>
<td>mass</td>
</tr>
<tr>
<td>axion</td>
<td>instanton</td>
<td>Euclidean (semi)wormhole</td>
<td>$\frac{n}{f}$</td>
<td>action</td>
</tr>
</tbody>
</table>

(size) < (coupling) implies \exists an instanton w/ $S < \mathcal{O}(1) \cdot \frac{|n| M_{\text{Pl}}}{f}$

cf. instanton generates axion potential

→ implications to axion cosmology (inflation, DM)

[see, e.g., Hebecker-Mikhali-Soler ’18 for a review]
Giddings-Strominger wormhole

Euclidean wormhole can be regarded as an instanton anti-instanton pair

Euclidean (semi)wormhole in Einstein-axion theory:

\[ds^2 = \frac{dr^2}{1 - (r_0/r)^4} + r^2 d\Omega_3^2, \quad r_0^4 = \frac{n^2 f^2}{24\pi^4 M_{Pl}^6} \]
(n : axion charge, f : decay const.)

※ each semiwormhole (instanton) has an action \(S = |n| \frac{\sqrt{6\pi}}{4} \cdot \frac{M_{Pl}}{f} \)

※ this fixes the \(\mathcal{O}(1) \) constant in the WGC bound: \(S \leq \frac{\sqrt{6\pi}}{4} \cdot \frac{|n| M_{Pl}}{f} \)
higher derivative corrections

\[S = |n| \frac{\sqrt{6\pi}}{4} \cdot \frac{M_{\text{Pl}}}{f} \]

\[\Delta S = -24\pi^2 M_{\text{Pl}}^4 \alpha + \mathcal{O}(1/n) \]

graviton-axion EFT up to four-derivatives

\[S = \int d^4x \sqrt{-g} \left[\frac{M_{\text{Pl}}^2}{2} R - \frac{1}{2} \partial_\mu a \partial^\mu a + \alpha (\partial_\mu a \partial^\mu a)^2 + \beta_1 W_{\mu\nu\rho\sigma}^2 + \beta_2 a W_{\mu\nu\rho\sigma} \tilde{W}^{\mu\nu\rho\sigma} \right] + \text{appropriate boundary terms} \]

\[\text{※ modify wormhole solutions and so their action: } \Delta S = -24\pi^2 M_{\text{Pl}}^4 \alpha + \mathcal{O}(1/n) \]
if the α operator has a positive coefficient $\alpha > 0$, macroscopic (semi)wormholes satisfy the WGC bound. Indeed, $\alpha > 0$ follows from analyticity, unitarity and locality of UV scattering amplitudes (positivity bounds) [Adams et al ’06] → an existence proof of (the mild form of) WGC

caveat: applicable only when gravitational Regge states are negligible [see Hamada-TN-Shiu ’18 for details]
plan

1. Introduction ✔
2. WGC vs. positivity bounds ✔
3. Role of duality symmetries
4. Summary and prospects
Generalization to graviton-axion-dilaton system

[Andriolo-Huang-TN-Ooguri-Shiu ’20]
graviton-axon-dilaton EFT

Einstein-axon-dilaton action

\[S = \int d^4x \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R - \frac{1}{2} e^{\lambda \phi} \partial_\mu a \partial^\mu a - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi \right] \]

- we focus on \(|\lambda| < 4/\sqrt{6}\), otherwise no regular wormholes

four-derivative terms relevant to our problem

\[\Delta \mathcal{L} = \alpha_1 e^{2\lambda \phi} (\partial_\mu a \partial^\mu a)^2 + \alpha_2 (\partial_\mu \phi \partial^\mu \phi) \]

\[+ \alpha_3 e^{\lambda \phi} (\partial_\mu a \partial^\mu a)(\partial_\nu \phi \partial^\nu \phi) + \alpha_4 e^{\lambda \phi} (\partial_\mu a \partial^\mu \phi)^2 \]

- suppressed terms w/Weyl tensor, which do not correct the action

- also see our paper for more general dilaton couplings
Corrections to (semi)wormhole action

four-derivative corrections to the (semi)wormhole action

\[\Delta S = 36\pi^2 M_{Pl}^4 \int_0^{\pi/2} dt \cos^3 t \left[-\alpha_1 \sec^4 \left(\frac{\sqrt{6}}{4} \lambda \cdot t \right) - \alpha_2 \tan^4 \left(\frac{\sqrt{6}}{4} \lambda \cdot t \right) \right. \\
\left. + \left(\alpha_3 + \alpha_4 \right) \sec^2 \left(\frac{\sqrt{6}}{4} \lambda \cdot t \right) \tan^2 \left(\frac{\sqrt{6}}{4} \lambda \cdot t \right) \right] + \mathcal{O}(1/n) \]

- the condition for $\Delta S < 0$ and so WGC reads

\[\alpha_3 + \alpha_4 < A_1(\lambda) \alpha_1 + A_2(\lambda) \alpha_2 \quad (A_{1,2} : \lambda \text{-dep. positive coefficients}) \]
Implications of positivity bounds

positivity of $aa \rightarrow aa$, $\phi\phi \rightarrow \phi\phi$, $a\phi \rightarrow a\phi$: $\alpha_1, \alpha_2, \alpha_4 > 0$

scattering of superpositions of a, ϕ:

2-para. family of bounds \rightarrow its envelop gives $-\alpha_4 - 2\sqrt{\alpha_1\alpha_2} < \alpha_3 < 2\sqrt{\alpha_1\alpha_2}$

\rightarrow large positive α_4 violates WGC bound $\alpha_3 + \alpha_4 < A_1\alpha_1 + A_2\alpha_2$

projection onto $\alpha_2 = \alpha_1$ plane for illustration

$\alpha_3 + \alpha_4 = (A_1 + A_2) \alpha_1 > 2\alpha_1$

prohibited by positivity

allowed by positivity, but WGC is not satisfied

satisfy positivity & WGC
positivity is not enough to demonstrate WGC
Q. any additional UV input which implies WGC?
$SL(2, R)$ duality symmetry of axion & dilaton

is an example for such UV information!
Implications of duality constraints

$SL(2,R)$ transformation in our convention:

$$\tau \to \frac{a\tau + b}{c\tau + d} \quad (a, b, c, d \in R, \ ad - bc = 1) \quad \text{w/ } \tau = \frac{\lambda}{2}a + ie^{-\frac{i}{2}\phi}$$

only two $SL(2, R)$ invariant operators:

$$\frac{(\partial_\tau \partial^\mu \bar{\tau})^2}{(\text{Im } \tau)^4}, \quad \frac{|\partial_\tau \partial^\mu \tau|^2}{(\text{Im } \tau)^4}$$

in our language it means $\alpha_2 = \alpha_1, \ \alpha_3 + \alpha_4 = 2\alpha_1$

under these conditions, we have $\Delta S = -24\pi^2 M_{\text{Pl}}^4 \alpha_1$

\rightarrow positivity $\alpha_1 > 0$ implies $\Delta S < 0$ and so WGC!

we have found that positivity alone is not enough, but positivity + $SL(2,R)$ duality invariance does imply WGC
Implications of duality constraints

\(SL(2,R) \) transformation in our convention:

\[
\tau \rightarrow \frac{a\tau + b}{c\tau + d} \quad (a, b, c, d \in R, \ ad - bc = 1) \quad \text{w/} \ \tau = \frac{\lambda}{2}a + ie^{-\frac{i}{2}\phi}
\]

only two \(SL(2, R) \) invariant operators:

\[
\frac{(\partial_\mu \tau \partial^\mu \tau)^2}{(\text{Im} \tau)^4}, \quad \frac{|\partial_\mu \tau \partial^\mu \tau|^2}{(\text{Im} \tau)^4}
\]

in our language it means \(\alpha_2 = \alpha_1, \alpha_3 + \alpha_4 = 2\alpha_1 \)

\[\begin{align*}
\alpha_2 &= \alpha_1 \\
\alpha_4 &=
\end{align*}\]

allowed by positivity, but WGC is not satisfied

\[\begin{align*}
\alpha_3 + \alpha_4 &= (A_1 + A_2) \alpha_1 > 2\alpha_1 \\
\text{SL}(2,R) \text{ invariant:} \quad \alpha_3 + \alpha_4 &= 2\alpha_1
\end{align*}\]
Related results for BHs

WGC in Einstein-Maxwell-dilaton-axion:

[Loges-TN-Shiu ’19]

there exists a parameter space

which is allowed by positivity, but does not satisfy WGC

[Loges-TN-Shiu ’20]

duality symmetries are again useful to demonstrate WGC

1. positivity + SL(2,R) → WGC

2. null energy condition + O(d,d;R) → WGC

※ positivity bounds are not applicable for O(d,d;R) case

because gravitational Regge states are not negligible
4. summary and prospects
summary and prospects

positivity implies WGC in graviton-photon and graviton-axion systems under the assumption that gravitational Regge states are negligible
※ can we incorporate gravitational Regge states in positivity?

but it is not the case once dilaton is turned on:
duality symmetries such as SL(2,R) and O(d,d;R) are useful for WGC
※ are there other UV inputs useful for demonstrating WGC?

we provided evidences for axionic WGC, which constrains axion potential
※ can we generalize our results to potential of other moduli fields?
 (cf. scalar WGC, non-SUSY AdS, dS, ...)
Thank you!