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Introduction



Vacuum Stability

What if the electroweak vacuum is not the global minimum?

EW vacuum

ϕ1

ϕ
2

e.g. color and/or charge breaking minima in supersymmetric

models, the standard model, ...
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Bubble Nucleation Rate

A meta-stable vacuum finally decays into a lower vacuum.

Source: Nikolodion / iStock / Getty Images Plus

The decay of the vacuum is

triggered by the nucleation of a

bubble of the lower vacuum

through quantum tunneling

Lifetime−1 = Nucleation Rate

inside the Universe
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Bubble Nucleation Rate

Nucleation Rate : γ = Ae−B
per unit volume

A : Quantum corrections to B
B : Bounce action

[T. Banks, C. M. Bender, T. T. Wu, ’73;

C. G. Jr. Callan, S. R. Coleman, ’77]

Bounce:φ̄
O(4) symmetric solution to the

Euclidean equations of motion

connecting the two vacua
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CosmoTransitions

Bounce calculated by the gradient flow

[S. Chigusa, T. Moroi, YS, ’20]
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Precise Calculation of Vacuum Decay Rates

To determine the overall factor and to cancel the renormalization

scale uncertainty, one needs to calculate A

[M. Endo, T. Moroi, M. M. Nojiri, YS, ’16]

Nucleation Rate : γ = Ae−B
per unit volume

At the one-loop level,

A ∼
∣∣∣∣det′M

detM̂

∣∣∣∣−1/2

M =
d2S

dχidχj
[φ̄], M̂ =

d2S

dχidχj
[v ]

where χi ’s are fluctuations, v is the false vacuum and det ′

indicates that zero modes are subtracted appropriately
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Current Status

• The standard model (order estimation for gauge zero modes)
[G. Isidori, G. Ridolfi, A. Strumia, ’01]

• Stau instability in the MSSM (without gauge fields)
[M. Endo, T. Moroi, M. M. Nojiri, YS, ’16]

• Treatment of the gauge zero modes for single-field bounce
[M. Endo, T. Moroi, M. M. Nojiri, YS, ’17]

• The standard model (complete one-loop)
[A. Andreassen, W. Frost, M. D. Schwartz, ’17;

S. Chigusa, T. Moroi, YS, ’17,’19]

• The standard model + additional fields (single-field bounce)
[S. Chigusa, T. Moroi, YS, ’19]

• The DFSZ axion model (multi-field bounce, but reducible to

single-field bounce)
[S. Oda, YS, D.S. Takahashi, ’19]

new! Treatment of the gauge zero modes for multi-field bounce
[S. Chigusa, T. Moroi, YS, ’20]
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Zero Modes



Zero Modes

When there is a symmetry that is broken only by the bounce, there

appears a zero mode

• Translational zero modes

• Dilatational zero mode (scale invariant theory)

• Gauge zero modes (unbroken at the false vacuum)

Since zero modes have zero eigenvalues,

A|w/zero ∼
∣∣∣∣detM
detM̂

∣∣∣∣−1/2

=

∣∣∣∣ω1ω2 · · ·
ω̂1ω̂2 · · ·

∣∣∣∣−1/2

=∞

ωa, ω̂a : Eigenvalues of M,M̂, (∃b, ωb = 0)

So, it is mandatory to subtract these zero modes
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Symmetry

Let us consider a generic symmetry that transforms(
Aµ = 0

φ = φ̄

)
→

(
0

φ̄

)
+
∑
A

zAFA +O(z2)

with

lim
xµxµ→∞

FA(x) = 0

If this symmetry is broken only by φ̄,

MFA = 0

This is the origin of the zero modes
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Saddle-point approximation

We expand the fields around the bounce as(
Aµ

φ

)
=

(
0

φ̄

)
+
∑
a

caGa

where

MGa = ωaGa
〈Ga|Gb〉 = δab

If all ωa’s are non-zero, we can use the saddle-point approximation

as ∫
DADφe−S[A,φ] =

∫ (∏
a

dca√
2π

)
e−S[A,φ]

' e−S[0,φ̄]

∫ (∏
a

dca√
2π

)
e−

1
2

∑
b ωbc

2
b
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Reinterpretation of Zero Modes

When there are zero modes ωa = 0, a ∈ I0,∫
DADφe−S[A,φ] =

∫ (∏
a

dca√
2π

)
e−S[A,φ]

' e−S[0,φ̄]

∫ ∏
a∈I0

dca√
2π

(det ′M
)−1/2

The remaining integration variables are related to zA’s as

ca =
∑
A

〈Ga|FA〉zA

Then,∫ ∏
a∈I0

dca√
2π

 [. . . ] =

∫ (∏
A

dzA√
2π

)√
det
AB
〈FA|FB〉[. . . ]
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Translational Zero Modes

The translation of the bounce does not change the action

φ̄(x)→ φ̄(x + y) = φ̄(x) + yµ∂µφ̄(x) +O(y2)

The corresponding zero modes are

Fµ =

(
0

∂µφ̄

)
Then, ∫ ∏

a∈I0

dca√
2π

 [. . . ] =

∫ (∏
µ

dyµ

)
B2

4π2
[. . . ]

= VT
B2

4π2
[. . . ]

(Recall that γ is the probability par unit time and unit volume)
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Gauge Zero Modes

Similarly, the (global) symmetry transformation would be

φ̄(x)→ eθaT
a
φ̄(x) = φ̄(x) + θaT

aφ̄(x) +O(θ2)

where φ̄ is a real vector and

T aT = −T a, [T a,T b] = −f abcT c

The corresponding zero modes would be

Fa =

(
0

T aφ̄

)
However, this is NOT the case when one uses the following gauge

fixing

L(GF)
BG =

1

2ξ

(
∂µA

a
µ + ξgaφ

TT aφ̄
)2

(It is called as the background gauge and is often used in the

numerical calculation)
12



Gauge Zero Modes

The correct gauge zero modes in the background gauge are

Fa =

(
Ãa
µ(x)∑

b G̃
ab(x)T bφ̄(x)

)

where Ãa
µ and G̃ ab are some functions

So, we have problems

• After the rotation, the guage bosons obtain VEVs and the

functional determinant looks different for different θ

• The rotation angle is position-dependent

• It is not clear what measure of θ we should use
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Fermi Gauge

Such a problem is absent if we use the Fermi gauge,

L(GF) =
1

2ξ

(
∂µA

a
µ

)2

Then, the zero mode is simply given by

Fa =

(
0

T aφ̄

)

So, we can interpret the integral over the zero modes as the group

space integral

However, the numerical calculation becomes difficult due to severe

cancellations
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Proposal

We propose a hybrid method to compute the prefactor, A

1. Calculate the prefactor in the background gauge with a

certain way of the gauge zero mode subtraction

2. Convert the obtained prefactor into that in the Fermi gauge

with the gauge zero modes being subtracted appropriately

To obtain the conversion relation, we need semi-analytic

expressions in both gauges
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Functional Determinants



Setup

We consider

LE =
1

4
F a
µνF

a
µν +

1

2
(Dµφ)i (Dµφ)i + V (φ) + L(GF) + L(ghost)

where

Dµφ = (∂µ + gaA
a
µT

a)φ

We assume

• The rank of the gauge boson mass matrix is unchanged during

the bounce (but can be different from that in the false

vacuum)

• There are no zero modes except for the gauge zero modes and

the translational zero modes

• The bounce approaches to the false vacuum exponentially
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Partial Wave Expansion

Since the bounce is O(4) symmetric, we use the hyperspherical

functions, Y`m1m2 , as the basis of angular functions

Then, the prefactor is decomposed as

A =

 ∞∏
`=0

(
detM(cc̄)

`

detM̂(cc̄)
`

)(`+1)2(det′M(Sϕ)
0

detM̂(Sϕ)
0

)−1/2(
det′M(SLϕ)

1

detM̂(SLϕ)
1

)−2

×

 ∞∏
`=2

(
detM(SLϕ)

`

detM̂(SLϕ)
`

)−(`+1)2/2
 ∞∏

`=1

(
detM(T )

`

detM̂(T )
`

)−(`+1)2
Each fluctuation operator is shown in the following slides

(the hatted operators are obtained by φ̄→ v)
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Definitions

We define

∆` = ∂2
r +

3

r
∂r −

L2

r2

L =
√
`(`+ 2)

Mia = −ga[T aφ̄]i

Ωij =
d2V

dφidφj

where r is the radius from the center of the bounce
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Faddeev-Popov Ghost and (T )-modes

Fermi gauge

M(cc̄)
` = −∆`

M(T )
` = −∆` + MTM

Background gauge

M(cc̄)
BG,` = −∆` + ξMTM

M(T )
BG,` = −∆` + MTM

All of them are nG × nG matrices with nG being the number of the

gauge bosons
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(Sϕ)-modes (` = 0)

Fermi gauge

M(Sϕ)
0 =

(
−1
ξ∆1 + MTM (M ′)T −MT∂r

2M ′ + M 1
r3∂r r

3 −∆0 + Ω

)

Background gauge

M(Sϕ)
BG,0 =

(
−1
ξ∆1 + MTM 2(M ′)T

2M ′ −∆0 + Ω + ξMTM

)
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(SLϕ)-modes (` > 0)

Fermi gauge

M(SLϕ)
` =

−∆` + 3
r2 + MTM − 2L

r2 (M′)T −MT∂r

− 2L
r2 −∆` − 1

r2 + MTM − L
r
MT

2M′ + M 1
r3 ∂r r

3 − L
r
M −∆` + Ω



+

(
1−

1

ξ

)
∂2
r + 3

r
∂r − 3

r2 −L
(

1
r
∂r − 1

r2

)
0

L
(

1
r
∂r + 3

r2

)
− L2

r2 0

0 0 0


Background gauge

M(SLϕ)
BG,` =

−∆` + 3
r2 + MTM − 2L

r2 2(M′)T

− 2L
r2 −∆` − 1

r2 + MTM 0

2M′ 0 −∆` + Ω + ξMTM



+

(
1−

1

ξ

)
∂2
r + 3

r
∂r − 3

r2 −L
(

1
r
∂r − 1

r2

)
0

L
(

1
r
∂r + 3

r2

)
− L2

r2 0

0 0 0
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Theorem

The ratio of the functional determinants can be calculated in the

following way

Let M and M̂ be n × n fluctuation operators. Then,

detM
detM̂

=

(
lim
r→0

det Ψ(r)

det Ψ̂(r)

)−1(
lim
r→∞

det Ψ(r)

det Ψ̂(r)

)
where

Ψ(r) =
(
ψ(1)(r) · · · ψ(n)(r)

)
Ψ̂(r) =

(
ψ̂(1)(r) · · · ψ̂(n)(r)

)
with independent regular solutions,

Mψ(I )(r) = 0

M̂ψ̂(I )(r) = 0

See [M. Endo, T. Moroi, M. M. Nojiri, YS, ’17] 22



Semi-analytic Results



Decomposition

Solutions of M(SLϕ)
` Ψ

(SLϕ)
` = 0 are decomposed as

Ψ
(SLϕ)
` =

∂rχL
r
χ

Mχ

+

(MTM)−1
[
L
r
η − 2(M′)Tλ

]
(MTM)−1 1

r2 ∂r r
2η

λ

+

[∂r (MTM)−1]ζ

0

M(MTM)−1ζ



M(cc̄)
` χ =[∂r (MTM)−1]

L

r
η −

2

r3
∂r r

3(MTM)−1(M′)Tλ

−M(cc̄)
0 (MTM)−1ζ −

1

r3
∂r r

3(MTM)−1∂r ζ + ξζ

M(cc̄)
` ζ =0

∆`η =MTM

[
η − {∂r (MTM)−1}

1

r2
∂r r

2η

]
−

2L

r
M′Tλ+

L

r
MTM[∂r (MTM)−1]ζ

∆`λ = Ωλ− 4M′(MTM)−1M′Tλ+
2L

r
M′(MTM)−1η − 2M′(MTM)−1ζ′

+ M

[
−

2

r3
∂r r

3(MTM)−1M′Tλ+
L

r
{∂r (MTM)−1}η − {∂r (MTM)−1}ζ′

]
where Mλ = 0
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Relations (` > 0)

We have evaluated the r → 0 behavior and the r →∞ behavior

carefully and obtain a gauge-invariant semi-analytic expression

For ` > 0, we have shown(
detM(cc̄)

`

detM̂(cc̄)
`

)(`+1)2 (
detM(SLϕ)

`

detM̂(SLϕ)
`

)−(`+1)2/2

=

detM(cc̄)
BG,`

detM̂(cc̄)
BG,`

(`+1)2 detM(SLϕ)
BG,`

detM̂(SLϕ)
BG,`

−(`+1)2/2

= (Gauge-invariant expression)

(Explicit expression is available in the paper)
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Relations (` = 0)

When there are gauge zero modes, detM(Sϕ)
0 = detM(Sϕ)

BG,0 = 0

In the Fermi gauge, they are subtracted as

det ′M(Sϕ)
0 = lim

ν→0

1

νnzero
det[M(Sϕ)

0 + ν]

We have shown(
detM(cc̄)

0

detM̂(cc̄)
0

)(
det′M(Sϕ)

0

detM̂(Sϕ)
0

)−1/2

=

√
detK

detXU

(
detM(cc̄)

BG,0

detM̂(cc̄)
BG,0

) lim
ν→0

1

νnzero

det

[
M(Sϕ)

BG,0 + ν

(
1
ξ

0

0 1

)]
detM̂(Sϕ)

BG,0


−1/2

= (Gauge-invariant expression)

where detK and detXU are calculable objects
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Numerical Varification



Numerical Varification

We can explicitly calculate the both sides of

detM(SLϕ)
BG,`

detM̂(SLϕ)
BG,`

= (semi-analytic expression)

lim
ν→0

1

νnzero

det

[
M(Sϕ)

BG,0 + ν

(
1
ξ 0

0 1

)]
detM̂(Sϕ)

BG,0

= (semi-analytic expression)

for ξ = 1
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SO(3) Triplets

Let us consider

φ1, φ2 : SO(3) triplets

S : singlet

The potential is assumed to be

V =
λ1

4

(
|φ1|2 +

m2
1

λ1
− κ1S

2

)2

+
λ2

4

(
|φ2|2 +

m2
2

λ2
− κ2S

2

)2

+
λ3

2
(φ1 · φ2)2 + VS

where

VS = (1− κ2
1λ1 − κ2

2λ2)
S4

4
− vT

6
(3− ε) S3 +

v2
T

4
(1− ε)S2

The couplings of the other possible terms are set to zero
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Parameters

First example
v1 = v2 = vS = 0

λ1 = 0.2, λ2 = 0.5, κ1 = κ2 = 0.8,

m2
1 = 1, m2

2 = 3, vT = 8, ε = 0.01,

g = 1, λ3 = 0.5

Second example
v1 =

√
5, v2 = vS = 0

λ1 = 0.2, λ2 = 0.5, κ1 = κ2 = 0.8,

m2
1 = −1, m2

2 = 3, vT = 8, ε = 0.01,

g = 1, λ3 = 0.5
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Bounce

Using the gradient flow method, a very precise bounce is obtained

First example (B = 576.808625(16))

0 2 4 6 8 10 12 14
10-36

10-26

10-16

10-6

r

ϕ
1
,ϕ

2
,S ϕ1

ϕ2

S

Solved 14 times farther than the typical size of the bounce and

10−36 times smaller than the typical field value
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First Example ` = 0
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4000

r

D
' 0 Direct

Decomposed
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First Example ` = 3

0 2.5 5.0 7.5 10.0 12.5

0
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r

D
ℓ Direct

Decomposed

Fit (Decomposed)

31



First Example ` = 5

0 2.5 5.0 7.5 10.0 12.5

0

100

200

300
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r

D
ℓ Direct

Decomposed

Fit (Decomposed)
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Second Example ` = 0

0 2 4 6

0

20000

40000

60000

80000

r

D
0 Direct

Decomposed
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Second Example ` = 3

0 2 4 6

0

2500
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r

D
ℓ

Direct

Decomposed
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Second Example ` = 5

0 2 4 6
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400
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800

1000

r

D
ℓ Direct

Decomposed
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Summary

• The treatment of gauge zero modes has been a long standing

problem in the calculation of the prefactor

• The correct treatment has been discovered recently for a

single-field bounce and we extended it to a multi-field bounce

• We obtained the semi-analytic expression of the prefactor,

which is manifestly gauge invariant

• We calculated in two gauges, the Fermi guage and the

background gauge, and find their relations

• They can be used to convert the results in the background

gauge, where the numerical calculation becomes stable, to

those in the Fermi gauge, where the treatment of the gauge

zero modes is feasible

• We have numerially checked our results and found they show

very good agreement
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