Duality and Weak Gravity

Toshifumi Noumi

(Kobe University)

refs: 2004.13732 w/S. Andriolo, T-C. Huang, H. Ooguri G. Shiu 1909.01352, 2006.06696 w/ G. Loges, G. Shiu 1810.13637 w/Y. Hamada, G. Shiu

July 20th 2020 @ Osaka

swampland : apparently consistent, but not UV completable when coupled to gravity

A A PAN

Weak Gravity Conjecture (WGC): conjectured condition defining boundary of landscape and swampland

landscape : QFT models consistent w/quantum gravity main results toward a proof of WGC:

- 1. positivity bounds imply WGC in many theories
- 2. but it is not the case once dilaton is turned on
 - \rightarrow duality symmetries are useful for WGC

plan

- 1. Introduction
- 2. WGC vs. positivity bounds
- 3. Role of duality symmetries
- 4. Summary and prospects

plan

- 1. Introduction
- 2. WGC vs. positivity bounds
- 3. Role of duality symmetries
- 4. Summary and prospects

Swampland Program [Vafa '05, Ooguri-Vafa '06]

goal: identify consistency conditions

for a QFT model to be embedded into quantum gravity!

- 1. better understanding of quantum gravity and string theory
- which stringy ingredients are crucial for quantum gravity?
- 2. toward phenomenological tests of quantum gravity
- test swampland conditions via particle phys. & cosmology

various swampland conditions motivated by string compactification: no global symmetry, weak gravity conjecture, distance conjecture, …

main question in this talk:

- string theory accommodates a rich structure (perhaps too complete?): consistent amplitudes, ∞ gauge symmetries, dualities, holography, …
- which ingredients are necessary for each swampland condition (if true)?
- specific to string theory or more robust in quantum gravity?

string theory = insurance w/full options

such a direction is better explored recently in the context of Weak Gravity Conjecture

Weak Gravity Conjecture

[Arkani-Hamed et al '06]

claim: gravity is the weakest force [see next slide for motivation]

in graviton-photon system,

∃ a charged state w/
$$g^2 q^2 \ge \frac{m^2}{2M_{\rm Pl}^2}$$
 (gauge force ≥ gravity)

- never be satisfied if we decouple photon $g \rightarrow 0$
 - \rightarrow generalization of "no global symmetry in quantum gravity"
- trivially be satisfied if we decouple gravity $M_{\rm Pl} \rightarrow \infty$

 \rightarrow special in quantum gravity

Motivation from string compactification

ex. heterotic string compactified on tori w/generic Wilson lines

typical spectrum of charged state

existence of states w/ $M \leq Q$ is common in string theory

[ArkaniHamed-Motl-Nicolis-Vafa 06', ···]

How generic this picture is?

this asymptotic behavior (of BHs) follows from positivity bounds in graviton-photon systems [Hamada-TN-Shiu '18] **※ existence proof of (mild) WGC**

if UV theory has a worldsheet structure, spectral flow may relate the two regions [Heidenreich et al '16, Alasma et al '19]

combination of two observations

 \rightarrow suggests a stronger condition called sublattice/tower WGC

[Heidenreich et al '16, Andriolo-Junghan-TN-Shiu '18]

Positivity bounds are not enough??

Recently, we collected more data on WGC vs. positivity bounds

beyond graviton-photon systems

[Loges-TN-Shiu '19, '20, Andriolo-Huang-TN-Ooguri-Shiu '20]

1. positivity bounds imply WGC

in graviton-photon systems and graviton-axion systems

2. but it is not the case once dilaton is turned on:

in these theories duality symmetries are useful for WGC

In the rest of my talk, I will explain details for axionic WGC (which is technically simpler than the Maxwell case)

plan

- 1. Introduction </br>
- 2. WGC vs. positivity bounds
- 3. Role of duality symmetries
- 4. Summary and prospects

axionic WGC vs. Euclidean wormholes

[Andriolo-Huang-TN-Ooguri-Shiu '20]

axionic WGC

form field	charged state	gravitational objects	coupling	size
photon	particle	charged BH	<i>qg</i>	mass
axion	instanton	Euclidean (semi)wormhole	$\frac{n}{f}$	action

(size) < (coupling) implies \exists an instanton w/ $S < O(1) \cdot \frac{|n| M_{\text{Pl}}}{f}$

cf. instanton generates axion potential

 \rightarrow implications to axion cosmology (inflation, DM)

[see, e.g., Hebecker-Mikhali-Soler '18 for a review]

Giddings-Strominger wormhole

Euclidean wormhole can be regarded as an instanton anti-instanton pair

Euclidean (semi)wormhole in Einstein-axion theory:

higher derivative corrections

graviton-axion EFT up to four-derivatives

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} \partial_\mu a \partial^\mu a + \alpha \left(\partial_\mu a \partial^\mu a \right)^2 + \beta_1 W_{\mu\nu\rho\sigma}^2 + \beta_2 a W_{\mu\nu\rho\sigma} \widetilde{W}^{\mu\nu\rho\sigma} \right]$$

+ appropriate boundary terms

 \approx modify wormhole solutions and so their action: $\Delta S = -24\pi^2 M_{\rm Pl}^4 \alpha + \mathcal{O}(1/n)$

if the α operator has a positive coefficient $\alpha > 0$, macroscopic (semi)wormholes satisfy the WGC bound. indeed, $\alpha > 0$ follows from analyticity, unitarity and locality of UV scattering amplitudes (positivity bounds) [Adams et al '06] \rightarrow an existence proof of (the mild form of) WGC

caveat: applicable only when gravitational Regge states are negligible [see Hamada-TN-Shiu '18 for details]

plan

- 1. Introduction \checkmark
- 2. WGC vs. positivity bounds 🖌
- 3. Role of duality symmetries
- 4. Summary and prospects

Generalization to graviton-axion-dilaton system

[Andriolo-Huang-TN-Ooguri-Shiu '20]

graviton-axion-dilaton EFT

Einstein-axion-dilaton action

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} e^{\lambda \phi} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi \right]$$

- we focus on $|\lambda| < 4/\sqrt{6}$, otherwise no regular wormholes

four-derivative terms relevant to our problem

$$\Delta \mathscr{L} = \alpha_1 e^{2\lambda\phi} (\partial_\mu a \partial^\mu a)^2 + \alpha_2 (\partial_\mu \phi \partial^\mu \phi) + \alpha_3 e^{\lambda\phi} (\partial_\mu a \partial^\mu a) (\partial_\nu \phi \partial^\nu \phi) + \alpha_4 e^{\lambda\phi} (\partial_\mu a \partial^\mu \phi)^2$$

- suppressed terms w/Weyl tensor, which do not correct the action
- also see our paper for more general dilaton couplings

Corrections to (semi)wormhole action

four-derivative corrections to the (semi)wormhole action

$$\Delta S = 36\pi^2 M_{\rm Pl}^4 \int_0^{\pi/2} dt \,\cos^3 t \left[-\alpha_1 \,\sec^4 \left[\frac{\sqrt{6}}{4} \lambda \cdot t \right] - \alpha_2 \,\tan^4 \left[\frac{\sqrt{6}}{4} \lambda \cdot t \right] \right] + \left(\alpha_3 + \alpha_4 \right) \,\sec^2 \left[\frac{\sqrt{6}}{4} \lambda \cdot t \right] \,\tan^2 \left[\frac{\sqrt{6}}{4} \lambda \cdot t \right] \right] + \mathcal{O}(1/n)$$

- the condition for $\Delta S < 0$ and so WGC reads

 $\alpha_3 + \alpha_4 < A_1(\lambda) \alpha_1 + A_2(\lambda) \alpha_2$ ($A_{1,2} : \lambda$ -dep. positive coefficients)

Implications of positivity bounds

positivity of $aa \rightarrow aa$, $\phi\phi \rightarrow \phi\phi$, $a\phi \rightarrow a\phi$: $\alpha_1, \alpha_2, \alpha_4 > 0$

scattering of superpositions of a, ϕ :

2-para. family of bounds \rightarrow its envelop gives $-\alpha_4 - 2\sqrt{\alpha_1\alpha_2} < \alpha_3 < 2\sqrt{\alpha_1\alpha_2}$

 \rightarrow large positive α_4 violates WGC bound $\alpha_3 + \alpha_4 < A_1\alpha_1 + A_2\alpha_2$

positivity is not enough to demonstrate WGC

Q. any additional UV input which implies WGC?

SL(2, *R*) duality symmetry of axion & dilaton

is an example for such UV information!

Implications of duality constraints

SL(2,R) transformation in our convention:

$$\begin{aligned} \tau &\to \frac{a\tau + b}{c\tau + d} \quad (a, b, c, d \in R, \, ad - bc = 1) \quad \text{w/} \, \tau = \frac{\lambda}{2} a + ie^{-\frac{\lambda}{2}\phi} \\ \text{only two } SL(2, R) \text{ invariant operators: } \frac{(\partial_{\mu} \tau \partial^{\mu} \bar{\tau})^2}{(\text{Im } \tau)^4}, \, \frac{|\partial_{\mu} \tau \partial^{\mu} \tau|^2}{(\text{Im } \tau)^4} \\ \text{in our language it means } \alpha_2 = \alpha_1, \, \alpha_3 + \alpha_4 = 2\alpha_1 \end{aligned}$$

under these conditions, we have $\Delta S = -24\pi^2 M_{\rm Pl}^4 \alpha_1$

 \rightarrow positivity $\alpha_1 > 0$ implies $\Delta S < 0$ and so WGC!

we have found that positivity alone is not enough,

but positivity + SL(2,R) duality invariance does imply WGC

Implications of duality constraints

SL(2,R) transformation in our convention:

$$\begin{split} \tau &\to \frac{a\tau + b}{c\tau + d} \quad (a, b, c, d \in R, \, ad - bc = 1) \quad \text{w/} \tau = \frac{\lambda}{2}a + ie^{-\frac{\lambda}{2}\phi} \\ \text{only two } SL(2, R) \text{ invariant operators: } \frac{(\partial_{\mu}\tau \partial^{\mu}\bar{\tau})^{2}}{(\text{Im }\tau)^{4}}, \, \frac{|\partial_{\mu}\tau \partial^{\mu}\tau|^{2}}{(\text{Im }\tau)^{4}} \\ \text{in our language it means } \alpha_{2} = \alpha_{1}, \, \alpha_{3} + \alpha_{4} = 2\alpha_{1} \end{split}$$

Related results for BHs

WGC in Einstein-Maxwell-dilaton-axion:

```
[Loges-TN-Shiu '19]
```

there exists a parameter space

which is allowed by positivity, but does not satisfy WGC

[Loges-TN-Shiu '20]

duality symmetries are again useful to demonstrate WGC

- 1. positivity + SL(2,R) \rightarrow WGC
- 2. null energy condition + O(d,d;R) \rightarrow WGC

※ positivity bounds are not applicable for O(d,d;R) case because gravitational Regge states are not negligible

4. summary and prospects

summary and prospects

positivity implies WGC in graviton-photon and graviton-axion systems under the assumption that gravitational Regge states are negligible ※ can we incorporate gravitational Regge states in positivity?

but it is not the case once dilaton is turned on:

duality symmetries such as SL(2,R) and O(d,d;R) are useful for WGC

% are there other UV inputs useful for demonstrating WGC?

Thank you!